用户名: 密码: 验证码:
动态数据驱动的河流突发性水污染事故预警系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市供水水源污染事件时有发生,严重时会威胁到群众的饮水安全和国家的经济发展。面对这一问题,城市供水主管部门迫切需要多环节水质预警信息支持。尤其是突发性水污染事故具有事发突然、不确定因素多等特点,快速准确地预测水质演化趋势一直是研究的难点和热点。基于此背景,本文结合国家科技重大专项课题和国家自然科学基金项目,围绕河流突发性水污染事故预警方法和系统实现技术开展理论与应用研究,主要工作和创新点如下:
     (1)研究提出了动态数据驱动的河流突发性水污染事故预警系统架构,为河流突发性水污染事故预警研究提供了新的研究方法和思路。完成了该架构的总体设计,分析了基于该架构下水质预警系统的工作原理,与基于通常架构下的水质预警系统工作流程进行了比较,剖析了动态数据驱动范式下的系统架构具备多模型集成、共生反馈、动态性和自学习性等特点和优势。
     (2)针对目前水质预警模型在动态适应性和应用迅捷性等方面急需提升等问题,研究了基于动态数据驱动的河流突发性水污染事故预警系统架构下的水质动态预警方法。在初始预警模型基础上,结合历史经验数据和动态监测数据,首先采用基于案例的推理方法进行初始校正,实现初始预警;然后,针对水文数据和边界条件数据较缺乏等情况下的精确化预测问题,研究了应用后续实测数据和改进的网格寻优算法对水质预测预警模型参数进行自适应校正的技术,针对预警模型往往因模型概化而导致结构性误差等问题,进一步研究提出了基于时间序列算法的预测预警结果动态校正方法。以实际发生的河流突发性水污染事故为应用案例,对所研究动态预警方法进行了应用研究与分析。应用结果表明该方法可有效地对河流突发性水污染事故进行预警,预测结果与实测结果之间经动态校正而减小偏差。
     (3)针对应急监测点布局缺乏理论指导、应急部门难以快速合理选点等问题,研究了动态数据驱动的河流突发性水污染事故预警系统架构下的应急监测点选取、评价和布局优化方法,建立了基于模糊层次分析法的应急监测点布局技术方案,为水质事件不同阶段应急监测点敏感性和重要性的量化评估提供了技术支撑,实现了有限应急监测力量的合理、及时和动态调配。该技术的研究国内外尚鲜有报道。
     基于上述研究,开发了动态数据驱动的河流突发性水污染事故预警系统技术平台,相关成果已集成到课题组研发的城市供水水质预警系统中,实现了动态数据驱动框架下的河流突发性水污染事故预警和应急监测点动态布局。该系统已在一个省和三个城市进行了部署和示范应用,已实现连续运行工作,为城市供水水质安全保障提供了信息支持。
Water pollution accidents usually take place unexpectedly and may cause severe variations of raw water quality. To deal with this situation, the early warning information of water security is urgently needed by the departments of water supply. Especially, sudden water pollution accidents often occur abruptly with many uncertain factors. Thus, quick and precise prediction of the water variation trend is always a difficult and important issue in the research field of water environment. With the support of the National Science and Technology Major Project and the NSFC, this thesis mainly focuses on the methods and the system implementation techniques of early warning for sudden river pollution accidents.
     The main work and achievement of this thesis are as follows:
     (1) On the basis of Dynamic Data Driven Application System(DDDAS), a new framework of the early warning system for sudden river pollution accidents is proposed. The working principle of the newly framework is analyzed, and the differences compared with traditional ones in the application process are concluded. There are some attractive features and advantages in the new framework based on the DDDAS, such as multi-model integration, symbiosis feedback, dynamic nature, self learning function, which can be helpful to the water quality prediction and the decision making.
