用户名: 密码: 验证码:
超低损耗AB(Nb,Ta)_2O_8型微波介质陶瓷结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超低损耗微波介质陶瓷的设计与优化是突破无源器件能耗问题、满足新一代微波无线系统低能耗发展需求的关键。本文对AB(Nb, Ta)_2O_8型铌钽酸盐微波介质陶瓷中四种不同结构微波介质陶瓷结构与性能进行了深入探索,并重点探索了锰钽矿结构及有序锰钽矿结构,建立了其相成分、晶体结构、声子结构与性能参数的关系,发展和丰富了微波介质陶瓷的介电响应理论,并提出了体系设计及性能优化的具体方案,研制了一系列具有超低损耗的微波介质陶瓷新材料。
     首先,研究了锰钽矿结构ZnTi(Nb,Ta)_2O_8微波介质陶瓷。通过对具有代表性的ZnTiNb_2O_8进行对称性分类以及晶格振动模式的标定,建立了锰钽矿结构的微结构机制与宏观电学性能的联系,揭示了键能、原子堆积密度、拉曼位移、拉曼散射峰的半峰宽等参数间存在的相互作用机理。进一步用Ta取代Nb,制备出性能相对优异的ZnTiNbTaO_8超低损耗微波介质陶瓷新材料。并通过其结构与性能联系的研究,建立和完善了锰钽矿结构与微波介电性能联系的相关理论。
     其次,研究了新型超低损耗金红石结构NiTiNb_2O_8微波介质陶瓷。采用Rietveld全谱拟合法测定了其晶体结构,并对其进行对称性分类、晶格振动模式的标定,为进一步研究其结构与性能的联系,从而实现其微波介电性能的优化提供了有力的理论支撑。
     再次,研究了新型有序锰钽矿结构(Zn, Mg)TiNb_2O_8微波介质陶瓷。发现有序锰钽矿结构MgTiNb_2O_8具有优异的微波介电性能。并测定了其晶体结构,对其进行对称性分类,标定了其晶格振动模式。此外,通过对Zn_(1-x)Mg_xTiNb_2O_8微波介质陶瓷结构有序化的探索性研究,获得了性能相对优异的Zn_(0.5)Mg_(0.5)TiNb_2O_8微波介质陶瓷新材料。并通过其结构与性能关系的研究,揭示了有序锰钽矿结构的微波响应新机制。
     再次,研究了新型超低损耗单斜结构ZnZrNb_2O_8微波介质陶瓷。发现了其低温烧结的特性。并初步探索了ZnZrNb_2O_8结构与性能的联系及结构与烧结温度的关系,提出了ZnZrNb_2O_8具有低烧结温度的微结构机制。
     最后,面向超低损耗AB(Nb,Ta)_2O_8微波介质陶瓷在微波无源元件中热稳定型片式微波多层陶瓷电容器方面的应用,针对其结构及性能特点,提出了两类性能优化方案。通过性能优化方案的实施制备了一系列性能优异的超低损耗微波介质陶瓷新材料。
Design and optimization of ultra-low loss microwave dielectric ceramic is abreakthrough for solving the power consumption problem of passive components. Italso meets the demand of low energy consumption of the new generation microwavewireless system. Structure and properties of four different kinds of microwavedielectric ceramic of niobate and tantalite material AB(Nb,Ta)_2O_8was studied in thispaper. The relationship between the phase composition, crystal structure, phononstructure and dielectric properties were established which was a development of thedielectric response theory. Moreover, the general rules for the design and modify ofdielectric performance were put forward, and a series of new ultra-low lossmicrowave dielectric materials have been developed.
     Firstly, the Ixiolite structure ZnTi(Nb,Ta)_2O_8microwave dielectric ceramics wereinvestigated. The relationships between the structure and electrical properties oftantalite were established based on the study of the classification of symmetry and theassignment of lattice vibration mode of representative ZnTiNb_2O_8. The interactionmechanisms of bond strength, atomic packing fraction, Raman displacement, fullwidth at half maximum of Raman scattering peak were revealed. Furthermore, bysubstitute of Ta for Nb, a new microwave dielectric material ZnTiNbTaO_8with gooddielectric properties was prepared. And by studying its structure and properties, thispaper enriched the theory of analysing Ixiolite structure and microwave dielectricproperties.
     Secondly, the new ultra-low loss Rutile structure NiTiNb_2O_8microwavedielectric ceramic was investigated. Its crystal structure was determined by Rietveldrefinement. And its symmetry classification, lattice vibration mode were investigated,which provide a strong theoretical support for further research of the structure andproperties and for the optimization of the microwave dielectric properties.
     Thirdly, the new ordered-Ixiolite structure (Zn,Mg)TiNb2O8microwave dielectricceramics were investigated. In this part, we found out that the ordered-Ixiolitestructure MgTiNb_2O_8has excellent microwave dielectric properties. We alsoinvestigated its crystal structure, symmetry classification, and lattice vibration mode.As we exploratory study the ordered Zn_(1-x)Mg_xTiNb_2O_8microwave dielectric ceramic, a new Zn_(0.5)Mg_(0.5)TiNb_2O_8dielectric with excellent microwave properties was foundfor the first time. Meantime, the new microwave response mechanisms forordered-Ixiolite structure were revealed by studying the relationship between structureand microwave properties.
     Fourthly, the new ultra-low loss monocline structure ZnZrNb_2O_8microwavedielectric ceramic was investigated. We found its low temperature sintering propertyand deeply investigated the reasons for this good property. We tentative put forwardsome mechanism for its low temperature sintering property.
     Finally, to meet the demand of the application of ultra-low loss AB(Nb,Ta)_2O_8microwave dielectric ceramic on microwave passive components: thermal stablechip microwave multilayer ceramic capacitors, two kinds of optimization methodswere proposed according to its characteristics in structure and properties. A series ofnew ultra-low loss microwave ceramics with excellent microwave dielectricproperties were prepared by the optimization methods proposed.
