用户名: 密码: 验证码:
中国多金属结核开辟区海域的内部混合和近底层低频波动
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用CTD与下放式ADCP的同步观测资料以及锚系观测,计算和分析了中国多金属结核开辟区区域内部混合和近底层低频流动特征。
     第一章给出了本文的研究背景和进展,第二章简要总结了海洋内部混合的基本理论和物理原理,在第三种介绍了本文所采用的仪器和观测方法。第四章对历年温盐和表层流资料的进行了统计分析,给出了开辟区的温盐和表层流的分布特征和年变化特征:(1)表层水温在夏季呈南高北低的特点,温盐跃层较薄,中心位置在50~120米之间变化;(2)上层常年受北赤道流和北赤道逆流控制,其交界位于9°N附近。
     第五章,基于简单的海洋内部湍流方程,通过温盐梯度和速度剪切观测计算了开辟区东、西区的温度耗散率、湍流动能耗散率、R_i数和湍流混合效率等混合参数,计算结果表明:(1)开辟区的温度耗散率为0.5×10~(-8)~5×10~(-8)°C~2/s,其最大值都集中在混合层以下的温跃层内,1200至海底的范围内具有极小的温度耗散率。(2)在500m以浅、1200~2000m以及离地约60m的范围内有较大水平流速剪切。16-m R_i数显示500m以浅的深度范围没有出现强混合过程,这主要是因为16-mR_i与混合强度的一致性不好。1500-2000m以及离地约50m的范围有多数小R_i数,表明这些范围内剪切不稳定性是主要的混合机制。(3)与大西洋深海底边界层不同,开辟区在温盐结构上不存在明显的底混合层,但速度剪切和颗粒物浓度的结构能显示明显的底边界层结构。(4)底边界层内的剪切不稳定性混合导致沉积物再悬浮,从而使底边界层内的颗粒物浓度迅速增加。
     第六章,对1997年7月至1999年10月间布放在东、西区的深海锚系资料进行了分析和计算。对离底600米(mab)以内的近底层流资料低通滤波后的数据进行了统计分析,结果表明,开辟区近底层低频流动的时间尺度为25~120天,其中周期为51天左右的波动是低频振动的主要成分;地形对离底50米以内的低频流动有明显的影响;底层强化的剪切平流对低频波动的调制作用是产生层低流
    
    梁楚进,中国科学院海洋研究所博十学位论文,200407
    动垂向频移的动力机制。
    关键词:中国开辟区混合湍流动能耗散率低频流动频移
The interior mixing and near-bottom low-frequecy currents of Chinese Pioneer Area (CPA) are analyzed based on the CTD and LADCP simultaneous observations and deep sea mooring observations.The general introduce and background are givn in chapter 1, basic theories and physical principle of ocean interior mixing are introduced in chapter 2 , and the instruments and observing methods used are discussed in chapter 3.In chapter 4 the distributions and annual variability characteristics of temperature, salinity and surface currents are statistically analyzed. In summer, the temperature of the south part of the area is higher than the north part. Both the main thermocline and the main halocline are thin and their depths range from 50 to 120m. (2) North Equatorial Current and North Equatorial Counter Current are the main currents most of the year in the upper sea of the area.In chapter 5, under the simply turbulent kinetic energy (TKE) equation, dissipation rate of TKE, dissipation rate of temperature variance, Richardson number(Ri) and mixing efficiency of both the east area and the west area are examined frommeasurements of both temperature gradient and velocity shears. The results of calculations show that (1) the dissipation rate of temperature variance of CPA is0.5×10-8~5×10-8 ℃2 /s , which high values are in the thermocline layer, and verylow values are in the range of 1200m to the bottom. (2) high horizontal velocity shears are found in the ranges of 0~500m, 1200~2000m and 60m above the bottom,but the low 16-m Ri,just dose not occur in the range of 0~500m. many lowRi numbers in the ranges of 1200~2000m and 60m above the bottom imply that theshear instabilities are main causes of the mixing. (3)No obvious bottom boundary layer structure is seen from temperature and salinity structure as that in the deepsea
    
    in the Atlantic, but deep sea bottom boundary layers are obvious in the horizontal velocity shears and the particle concentration structures near the bottom. (4) Mixing by shear instability causes rapidly increase of suspended particular concentration in the bottom boundary layer.Data of two deep-sea moorings deployed respectively in the east area and the west area of CPA to monitor the regional deep-sea dynamics below 600 meters above bottom (mab) since July 1997 to Oct. 1999. are analyzed In chapter6. Results of statistics, spectral estimate and correlation analysis of the low-passed velocity data show that time scales of low-frequency components of the near-bottom currents are 25~120-day, in which 51-day period dominates the lower band of the frequency domain; Topographic features have obvious effect on low-frequency currents below 50mab: modulations of the bottom-intensified sheared mean flow to the low-frequency currents is the dynamic mechanism of the frequency shift that occurs both in the east-area and the west-area.