     (2) In order to solve the problems in the dynamic adaptability and convenience of the water quality prediction models, the dynamic early warning method of sudden river pollution accidents is studied under the proposed framework based on DDDAS. With the historical and dynamic monitoring data, the initial parameters of the prediction model are firstly adjusted using Case Based Reasoning (CBR) method and the initial early warning is realized. Then, in the case of more accurate prediction with inadequate hydrological and boundary data, using the improved grid search optimization method, a technique for dynamic optimization of parameters in the prediction model is implemented with the observed water quality data. As for the structural errors of the prediction model caused by the generalization process and other factors, the time series algorithm is used to realize the on-line correction of results of the prediction model. With the actual river pollution accidents as the application cases, the dynamic early warning method is demonstrated and analyzed. The application results show that the presented method is able to effectively supply early warning function for sudden river pollution accidents. Due to the dynamic correction mechanism, the deviation between the predicted results and the measured results can be reduced.
     (3) The current layout of emergency monitoring stations is usually lack of theory guidance, and the emergency departments are difficult to determine the location of the emergency monitoring stations fast and legitimately. To solve this problem, under the framework proposed based on the DDDAS, the dynamic method concerning the selection, evaluation and optimization of the emergency monitoring stations is studied. Using the Fuzzy Analytical Hierarchy Process (FAHP) algorithm, the technical solutions of the layout of emergent monitoring stations are evaluated dynamically. This method can supply the technical support for quantitative evaluation of the sensitivity and importance of emergent monitoring stations in different stages of sudden river pollution accidents. Thus, the limited emergency monitoring resources can be allocated more reasonably and timely. This technique is freshly researched in domestic and overseas.
     Based on the above research, the technique platform of dynamic data driven early warning system for sudden river pollution accidents is developed, which has been integrated into the urban drinking water quality early warning system developed by the research group. The early warning for sudden river pollution accidents and the dynamic layout of emergency monitoring stations based on DDDAS have been achieved. The urban drinking water quality early warning system has been deployed in one province and three cities. The systems are running well and have achieved continuous operation and have been deemed as information and technical supports for urban drinking water quality security.
引文
[1]解振华.国家环境安全战略报告[M].北京:中国环境科学出版社,2005.
    [2]周生贤.国务院关于当前水环境形势和水污染防治工作的报告[EB/OL],http://www.npc.gov.cn/wxzl/gongbao/2007-02/01/content_5357654.htm
    [3]郭亮.跨界河流水污染应急决策支持系统研究[D].哈尔滨:哈尔滨工业大学,2011.
    [4]温家宝.2012年国务院政府工作报告[EB/OL], http://www.gov.cn/test/2012-03/15/ content 2067314.htm
    [5]董志颖,李兵,卞建民.水质预警理论初探[J].水资源研究,2002,23(1):36-38.
    [6]宋国浩,张云怀.水质模型研究进展及发展趋势[J].装备环境工程,2008,5(2):32-36.
    [7]黄健.城市供水水质监测与预警平台构建及关键技术研究[D].北京:中国地质大学,2011.
    [8]杨志峰,王煊,孙涛,等.环境水力学原理[M].北京:北京师范大学出版社,2006.
    [9]Wong W K, Chu W C, Xia M, et al.A heuristic time-invariant model for fuzzy time series forecasting.Expert Systems with Applications,2011,38(3):2701-2707.
    [10]Jilani T A, Burney S M A. A refined fuzzy time series model for stock market forecasting [J]. Physica A:Statistical Mechanics and its Applications,2008,387(12): 2857-2862.
    [11]邢丽贞,邱靖国,王立鹏.水华预警模型研究进展[J].山东建筑大学学报,2009,24(3):267-271.
    [12]Recknagel F, French M, Harkonen P, et al. Artificial neural network approach for modelling and prediction of algal blooms[J]. Ecological Modelling,1997,96(1): 11-28.
    [13]娄安刚,王学昌,于宜法,等.蒙特卡罗方法在海洋溢油扩展预测中的应用研究[J].海洋科学,2000,24(5):7-10.
    [14]Park S S, Lee Y S. A water quality modeling study of the Nakdong River, Korea [J].Ecological Modelling,2002,152(1):65-75.