引文
[1] Sebastian M. T., Dielectric Materials for Wireless Communication, ElsevierScience Technology Publications, Oxford, U.K.(2008)
    [2] Guo,Y., Ohsato H., Kakimoto K., Characterization and dielectric behaviour ofwillemite and TiO2doped willemite at millimeterwave frequency, J. Eur. Ceram.Soc.,2006,26:1827~1830
    [3] Kim M. H., Lee J. C., Cheon C. I., et al. Crystal structure and low temperaturecofiring ceramic property of (1-x)(Li, Re)W2O8–xBaWO4ceramics (Re=Y,Yb),Jpn. J. Appl. Phys.,2006,45:7397~7400
    [4] Tsunooka T., Sugiyma H., Kakimoto K., et al. Zero temperature coefficient andsinterability of forsterite ceramics by rutile addition, J. Ceram. Soc. Jpn.,2004,112: S1637~S1640
    [5] Tsunooka T., Andou M., Higashita Y., et al. Effects of TiO2on sinterability anddielectric properties of high Q forsterite ceramics, J. Eur. Ceram. Soc.,2003,23:2573~2378
    [6] Ogawa H., Taketani H., Kan A., et al. Evaluation of electronic state ofMg4(Nb2-xSbx)O9microwave dielectric ceramics by first principal calculationmethod, J. Eur. Ceram. Soc.,2005,25:2859~2863
    [7] Kan A., Ogawa H., Ohsato H., Relationship between bond strength andmicrowave dielectric properties of corundom type (Mg4-xCox)Nb2O9andMg4(Nb2-yTay)O9solid solutions, J. Ceram. Soc. Jpn. Supl.,2004,112(1):S1622~S1626
    [8] Kan A., Ogawa H., Yokoi A., et al. Low temperature sintering and microstructureof Mg4(Nb2-xVx)O9microwave dielectric ceramic by V substitution for Nb, Jpn. J.Appl. Phys.,2003,42:6154~6157
    [9] Kan A., Ogawa H., Yokoi A., et al. Crystal structural refinement of corundomstructured A4M2O9(A=Co and Mg, M=Nb and Ta) microwave dielectricceramics by high temperature X-ray powder diffraction, J. Eur. Ceram. Soc.,2007,27:2977~2981
    [10]Watanabe M., Ogawa H., Ohsato H., et al. Microwave dielectric properties ofY2Ba(Cu1–xZnx)O5solid solutions, Jpn J. Appl. Phys.,1998,37:5360~5363
    [11]Kawaguchi S., Ogawa H., Kan A., et al. Effect of Sr substitution for Ba on themicrowave dielectric properties of Sm2(Ba2–xSrx)(Cu0.5Zn0.5)O5ceramics, J. Eur.Ceram. Soc.,2005,25:2853~2858
    [12]Huang C. L., Liu S. S., Characterization of extremely low loss dielectrics(Mg0.95Zn0.05)TiO3at microwave frequency, Jpn. J. Appl. Phys.,2007,46:283~285
    [13]Cho S. Y., Kim I. T., Hong K. S., Microwave dielectric properties andapplications of rare earth aluminates, J. Mater. Res.,1999,14:114~119
    [14]Belous A. G., Ovchar O. V., Kramarenko A. V., et al. Synthesis and microwavedielectric properties of Zn1+xNb2O6+x, Inorg. Mater.,2007,43:277~280
    [15]Matsumoto H., Tamura H., Wakino K., Ba(MgTa)O3–BaSnO3high Q dielectricresonator, Jpn. J. Appl. Phys.,1991,30:2347~2349
    [16]Surendran K. P., Sebastian M. T., Mohanan P., et al. The effects of dopants onthe microwave dielectric properties of Ba(Mg0.33Ta0.67)O3ceramics, J. Appl.Phys.,2005,98:094114
    [17]Kawaguchi S., Ogawa H., Kan A., et al. Microwave dielectric properties ofBa8Ta6(Ni1–xMx)O24(M=Zn and Mg) ceramics, J. Eur. Ceram. Soc.,2006,26:2045~2049
    [18]Tseng C. F., Huang C. L., Improved microwave dielectric properties of B2O3doped Nd(Co1/2Ti1/2)O3ceramics with near zero temperature coefficient ofresonant frequency, Mater. Res. Bull.,2006,42:9~16
    [19]Zheng H., Gy rgyfalva G. D. C. C., Reaney I. M., Microstructure and microwaveproperties of CaTiO3-LaGaO3solid solutions, J. Mater. Sci.,2005,40:5207~5214
    [20]Wakino K., Recent development of dielectric resonator materials and filters inJapan, Ferroelectrics.,1989,91:69~86
    [21]Kawashima S., Nishida M., Ueda I., et al. Ba(Zn1/3Ta2/3)O3ceramics with lowdielectric loss at microwave frequencies, J. Am. Ceram. Soc.,1983,66:421~423
    [22]Lee M. K., Chung J. H., Ryu K. W., et al. Microwave dielectric properties ofBa(Mg,Ta)O3–Ba(Co,Nb)O3ceramics, Proc. Intl. Symp. Insulating Materials,Toyahashi, Japan,(1998) pp.139~142.