引文
[1] 范植松,海洋内部混合研究基础,海洋出版社,2002
    [2] K N费多罗夫,海洋温盐精细结构,海洋出版社,1992
    [3] Amos A F. Garside C, Haines K C, et al. Effects of surface discharged deep-sea mining effluent [J]. J. Mar. Technol. Soc., 1972, 4(4): 40~45.
    [4] Amos A F. Garside C, Gerard R D, et al. Study of the impact manganese nodule mining on the seabed and water column[R]. In: Phase Ⅰ report, Inter-University program of research on ferromanganese deposits of the ocean floor, Washington, D C: NSF/IDOE, 1973, 221~265.
    [5] Apel, J. R., J.R. Holbrook, A.K. Liu and J.J. Tsai, 1985. The Sulu Sea soliton experiment. J.Phys. Oceanogr. 25, 2635-1651.
    [6] Armi, L., Some evidence for boundary mixing in the deep sea. J. Geophys. Res. 1978.83, 1971-1979
    [7] Armi, L., Effects of variations of eddy diffusivity on property distributions in the ocean. J.Mar. Res. 1979.37, 515-530.
    [8] Burns R E, Erickson B H, Lavelle J W, et al. Observations and measurements during the monitoring of deep ocean manganese nodule mining tests in the North Pacific, March-May 1978 [R]. Boulder, Colorado: Marine Ecosystems Analysis Program Office, NOAA, 1980.
    [9] Baines, P.G., On internal tide generation models. Deep Sea Res.1982. 29, 307-318.
    [10] Bell, T.H., Topographically generated internal waves in the open ocean. J. Geophys. Res. 1975.80, 320-327.
    [11] Bretherton, F.P., The propagation of groups of internal gravity waves in a shear flow.Quarterly J. Royal Met. Soc. 1966.92, 466-493.
    [12] Bird, A.A., Weatherly, G.L., Wimbush. M., A study of the boundary layer over the Eastward Scarp of the Bermuda Rise. J., Geophysical Research, 1982, 87(C 10), 7941-7954
    [13] Cartwright, D.E. Ocean tides. Reports on Progress in Physics, 1977. 40, 665-708.
    [14] Chiswell, S.M., Vertical structure of the baroclinic tides in the Central North Pacific subtropical gyre. J. Phys. Oceanogr. 1994.24, 2032-2039.
    
    [15] Clauser, F.H., The turbulent boundary layer. Advances in Appl. Mech. 1956. 4,1-51.
    [16] Cox, C.S. and H. Sandstrom, Coupling of internal and surface waves in water of variable depth. J. Oceanographic Soc. Japan, 20th Anniv. 1962. Vol, 499-513.
    [17] Desa E. Initial results of India's environmental impact assessment of nodule mining [A]. Proceedings of International Symposium on Environmental Studies for Deep-sea Mining[C]. Tokyo, Japan: Metal Mining Agency of Japan, 1997.49-56.
    [18] Doug wilson,Acoustic Doppler Currents profiling in the Equatorial Pacific in 1984,J.GR.,Vol.93,No.Cll,PP.13, 947-13,966 Nov.15,1988.
    [19] Davis, R.E., Diapycnal mixing in the ocean: Equations for large scale budgets. J.Phys. Oceanogr. 1994. 24, 777-800.
    [20] Dillon, T.M. Vertical overturns: a comparison of Thorpe and Ozmidov length scales. J. Geophys. Res. 1982.87,9601-9613.
    [21] Dushaw, B. D., B. D. Cornuelle, P. F. Worcester, B. M. Howe and D. S. Luther,Barotropic and baroclinic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmissions, J. Phys. Oceanogr. 1996. 25,631-647.
    [22] Egbert, G.D., A.F. Bennett and M.G.G. Foreman, TOPEX POSEIDON tides estimated using a global inverse model. J. Geophys. Res., 1994. 99,24821-24852.
    [23] Egbert, G.D., Tidal inversion: interpolation and inference. Progress in Oceanography. 1997.40, 53-80.
    [24] Eriksen, C.C., Observations of internal wave reflection off sloping bottoms. J. Geophys. Res. 1982. 87, 525-538.
    [25] Eriksen, C.C., Implications of ocean bottom reflection for internal wave spectra and mixing. J. Phys. Oceanogr. 1985.15,1145-1156.
    [26] Eriksen, C.C., Moored observations of deep low-frequecy motions in the central pacific ocean: vertical structure and interpretation as equatorial waves. J. Phys. Oceanogr. 1985.15,1085-1113.
    [27] Eriksen, C.C., Internal wave reflection and mixing at Fieberling Guyot. J.Geophys. Res. 1998.103,2977-2994.
    [28] Earle,M.D., Current measurements in the eastern central North Pacific Ocean,Deep Sea Res., 1975,22,875-882
    [29] Farmer, D.M. and J.D. Smith, Tidal interaction of stratified flow with a sill in
     Knight Inlet. Deep Sea Res. Part A., 1980.27,239-254.
    
    [30] Fritts, P.C. and W. Lu., Spectral estimates of gravity wave energy and momentum fluxes. J. Atmos. Sci., 1993. 50,3685-3694.
    [31] Gargett, A.E., Vertical eddy viscosity in the ocean interior. J. Mar. Res. 1984.42,359-393.
    [32] Gloumov I, Ozthurgut E, Pilipchuk M. BIE in the Pacific:concept, methodology and basic results [A] .Proceedings of International Symposium on Environmental Studies for Deep-sea Mining[C]. Tokyo, Japan: Metal Mining Agency of Japan,1997.45-48.
    [33] Gregory CJohnson et al,The Pacific subsurface counter currents and an inertial Model,Vol.27,PP.2448-2459,1997.
    [34] Gregory C.Johnson et al,Flow of deep and bottom waters in the Pacific at 10° N,Deep-Sea Res.Vol.40,No.2,PP.371-394,1993.
    [35] Gregg, M.C. and T.B. Sanford, Signature of mixing from the Bermuda Slope,the Sargasso Sea, and the Gulf Stream. J. Phys. Oceanogr. 1980. 10-1, 106-127.
    [36] Gregg, M.C. and T.B. Sanford, The dependence of turbulent dissipation on stratification in a diffisivity stable thermocline. J. Geophys. Res. 1988. 93,12381-12392.
    [37] Gregg, M.C, Scaling turbulent dissipation in the thermohaline. J. Geophys. Res.,1989.94,9686-9698.
    [38] Hamilton, P., Observations of tidal circulation in Mamala Bay, Hawaii. Proc.North American 1996.
    [39] Haury, L. D., M.G. Briscoe and M.H. Orr, Tidally generated internal waves in Massachusetts Bay. Nature, 1979.278,1613-1624.
    [40] Hayes,S.P., The bottom boundary layer in the eastern tropical Pacific, J.Phys. Oceanogr., 1980,10,315-329
    [41] Hogg, N., A least-squares fit of the advective-diffusive equations to Levitus Atlas data. J. Mar. Res, 1987. 45, 347-375.
    [42] Hogg, N., P. Biscaye, W. Gardiner and W.J. Schmitz. On the transport and modification of Antarctic Bottom Water in the Vema Channel. J. Mar. Res. 1984.40,231-263(Suppl.)