    [23]Nomura S., Ceramics for microwave dielectric resonator, Ferroelectrics.,1983,49:61~70
    [24]Wakino K., Murata M., Tamura H., Far infrared reflection spectra ofBa(Zn,Ta)O3-BaZrO3dielectric resonator material, J. Am. Ceram. Soc.,1986,69:34~37
    [25]Kan A., Ogawa H., Ohsato H., Influence of microstructure on microwavedielectric properties of ZnTa2O6ceramics with low dielectric loss, J. Alloy.Compd.,2002,337:303~308
    [26]Thirumal M., Davies P. K., Ba8ZnTa6O24: A new high Q dielectric perovskite, J.Am. Ceram. Soc.,2005,88:2126~2128
    [27]Davies P. K., Borisevich A., Thirumal M., Communicating with wirelessperovskites: Cation order and zinc volatilization, J. Eur. Ceram. Soc.,2003,23:2461~2466
    [28]Tseng C. F., Huang C. L., Yang N. R., et al. Microwave dielectric properties ofNd(Zn1/2Ti1/2)O3ceramics at microwave frequencies, J. Am. Ceram. Soc.,2006,89:1465~1470
    [29]Moreira R. L., Khalam L. A., Sebastian M. T., et al. Raman spectroscopicinvestigations on the crystal structure and phonon modes of Ba(Re1/2Ta1/2)O3microwave ceramics, J. Eur. Ceram. Soc.,2007,27:2803~2810
    [30]Takada T., Wang S. F., Yoshikawa S., et al. Effect of glass additions onBaO–TiO2–WO3microwave ceramics, J. Am. Ceram. Soc.,1994,77:1909~1916
    [31]Kucheiko S., Yeo D. H., Choi J. W., et al. Microwave dielectric properties ofCaTiO3–CaAl1/2Nb1/2O3ceramics doped with Li3NbO4, J. Am. Ceram. Soc.,2002,85:1327~1329
    [32]Ahn Y. S., Yoon K. H., Kim E. S., Effect of cooling rate on loss quality of(Zr0.8Sn0.2)TiO4ceramics with additives, J. Eur. Ceram. Soc.,2003,23:2519~2523
    [33]Houivet D., Fallah J. El., Haussone J. M., Phases in La2O3and NiO doped(Zr,Sn)TiO4microwave dielectric ceramics, J. Eur. Ceram. Soc.,1999,19:1095~1099
    [34]Michiura N., Tatekawa T., Higuchi Y., et al. Role of donor and acceptor ions inthe dielectric loss tangent of (Zr0.8Sn0.2)TiO4dielectric resonator materials, J. Am.Ceram. Soc.,1995,78:793~796
    [35]Huang C. L., Hsu C. S., Lin R. J., Improved high-Q microwave dielectricresonator using ZnO and WO3-doped Zr0.8Sn0.2TiO4ceramics, Mater. Res. Bull.,2001,36:1985~1993
    [36]Hughes H., Iddles D. M., Reaney I. M., Niobate based dielectrics suitable forthird generation mobile phone base stations, Appl. Phys. Lett.,2001,79:2952~2954
    [37]Wu H., Davies P. K., Influence of non-stoichiometry on the structure andproperties of Ba(Zn1/3Nb2/3)O3microwave dielectrics. IV. Tuning τf and the partsize dependence of Q×f, J. Am. Ceram. Soc.,2006,89:2271~2278
    [38]Lee C. T., Lin Y. C., Huang C. Y., et al. Structural and dielectric characteristicsof barium lanthanum zinc niobate, J. Am. Ceram. Soc.,2007,89:3662~3668
    [39]Suvorov D., Valant M., Skapin S., et al. Microwave dielectric properties ofceramics with compositions along the La2/3TiO3–LaAlO3tie-line, J. Mater. Sci.,1998,33:85~89
    [40]Yoon K. H., Kim E. S., Dielectric characteristics of zirconium tin titanateceramics at microwave frequencies, Mater. Res. Bull.,1995,30:813~820
    [41]Surendran K. P., Solomon S., Varma M. R., et al. Microwave dielectric propertiesof RETiTaO6(RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Yb, Al, and In)ceramics, J. Mater. Res.,2002,17:2561~2566
    [42]Solomon S., Kumar M., Surendran K. P., et al. Synthesis, characterization andproperties of [Re1–xREx’]TiNbO6dielectric ceramics, Mater. Chem. Phys.,2001,67:291~293
    [43]Suvorov D., Valant M., Jancar B., et al. CaTiO3-based ceramics: Microstructuraldevelopment and dielectric properties, Acta. Chim. Slov.,2001,48:87~99
    [44]Jancar B., Suvorov D., Valant M., et al. Characterisation of CaTiO3–NdAlO3dielectric ceramics, J. Eur. Ceram. Soc.,2003,3:1391~1400
    [45]Santha N. I., Sebastian M. T., Microwave dielectric properties of A6B5O18typeperovskites, J. Am. Ceram. Soc.,2007,90:496~501
    [46]Nenesheva E. A., Mudroliuba L. P., Kartenko N. F., Microwave dielectricproperties of ceramics based on CaTiO3-LnMO3system (Ln=La, Nd,; M=Al, Ga),J. Eur. Ceram. Soc.,2003,23:2443~2448
    [47]Ferreira V. M., Baptista J. L., The role of niobium in magnesium titanatemicrowave dielectric ceramics, J. Am. Ceram. Soc.,1996,79:1697~1698
    [48]Zhao F., Yue X., Zhang Y., et al. Microstructure and microwave dielectricproperties of Ca[Ti1–x(Mg1/3Nb2/3)x]O3ceramics, J. Eur. Ceram. Soc.,2005,25:3347~3352