    [43] 4 Holger Klein, Benthic Storms, Vortices, and Particle Dispersion in the Deep West European Basin, Dt.hydrogr.Z. 1987,40, 87-102,
    [44] Mourn J. N., Fanner D. M., et al, Structure and Generation of Turbulence at Interfaces Strained by Internal Solitary Waves Propagating Shoreward over the Continental Shelf, Journal of Physical oceanography, 2003, v33, 2093-2112
    
    [45] Jean-Rene Donguy et al,Mean annual variation of transport of Major Currents in the tropical Pacific Ocean,Deep-sea Research,Vol 43,No.7,PP.1105-1122,1996.
    [46] Jonathan M.Lilly, Peter B. Rhines, Coherent Eddies in the Labrador Sea Observed from a Mooring, Jouranal of Physical Oceanography, 32,585-598,2002
    [47] Kaneko T, Maejima Y, Teishima H. The abundance and vertical distribution of abyssal benthic fauna in the Japan Deep-Sea Impact Experiment [A]. Proceedings of the Seventh International Offshore and Polar Engineering Conference [C]. Colorado: International Society of Offshore and Polar Engineers, 1997. 475~480.
    [48] Kollinski R, Tkatchenko G Preliminary results of IOM environmental research [A]. Proceedings of International Symposium on Environmental Studies for Deep-sea Mining[C]. Tokyo, Japan: Metal Mining Agency of Japan, 1997. 35-44.
    [49] Kajitani Y. Summary of the Japanese environmental study for manganese nodules development [A]. Proceedings of International Symposium on Environmental Studies for Deep-sea Mining[C]. Tokyo, Japan: Metal Mining Agency of Japan, 1997.11-17.
    [50] Kukert H, Smith C R. Burial resistance and modes of recolonization in deep-sea macrofauna [A]. Fifth Intl. Deep-sea Biol. Symp.[C]. Brest, France:Ifremer,1988.
    [51] Kurt Polzin, Statistics of the Richardson Number: Mixing Models and Finestructure, Journal of Physical Oceanography, 1996,26,1409-1425.
    [52] Kurt Polzin,Eric Kunze,Jules Hummon and Eric Firing, The Finescale Response of Lowered ADCP Velocity Profiles, Journal of Atmospheric and Oceanic Technology,2002,19,205-224.
    [53] Klein H. and Mittelstaedt E., Currents and dispersion in the abyssal north Atlantic results from NOAMP field program. Deep-sea Res., 1992, 39(10),1727-1745
    [54] Kunze, E. and J.M. Toole, Tidally driven vorticity, diurnal shear and turbulence atop Fieberling Seamount. J. Phys. Oceanogr., 1997.27,2663-2693.
    [55] Leaman, K.D. and T.B. Sanford, Vertical energy propagation of internal waves: A vector spectral analysis of velocity profiles. J. Geophys. Res. 1975.80-15,1975-1978
    [56] Lavelle J. W. and Baker E. T., Ocean currents at axial volcano, a northeastern pacific seamount, J. Geophys. Res., 2003, 108, c2, 1-19
    
    [57] Ledwell, J.R., A.J. Watson and C.S. Law, Evidence for slow mixing across the pycnocline from an open ocean tracer release experiment. Nature,1993.364,701-703.
    [58] Louis C.St. Laurent, Jonathan D.Nash, On the Fraction of Internal Tide Energy Dissipated Near Topography,(manuscript) ,45-58.
    [59] Louis ST.Laurent, Raymond W.Schmitt, The Contribution of Salt Fingers to Vertical Mixing in the North Atlantic Tracer Release Experiment, Journal of Physical Oceanography, 1999,29,1404-1424.
    [60] Louis C.St.Laurent,John M.Toole,and Raymond W.Schmitt, Buoyancy Forcing by Turbulence above Rough Topography in the Abyssal Brazil Basin, Journal of Physical Oceanography,2001,31,3476-3495.
    [61] Laurence Armi and Robert C. Millard,JR., The Bottom Boundary Layer of the Deep Ocean, Journal of Geophysical Research, 1976,81(27)4983-4990.