    [49]Choi J. W., Kang C. Y., Yoon S. J., et al. Microwave dielectric properties ofCa[(Li1/3Nb2/3)1–xMx]O3[M=Sn,Ti] ceramics, J. Mater. Res.,1999,14:3567~3570
    [50]Wise P. L., Reaney I. M., Ubic Y., et al. Periodicity and its relation to microwavedielectric properties in the series Sr0.8Ca0.2TiO3, Sr1.6Ca0.4TiO4and Sr2.4Ca0.6Ti2O7,Inst of Physics Conf. Ser., Electron microscopy and Analysis group, Sheffield,1999,161(4):161~164
    [51]Kim H. J., Kucheiko S., Yoon S. J., et al. Microwave dielectric properties in the(La1/2Na1/2)TiO3–Ca(Fe1/2Nb1/2)O3system, J. Am. Ceram. Soc.,1997,80:1316~1318
    [52]Kucheiko S., Choi J. W., Kim H. J., et al. Microwave dielectric properties ofCaTiO3-Ca(Al1/2Ta1/2)O3ceramics, J. Am. Ceram. Soc.,1996,79:2739~2743
    [53]Chen Y. C., Huang C. L., Microwave dielectric properties of Ba2–xSm4+2x/3Ti9O26ceramics with zero temperature coefficient, Mater. Sci. Eng.,2002, A334:250~256
    [54]Sun J. S., Wei C. C., Wu L., Dielectric properties of (Ba,Sr)O–(Sm,La)2O3–TiO2ceramics at microwave frequencies, J. Mater. Sci.,1992,27:5818~5822
    [55]Kim W. S., Kim E. S., Yoon K. H., Effects of Sm3+substitution on dielectricproperties of Ca1-xSm2x/3TiO3ceramics at microwave frequencies, J. Am. Ceram.Soc.,1999,82:2111~2115
    [56]Chen H. L., Huang C. L., Microwave dielectric properties and microstructures ofCa1–xNd2x/3TiO3–Li1/2Nd1/2TiO3ceramics, Jpn. J. Appl. Phys.,2002,41:5650~5653
    [57]Subodh G., James J., Sebastian M. T., et al. Structure and microwave dielectricproperties of Sr2+nCe2Ti5+nO15+3n(n≤10) homologous series, Chem. Mater.,2007,19:4077~4082
    [58]傅茂森,复合钙钛矿微波介质陶瓷的结构与性能:[博士学位论文],浙江,浙江大学,2009
    [59]赵飞,新型钙钛矿微波介质陶瓷的结构与性能关系研究:[博士学位论文],北京,清华大学,2008
    [60]Wang X., Vanderbilt D., First-principles perturbative computation of phononproperties of insulators in finite electric fields, Phys. Rev. B: Condens. Matter.,2006,74(5):4304(1)~4304(11)
    [61]Bernardini F., Fiorentini V., Vanderbilt D., Polarization-based calculation of thedielectric tensor of polar crystals, Phys. Rev. B: Condens. Matter.,1997,79(20):3958~3961
    [62]Cai Y., Zhang L., Zeng Q., et al. First principle study of vibrational and dielectricproperties of Si3N4, Phys. Rev. B: Condens. Matter.,2006,74(17):4301(1)~4301(4)
    [63]Zhao X., Vanderbilt D., First principles study of structural, vibrational, and latticedielectric properties of hafnium oxide, Phys. Rev. B: Condens. Matter.,2002,65(23):3106(1)~3106(4)
    [64]Fennie C. J., Rabe K. M., Structural and dielectric properties of Sr2TiO4from firstprinciples, Phys. Rev. B: Condens. Matter.,2003,68(18):4111(1)~4111(9)
    [65]Takahashi T., First-principles investigation of the phase stability forBa(B1/3′2+B2/3′′5+)O3microwave dielectrics with the complex perovskite structure,Jpn. J.Appl. Phys., Part1.,2000,39(9):5637~5641
    [66]Cockayne E., Burton B. P., Phonons and static dielectric constant in CaTiO3fromfirst principles., Phys. Rev. B: Condens. Matter.,2000,62(6):3735~3743
    [67]Furuya M., Microwave dielectric properties and characteristics of polar latticevibrations for Ba(Mg1/3Ta2/3)O3-A(Mg1/2W1/2)O3(A=Ba, Sr, and Ca) ceramics, J.Appl. Phys.,1999,85(2):1084~1088
    [68]Ibberson R. M., Moussa S. M., Rosseinsky M. J., et al. In situ neutron and X-raypowder diffraction study of cation ordering and domain growth in the dielectricceramic Ba3ZnTa2O9-Sr2GaTaO6, J.Am. Ceram. Soc.,2006,89(6):1827~1833
    [69]Bieringer M., Moussa S. M., Noailles L. D., et al. Cation ordering, domaingrowth, and zinc loss in the microwave dielectric oxide Ba3ZnTa2O9-δ, Chem.Mater.,2003,15(2):586~597
    [70]Moussa S. M., Ibberson R. M., Bieringer M., et al. In situ measurement of cationorder and domain growth in an electroceramic, Chem. Mater.,2003,15(13):2527~2533
    [71]Lufaso M. W., Crystal structures, modeling, and dielectric property relationshipsof2:1ordered Ba3MM’2O9(M=Mg, Ni, Zn; M’=Nb, Ta) perovskites, Chem.Mater.,2004,16(11):2148~2156
    [72]Shimada T., Far-infrared reflection and microwave properties of Ba([Mg,Zn]1/3Ta2/3)O3ceramics, J. Eur. Ceram. Soc.,2004,24(6):1799~1803
    [73]Kamba S., Hughes H., Noujni D., et al. Relationship between microwave andlattice vibration properties in Ba(Zn1/3Nb2/3)O3-based microwave dielectricceramics, J. Phys. D-Appl. Phys.,2004,37(14):1980~1986