    [62] Lueck, R.G. and T.D. Mudge, Topographically induced mixing around a shallow seamount.Science, 1997.276, 1831-1833.
    [63] M.C.Gregg, Variations in the Intensity of Small-Scale Mixing in the Main Thermocline, Journal of Physical Oceanography, 1977,7,436-454.
    [64] Matthew H. Alford, Robert Pinkel, Observations of Overturning in the Thermocline: The Context of Ocean Mixing, Journal of Physical Oceanography,2000,30,805-832.
    [65] Matthew Alford,Robert Pinkel, Patterns of Turbulent and Double-Diffusive Phenomena:Observations from a Rapid-Profiling Microconductivity Probe,Journal of Physical Oceanography 2000,30,833-853.
    [66] Maki Nagasawa,Yoshihiro Niwa,and Toshiyuki Hibiya, Spatial and temporal distribution of the wind-induced internal wave energy available for deep water mixing in the North Pacific, Journal of Geophysical Research ,2000,105,13,933-13,943.
    [67] Martin Visbeck,Monika Rhein, Is Bottom Boundary Layer Mixing Slowly Ventilating Greenland Sea Deep Water. Journal of Physical Oceanography,2000,30,215-223.
    [68] Mizuki Tsuchiya,Subsurface counter currents in the eastern equatorial Pacific Ocean,J,Marine Research,Vol.2, PP.145-175,1975.
    [69] M.H.Alford, Internal Swell: Distribution and Redistribution of Internal-Wave Energy, (manuscript), 29-39.
    
    [70] Morozov, E.G., Semi diurnal internal wave global field. Deep Sea Res. 1995.42-1, 135-198.
    [71] Muller, P., Spectral features of the energy transfer between internal waves and larger scale shear flow. Dyn. Atmos. Oceans., 1977. 2, 49-72.
    [72] Munk, W.H. and C. Wunsch, The moon, of course.... Oceanography, 1997. 10,132-134.
    [73] Munk. W.H., Abyssal Recipes. Deep Sea Res. 1966. 13. 207-230.
    [74] New, A.L., Internal tidal mixing in the Bay of Biscay. Deep Sea Res. 1988.35-5,691-709.
    [75] Oakey N. S., Statistics of Mixing Parameters in the Upper Ocean During JASIN Phase 2, Journal of Physical Oceanography, 1985,15,1662-1675.
    [76] Oakey. N.S., Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements, J.Phys. Oceanogr., 12, 256-271, 1982.
    [77] Ozturgut E, Lavelle J W , Steffin O, et al. Environmental investigation during manganese nodule mining tests in the North Pacific, November 1978[R]. Boulder,Colorado: Marine Ecosystems Analysis Program Office, NOAA, 1980.
    [78] Osborn T.R., Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements, Journal of Physical Oceanography, 1980, 10, 83-89.
    [79] P.Muller and D.J.Olbers, J.Willebrand, The Iwex Spectrum, Journal of Geophysical Research, 1978, 83,479-500.
    [80] Polzin, K.L., J.M. Toole, J. R. Ledwell and R.W. Schmitt, Spatial variability of turbulent mixing in the abyssal ocean. Science, 1997.276, 93-96.
    [81] Raymond W. Schmitt, JR., and David L. Evans, An Estimate of the Vertical Mixing Due to Salt Fingers Based on Observations in the North Central Water,Journal of Geophysical Research, 1978, 83,2913-2919.
    [82] Rattray. M., On the coastal generation of internal tides. Tellus, 1960. 12, 54-62.
    [83] Rattray. M., J.G. Dworski and P.E. Kovala, Generation of long internal waves at the continental slope. Deep Sea Res. 1969. 16, 179-195.
    [84] Ray, R.D. and G.T. Mitchum, Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Letters, 1996.23,2101-2104.
    [85] Robert Pinkel,Steven Anderson, Shear,Strain, and Richardson Number Variations in the Thermocline.Part I: Statistical Description, Journal of Physical
     Oceanography, 1997,27,264-281.
    
    [86] Ryan W B F, Heezen B C. Smothering of deep-sea benthic communities from natural disasters[R]. Washington, D C: NOAA, 1976.