    [74]Moreira R. L., Dias A., Polarized micro-Raman spectroscopy of orientedA(B’1/3B”2/3)O3powders and microwave ceramics, J. Eur. Ceram. Soc.,2005,25(12):2843~2847
    [75]Petzelt J., Setter N., Far infrared spectroscopy and origin of microwave losses inlow-loss ceramics, Ferroelectrics.,1993,150:89~102
    [76]Jacobson A. J., Collins B. M., Fender B. E. F., A powder neutron and X-raydiffraction determination of the structure of Ba3Ta2ZnO9: an investigation ofperovskite phases in the system Ba-Ta-Zn-O and the preparation of Ba2TaCdO5and Ba2CeInO5.5,Acta. Cryst. B.,1976,32:1083~1087
    [77]Moreira R. L., Matinaga F. M., Dias A., Raman-spectroscopic evaluation of thelong-range order in Ba(B’1/3B”2/3)O3ceramics, Appl. Phys. Lett.,2001,78(4):428~430
    [78]Dias A., Ciminelli S. T., Matinaga F. M., et al. Raman scattering and X-raydiffraction investigations on hydrothermal barium magnesium niobate ceramics, J.Eur. Ceram. Soc.,2001,21:2739~2744
    [79]Kamba S., Hughes H., Noujni D., et al. Relationship between microwave andlattice vibration properties in Ba(Zn1/3Nb2/3)O3-based microwave dielectricceramics, J. Phys. D: Appl. Phys.,2004,37:1980~1986
    [80]Dai Y. D., Zhao G. H., Guo L. L., et al. First principle study of difference inpermittivity between Ba(Mg1/3Ta2/3)O3and Ba(Mg1/3Nb2/3)O3, J. Appl. Phys.,2009,105(3):034111(1)~034111(9)
    [81]Dai Y. D., Zhao G. H., Liu H. X., First principle study of the dielectric propertiesof Ba(Zn1/3Nb2/3)O3and Ba(Mg1/3Nb2/3)O3, J. Appl. Phys.,2009,105(3):034111(1)~034111(9)
    [82]李瀚如,电介质物理导论,成都:成都科技大学出版社,1990,134~168
    [83]殷之文,电介质物理学,北京:科学出版社,2003,1~6
    [84]Shannon R. D., Dielectric polarizabilities of ions in oxides and fluorides, J. Appl.Phys.,1993,73(1):348~366
    [85]关振铎,张中太,焦金生,无机材料物理性能(第一版),北京:清华大学出版社,1992
    [86]李标荣,王筱珍,张绪礼,无机电介质,武汉:华中理工大学出版社,1995,154~165
    [87]Ohsato H., Tsunooka T., Sugiyama T., et al. Forsterite ceramics formillimeterwave dielectrics, J. Electroceram.,2006,17(2-4):445~450
    [88]Ohsato H., Science of tungsten bronze-type like Ba6-3xR8+2xTi18O54(R=rare earth)microwave dielectric solid solutions, J. Eur. Ceram. Soc.,2001,21(15):2703~2711
    [89]Redfern S. A. T., Harrison R. J., O’Neill H. S. C., et al. Thermodynamics andkinetics of cation ordering in MgAl2O4spinel up to1600℃from in situ neutrondiffraction,Am. Mineral.,1999,84:299~310
    [90]Ahn C. W., Jang H. J., Nahm S., et al. Effects of microstructure on the microwavedielectric properties of Ba(Co1/3Nb2/3)O3and (1-x)Ba(Co1/3Nb2/3)O3/xBa(Zn1/3Nb2/3)O3ceramics, J. Eur. Ceram. Soc.,2003,23:2473~2478
    [91]张迎春,铌钽酸盐微波介质陶瓷材料,科学出版社,2005,38~40
    [92]Borisevich A., Davies P. K.,1:2cation order in A(Li1/3(Nb, Ta)2/3)O3microwaveperovskites,Appl. Phys. Lett.,2004,84(8):1347~1349
    [93]Davies P. K., Cation ordering in complex oxides, Curr. Opin. Solid State Mater.Sci.,1999,4(5):467~471
    [94]Molodetsky I., Davies P. K., Effect of Ba(Y1/2Nb1/2)O3and BaZrO3on the cationorder and properties of Ba(Co1/3Nb2/3)O3microwave ceramics, J. Eur. Ceram.Soc.,2001,21(15):2587~2591
    [95]Borisevich A. Y., Davies P. K., La(Li1/3Ti2/3)O3: A new1:2ordered perovskite, J.Solid. State. Chem.,2003,170(1):198~201
    [96]Tarvin R., Davies P. K., A-site and B-site order in (Na1/2La1/2)(Mg1/3Nb2/3)O3perovskite, J.Am. Ceram. Soc.,2004,87(5):859~863
    [97]Wu H., Davies P. K., Non-stoichiometric1:2ordered perovskites inBa(Li1/4Nb3/4)O3-Ba(Li2/5W3/5)O3system, J. Solid. State. Chem.,2004,177(10):3469~3478
    [98]Wu H., Davies P. K., Ordered perovskites in the A2+(Li1/4Nb3/4)O3-A2+(Li2/5W3/5)O3(A=Sr, Ca) systems, J. Solid. State. Chem.,2004,177(11):4305~4315
    [99]Reaney I. M., Petzelt J., Voitsekhovskii V. V., et al. B-site order and infraredreflectivity in A(B’B”)O3complex perovskite ceramics, J. Appl. Phys.,1994,76(4):2086~2092
    [100]Reaney I. M., Iqbal Y., Zheng H., et al. Order-disorder behavior in0.9Ba([Zn0.60Co0.40]1/3Nb2/3)O3-0.1Ba(Ga0.5Ta0.5)O3microwave dielectricresonators, J. Eur. Ceram. Soc.,2005,25(7):1183~1189
    [101]Liao Q. W., Li L. X., Zhang P., et al. Correlation of crystal structure andmicrowave dielectric properties for Zn(Ti1-xSnx)Nb2O8ceramics. Mater. Sci. Eng.B-Adv.,2010,176(1):41~44
    [102]Liao Q. W., Li L. X., Zhang P., et al. Correlation of crystal structure andmicrowave dielectric properties for ZnTi(Nb1-xTax)2O8ceramics. Solid. State. Sci.,2011,13(5):1201~1204
    [103]Cheng H. F., Chia C. T., Liu H. L., et al. Spectroscopic characterization ofBa(Mg1/3Nb2/3)O3dielectrics for the application to microwave communication, J.Electromagnet. Wave.,2007,21(5):629~636
    [104]Webb S. J., Breeze J., Scott R. I., et al. Raman spectroscopic study ofgallium-doped Ba(Zn1/3Ta2/3)O3, J.Am. Ceram. Soc.,2002,85:1753~1756
    [105]Kim E. S., Chun B. S., Freer R., et al. Effects of packing fraction and bondvalence on microwave dielectric properties of A2+B6+O4(A2+: Ca, Pb, Ba; B6+:Mo, W) ceramics, J. Eur. Ceram. Soc.,2010,30:1731~1736
    [106]Bosman A. J., Havinga E. E., Temperature dependence of dielectric constants ofcubic ionic compounds, Phys. Rev.,1963,129(4):1593~1600
    [107]Colla E. L., Reaney I. M., Setter N., Effect of structural changes in complexperovskites on the temperature coefficient of the relative permittivity, J. Appl.Phys.,1993,74:3414~3425
    [108]Glazer A. M., The classification of tilted octahedra in perovskites, Acta. Cryst.,1972, B28:3384~3392
    [109]Reaney I. M., Colla E. L., Setter N., Dielectric and structure characteristics ofBa-and Sr-based complex perovskites as a function of tolerance factor, Jpn. J.Appl. Phys.,1994,33:3984~3990
    [110]Kim E. S., Choi W., Effect of phase transition on the microwave dielectricproperties of BiNbO4, J. Eur. Ceram. Soc.,2006,26:1761~1766
    [111]Kim E. S., Kang D. H., Relationships between crystal structure and microwavedielectric properties of (Zn1/3B2/35+)xTi1-xO2(B5+=Nb, Ta) ceramics, Ceram. Int.,2008,34(4):883~888
    [112]Kang D. H., Kim E. S., Microwave dielectric properties of rutile(Zn1/3Nb2/3)0.40(Ti1xSnx)0.60O2(0.15≤x≤0.30) ceramics, Ceram. Int.,2008,34(4):889~892
    [113]Park H. S., Yoon K. H., Kim E. S., Relationship between the bond valence andthe temperature coefficient of the resonant frequency in the complex perovskite(Pb1-xCax)[Fe0.5(Nb1-yTay)0.5]O3, J.Am. Ceram. Soc.,2001,84(1):99~103
    [114]Yoon K. H., Kim W. S., Kim E. S., Dependence of the octahedral bond valenceon microwave dielectric properties of Ca1-xSm2x/3TiO3ceramics, Mater. Sci. Eng.B-Adv.,2003, B99:112~115
    [115]Masaki M., Takashi Y., Takuro I., Dielectric characteristics of several complexoxide ceramics at microwave frequencies, Jpn. J.Appl. Phys.,1987,26:76~79
    [116]Lee H. J., Kim I. T., Hong K. S., Dielectric properties of AB2O6compounds atmicrowave frequencies (A=Ca, Mg, Co, Ni, Zn, and B=Nb, Ta), Jpn. J. Appl.Phys.,1997,36:1318~1320
    [117]Lee H. J., Hong K. S., Kim S. J., Dielectric properties of MNb2O6compounds(where M=Ca, Mn Co, Ni, or Zn), Mater. Res. Bull.,1997,32(7):847~855
    [118]Pullar R. C., Okeneme K., Alford N. McN., Temperature compensated niobatemicrowave ceramics with the columbite structure, M2+Nb2O6, J. Eur. Ceram. Soc.,2003,23:2479~2483
    [119]Pullar R. C., Vaughan C., Alford N. McN., The effects of sintering aids upondielectric microwave properties of columbite niobates, M2+Nb2O6, J. Phys. D:Appl. Phys.,2004,37:348~352
    [120]Pullar R. C., The synthesis, properties, and applications of columbite niobates(M2+Nb2O6):Acritical review, J.Am. Ceram. Soc.,2009,92(3):563~577
    [121]Kim D. W., Ko K. H., Hong K. S., Influence of copper(II) oxide additions tozinc niobate microwave ceramics on sintering temperature and dielectricproperties, J.Am. Ceram. Soc.,2001,84(6):1286~1290
    [122]Wee S. H., Kim D. W., Yoo S. I., Microwave dielectric properties of low-firedZnNb2O6ceramics with BiVO4addition, J. Am. Ceram. Soc.,2004,87(5):871~874
    [123]Wang J., Yue Z. X., Gui Z. L., Low-temperature sintered Zn(Nb1-xVx/2)2O6-2.5xmicrowave dielectric ceramics with high Q value for LTCC application, J. Alloy.Compd.,2005,392:263~267
    [124]Liou Y. C., Sung Y. L., Preparation of columbite MgNb2O6and ZnNb2O6ceramics by reaction-sintering, Ceram. Int.,2008,34:371~377
    [125]Guo L. Z., Dai J. H., Tian J. T., et al. Molten salt synthesis of ZnNb2O6powder,Mater. Res. Bull.,2007,42:2031~2016
    [126]Guo L. Z., Dai J. H., Tian J. T., et al. Synthesis of ZnNb2O6powder withrod-like particle morphologies, Ceram. Int.,2008,34:1783~1785