    [87] Roemmich, D., S. Hautala and D. Rudnick, Northward abyssal transport through the Samoan Passage and adjacent regions. J. Geophys. Res., 1996.101,14039-14055.
    [88] Rhines. P. B., Observations of the energy-containing oceanic eddies and theoretical models of waves and turbulence. Bound-Layer Meteor., (4)345-360.1973
    [89] S.A.Mack and H.C.Schoeberlein, Richardson Number and Ocean Mixing:Towered Chain Observations, Journal of Physical Oceanography,2004,34,736-754.
    [90] S.M.Chiswell et al,Variability in the central equatorial Pacific, 1985-1989, J.P.O.,Vol.100,No.C8. PP. 15,849-15,863,1995.
    [91] Samelson, R.M., Large scale circulation with locally enhanced vertical mixing. J. Phys. Oceanogr., 1998. 28, 712-726.
    [92] Schott, F., On the energetics of baroclinic tides in the North Atlantic. Ann. Geophysic. 1977.33,41-62.
    [93] Sjoberg, B. and A. Stigebrandt, Computations of the geographical distribution of the energy flux to mixing processes via internal tides and the associated vertical circulation of the ocean. Deep Sea Res. 1992.39-2, 269-291.
    [94] Stace Beaulieu, Roberta Baldwin, Temporal variability in currents and the benthic boundary layer at an abyssal station off central California,Deep-Sea Research Ⅱ ,45,587-615,1998
    [95] Stommel, H. and A.B. Arons, On the abyssal circulation of the world ocean - II. Idealized models of the circulation pattern and amplitude in ocean basins. Deep Sea Res., 1960. 6,217-233.
    [96] St. Laurent, L.C., J.M. Toole, and R.W. Schmitt, Buoyancy forcing by turbulence above rough topography in the abyssal basin, J. Phys. Oceanogr., 31,3476-3495,2001.
    [97] Sun, H.. and E. Kunze, Internal wave/wave interactions, Part II: Spectral energy transfer and turbulence production, J. Phys. Oceanogr., 29,2905-2919,1999.
    [98] Toole, J.M., K.L. Polzin, and R.W. Schmitt, Estimates of diapycnal mixing in the abyssal ocean, Science, 264,1120-1123,1994.
    
    [99] Trevor J. Mcdougall and barry R.Ruddick, The use of ocean microstructure to quantify both turbulent mixing and salt-fingering, Deep-sea research, 1992, 39,1931-1952.
    [100] Taft B.A. et al, Measurements of deep currents in the central north pacific,Journal of Geophysical Research,86,1955-1968,1981
    [101] Tang T.Y., Weiberg R. H., Vertical Structure of Low Frequency Variability in the Eastern Equatorial Pacific Ocean, Journal of Physical Oceanography, 18,1009-1019,1988
    [102] Thorpe, S.A. and M. White, A deep intermediate nepheloid layer. Deep Sea Res. 1988.35-9, 1665-1671.
    [103] Towsend, A.A., Excitation of internal waves in a stable stratified atmosphere with considerable wind shear. J. Fluid. Mech., 1968.32, 145-171.
    [104] Toole, J.M., R.W. Schmitt, K.L. Polzin and F. Kunze, Near-boundary mixing above the flanks of a mid latitude seamount. J. Geophys. Res., 1997.102-C1,947-959.
    [105] Van Zandt, T.E., A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res. Letters, 1982. 9, 575-578.
    [106] Warner, C.D. and M.E. Macyntire, On the propagation and dissipation of gravity wave spectra through a realistic middle atmosphere. J. Atmos. Sci. 1997.53-22,3213-3235.
    [107] Wesson, J. C. and M. C. Gregg, Mixing at Camarinal Sill in the Strait of Gibraltar. J. Geophys. Res. 1994.99, C-t, 984-9878.
    [108] Whithead, J.A. and L.V. Worthington, The flux and mixing rates of Antarctic Bottom Water within the North Atlantic. J. Geophys. Res. 1982.87, 7903-7924.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700