    [127]Hsu C. S., Huang C. L., Tseng J. F., et al. Improved high-Q microwavedielectric resonator using CuO-doped MgNb2O6ceramics, Mater. Res. Bull.,2003,38:1091~1099
    [128]Huang C. L., Chen J. Y., Phase relation and microwave dielectric properties of(Zn1-xCox)Ta2O6system, J.Am. Ceram. Soc.,2010,93:1248~1251
    [129]Huang C. L., Chen J. Y., Tseng Y. W., et al. High dielectric constant andlow-loss microwave dielectric ceramics using (Zn0.95M2+0.05)Ta2O6(M2+=Mn, Mg,and Ni) solid solutions, J.Am. Ceram. Soc.,2010,93:3299~3304
    [130]Huang C. L., Chiang K. H., Characterization and dielectric behavior ofCuO-doped ZnTa2O6ceramics at microwave frequency, Mater. Res. Bull.,2004,39:1701~1708
    [131]Kim D. W., Kim D. Y., Hong K. S., Phase relations and microwave dielectricproperties of ZnNb2O6-TiO2, J. Mater. Res.,2000,15(6):1331~1335
    [132]Li K. C., Wang H., Zhou H. F., et al. Silver co-firable ZnTiNb2O8microwavedielectric ceramics with Li2O-ZnO-B2O3glass additive, Int. J. Appl. Ceram.Technol.,2010,7(S1): E144~E150
    [133]Guo M., Gong S. P., Dou G., et al. A new temperature stable microwavedielectric ceramics: ZnTiNb2O8sintered at low temperatures, J. Alloy. Compd.,2011,509(20):5988~5995
    [134]Lei Y., Yin Y. S., Liu Y. C., Preparation and properties of ZnTiNb2O8microwavedielectric ceramics, Adv. Mater. Res.,2011,217-208:1235~1238
    [135]Kagata H., Inoue T., Kato J., et al. Low-fire bismuth-based dielectric ceramicsfor microwave use, Jpn. J.Appl. Phys.,1992,31(9B):3152~3155
    [136]Subramanian M. A., Calabrese J. C., Crystal structure of the low temperatureform of bismuth niobium oxide [α-BiNbO4], Mater. Res. Bull.,1993,28(6):523~529
    [137]Keve E. T., Skapski A. C., The crystal structure of triclinic β-BiNbO4, J. Solid.State. Chem.,1973,8(2):159~165
    [138]Youn H. J., Sogabe T., Randall C. A., et al. Phase Relations and DielectricProperties in the Bi2O3–ZnO–Ta2O5System, J. Am. Ceram. Soc.,2001,84(11):2557
    [139]刘维良,先进陶瓷工艺学,武汉:武汉理工大学出版社,2004
    [140]Kim E. S., Yoon K. H., Effect of nickel on microwave dielectric properties ofBa(Mg1/3Ta2/3)O3, J. Mater. Sci.,1994,29:830~834
    [141]Huang C. L., Weng M. H., Chen H. L., Effects of additives on microstructureand microwave dielectric properties of (Zn, Sn)TiO4ceramics, Mater. Chem.Phys.,2001,71:17~22
    [142]Jancar B., Suvorov D., Valant M., et al. Characterization of CaTiO3-NdAlO3dielectric ceramics, J. Eur. Ceram. Soc.,2003,23:1391~1400
    [143]梁敬魁,粉末衍射法测定晶体结构(上册:X射线衍射结构晶体学基础),科学出版社,2011,76~77
    [144]丛秋滋,多晶二维X射线衍射,北京:科学出版社,1997
    [145]王富耻,材料现代分析测试方法,北京:北京理工大学出版社,2006
    [146]马礼敦,近代X射线多晶体衍射——实验技术与数据分析,北京:化学工业出版社,2004
    [147]Zevin L. S., Method of mixing in quantitative X-ray phase analysis, J. Appl.Cryst.,1979,12,582~584
    [148]郭常霖,黄月鸿,金属学报,1991,27(3):202~206
    [149]左演声,陈文哲,梁伟,材料现代分析方法,北京:北京工业大学出版社
    [150]周和平,Si3N4的X射线定量相分析方法介绍,硅酸盐学报,1980,8(4):414~424
    [151]Rietveld H. M., Line profiles of neutron powder-diffraction peaks for structurerefinement,Acta. Cryst.,1967,22:151~152
    [152]Rietveld H. M., Aprofile refinement method for nuclear and magnetic structures,J.Appl. Crystallogr.,1969,2:65
    [153]梁敬魁,粉末衍射法测定晶体结构,北京:科学出版社,2003,530~554
    [154]Hill R. J., Howard C. J., Quantitative phase analysis from neutron powderdiffraction data using the Rietveld method, J.Appl. Cryst.,1987,20:467~474
    [155]程光煦,拉曼布里渊散射,北京:科学出版社,2008
    [156]吴国祯,拉曼谱学:峰强中的信息,北京:科学出版社,2007
    [157]倪尔瑚,介质谐振器的微波测量,北京:科学出版社,2006
    [158]Hakki B. W., Coleman P. D., A dielectric resonator method of measuringinductive capacities in the millimeter range, IRE Trans. Microwave Theory Tech.,1960,8:402~410
    [159]吕文中,赖希伟,平行板谐振法测量微波介质陶瓷介电性能,电子元件与材料,2003,22(5):4~6
    [160]Courtney W. E., Analysis and evaluation of a method of measuring the complexpermittivity and permeability of microwave insulators, IEEE Trans. MicrowaveTheory.Tech.,1970,18(8):476~485
    [161]Kajfez D., Chebolu S., Abdul-Gaffoor M. R., et al. Uncertainty analysis of thetransmission-type measurement of Q-factor, IEEE Trans. Microwave TheoryTech.,1999,47(3):367~371
    [162]Baumgarte A., Blachnik R., New M2+M4+Nb2O8phases, J. Alloy. Compd.,1994,215:117~120
    [163]张光寅,蓝国祥,王玉芳,晶格振动光谱学,高等教育出版社,2001,65~87
    [164]张国义,键裂能的计算,科学通报,1980,23:1075~1078
    [165]高孝恢,陈天朗,键能的计算及材料的电导性能,科学通报,1980,8:354~357
    [166]Brown I. D., Shannon R. D., Empirical bond-strength-bond-length curves foroxides,Acta. Cryst.,1973,A29:266~282
    [167]Lichtenberg F., Herrnberger A., Wiedenmann K., Synthesis, structural, magneticand transport properties of layered perovskite-related titanates, niobates andtantalates of the type AnBnO3n+2, A’Ak-1BkO3k+1and AmBm-1O3m, Prog. Solid. State.CH.,2008,36:253~387
    [168]Shannon R. D., Revised effective ionic radii and systematic studies ofinteratomic distances in halides and chalcogenides, Acta. Crystallogr.,1976, A32:751~767
    [169]Smith W. E., Dent G., Modern raman spectroscopy-a practical approach, JohnWiley and sons, NJ,2005
    [170]黄静,钙钛矿结构微波陶瓷介电机理的研究:[博士学位论文],武汉,华中科技大学,2004
    [171]Liao Q. W., Li L. L., Ren X., et al. New low-loss microwave dielectric materialZnTiNbTaO8, J.Am. Ceram. Soc.,2011,94(10):3237~3240
    [172]Gallup G. A., Valence bond methods theory and application, Cambridge Press,2002
    [173]胡盛志,键价理论的研究进展,大学化学,2007,22,1~12
    [174]Abrahams I., Bruce P. G., David. W. I. F., et al. Structure determination ofsubstituted rutiles by Time-of-Flight neutron diffraction, Chem. Mater.,1989,1:237~240
    [175]Harrop P. J., Temperature coefficients of capacitance of solids, J. Mater. Sci.,1969,4:370~374
    [176]鲍键强,林炳煌,物质世界演化机制:从对称性到对称性破缺,浙江社会科学,2011,2:80~86
    [177]刘美希,陈丽,对称性、对称性破缺和相变,1999,2:1~9
    [178]李润珍,武杰,程守华,突现、分层与对称性破缺,系统科学学报,2008,16(4):9~13
    [179]Wichmann V. R., Buschbaum H. M., Synthese und untersuchung vonNiNb2O6-einkristallen mit columbit-und rutilstruktur, Zeitschrift fürAnorganische undAllgemeine Chemie,1983,503(8):101~105
    [180]Khattak C. P., Cox D. E., Profile analysis of X-ray powder diffractometer data:structure refinement of La0.75Sr0.25CrO3, J.Appl. Cryst.,1997,10:405~411
    [181]果世驹,粉末烧结理论,北京:冶金工业出版社,1998
    [182]金格瑞,鲍恩,乌尔曼,陶瓷导论,北京:高等教育出版社,2010
    [183]黄昆,韩汝琦,固体物理学,北京:高等教育出版社,1998
    [184]阎守胜,固体物理基础,北京:北京大学出版社,2000
    [185]李标荣,电子陶瓷工艺原理,武汉:华中理工大学出版社,1986
    [186]李言荣,恽正中,电子材料导论,北京:清华大学出版社,2001
    [187]李标荣,王筱珍,张绪礼,无机电介质,武汉:华中理工大学出版社,1995,154~165
    [188]Rohrer G. S., Structure and bonding in crystalline materials, CambrdgeUniversity Press,2001
    [189]广东风华高新科技股份有限公司,钯银内电极浆料系列, http://www.fenghua-advanced.com/upload/钯银电极浆料.pdf
    [190]Veres A., Marinel S., Roulland F., Dielectric properties of Ba(Mg,Zn)1/3Nb2/3O3and effect of B2O3and LiF addition. Journal of the European Ceramic Society.25(2005):2759-2762
    [191]Maeng S. Y., Lee D. K., Choi J. W., et al. Design and fabrication of multilayeractuator using floating electrode, Mater. Chem. Phys.,2005,90(2-3):405-410
    [192]Yoshihiko I., Mulyilayered low temperature cofired ceramics (LTCC)technology,2005
    [193]Lee Y. C., Chiang C. S., Huang Y. L., Microwave dielectric properties andmicrostructures of Nb2O5-Zn0.95Mg0.05TiO3+0.25TiO2ceramics with Bi2O3addition, J. Eur. Ceram. Soc.,2010,30:963~970
    [194]Veres A., Marinel S., Roulland F., Dielectric properties of Ba(Mg,Zn)1/3Nb2/3O3and effect of B2O3and LiF addition, J. Eur. Ceram. Soc.,2005,25:2759~2762
    [195]方佩敏,贴片式多层陶瓷电容器简介,世界电子元器件,2006,1:22~24
    [196]方佩敏,贴片式多层陶瓷电容器及其应用,今日电子,2003,5:10~12
    [197]羽情,片式多层陶瓷电容器市场分析,中国电子商情,2003,Z1:14~15
    [198]李筱瑜,陈长云,祝忠勇,超小型片式多层陶瓷电容器内电极印刷工艺研究,2011,06:1~3
    [199]Kikuo W., A new proposal on mixing rule of the dielectric constant of mixture,IEEE. Int. Symp. Appl. Ferroelectr.,1994,33~38
    [200]Simpkin R., Derivation of Lichtenecker’s logarithmic mixture formula fromMaxwell’s equations, IEEE. Trans. Microwave Theory Tech.,2010,58(3):545~550
    [201]Jayasundera N., Smith B. V., Dielectric constant for binary piezoelectric0-3composites, J.Appl. Phys.,1993,73(5):2462~2466
    [202]Hill R. J., Howard C. J., Quantitative phase analysis from neutron powderdiffraction data using the Rietveld method, J.Appl. Cryst.,1987,20:467~474
    [203]Kamiyoshi K., Fujimura T., Yamakami T., Some characteristics of theMaxwell-Wagner type dielectric dispersion, Sci. Rep. Res. Inst.,1967, A19:125~152
    [204]Yang C. F., Wu C. C., Su C. C., et al. The development of prediction method for
    the permittivity of epoxy/(Ba0.9Sr0.1)(Ti0.9Zr0.1)O3composites, Appl. Phys. A.,
    2009,97:455~460

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700