    [15]Lung W S, Larson C E. Water quality modeling of Upper Mississippi River and Lake Pepin [J]. Journal of Environmental Engineering,1995,121(10):691-699.
    [16]Whitehead P G, Williams R J, Lewis D R. Quality simulation along river systems (QUASAR):model theory and development [J]. Science of the total environment, 1997,194:447-456.
    [17]Eisakhani M, Abdullah M P, Kapim O A, et al. Validation of MIKE 11 model simulated data for Biochemical and Chemical Oxygen Demands transport [J]. American Journal of Applied Sciences,2012,9(3):382-387.
    [18]徐贵泉,宋德蕃,黄士力,等.感潮河网水量水质模型及其数值模拟[J].应用基础与工程科学学报,1996,4(1):94-105.
    [19]郭磊,高学平,张晨,等.北大港水库水质模拟及分析[J].长江流域资源与环境,2007,16(1):11-16.
    [20]Drage B E, Upton J E, Purvis M. On-line monitoring of micropollutants in the river trent (UK) with respect to drinking water abstraction [J]. Water Science and Technology,1998,38(11):123-130.
    [21]Jansky L, Pachova N I, Murakami M. The Danube:a case study of sharing international waters [J]. Global Environmental Change,2004,14(1):39-49.
    [22]Grayman W M, Vicory Jr A H, Males R M. Early warning system for chemical spills on the Ohio River[C]//Security of Public Water Supplies. Springer Netherlands,2000: 91-100.
    [23]He Q, Peng S J, Zhai J, Xiao H W. Development and application of a water pollution emergency response systemfor the Three Gorges Reservoir in the Yangtze River, China.Journal of Environmental Sciences,2011,23(4):595-600.
    [24]张野.某市水厂地表水源水质预警模型研究[D].北京:北京建筑工程学院,2012.
    [25]陈水木.突发性水体环境污染事故应急监测研究[D].南昌:南昌大学,2010.
    [26]EPA. Water Quality Models [EB/OL]. http://water.epa.gov/scitech/datait/models, 2012.
    [27]雒文生,宋星原.水环境分析及预测[M].武汉:武汉水利电力大学出版社,2000.
    [28]谢永明.环境水质模型概论[M].北京:中国科学技术出版社,1996.
    [29]郝芳华.流域水质模型与模拟[M].北京:北京师范大学出版社,2008.
    [30]河流水质模拟预测的常用方法研究与新方法探索——以淮河安徽段为例[D].合肥:合肥工业大学,2005.
    [31]武君,徐祖信,廖振良.水质数学模型研究的发展阶段与空间层次[J].上海环境科学,2003,22(2):79-85.
    [32]Grenney W J, Teuscher M C, Dixon L S. Characteristics of the Solution Algorithms for the QUAL Ⅱ River Model[J].Water Pollution Control Federation,1978,50(1): 151-157.
    [33]Chapra S C, Pelletier G J. QUAL2K:A modeling framework for simulating river and stream water quality:documentation and user's manual[R]. U.S.:Tufts University, 2003.
    [34]Yang M D, Sykes R M, Merry C J. Estimation of algal biological parameters using water quality modeling and SPOT satellite date[J]. Ecological Modeling,2000,125: 1-13.
    [35]郭永彬,王焰新.汉江中下游水质模拟与预测——QUAL2K模型的应用[J].安全与环境工程,2003,10(1):4-7.
    [36]方晓波,张建英,陈伟,等.基于QUAL2K模型的钱塘江流域安全纳污能力研究[J].环境科学学报,2007,27(8):1402-1407.
    [37]陈月,席北斗,何连生,等QUAL2K模型在西苕溪干流梅溪段水质模拟中的应用[J].环境工程学报,2008,2(7):1000-1003.
    [38]Park S S, Lee Y S. A water quality modeling study of the Nakdong River, Korea[J].Ecological Modelling,2002,152(1):65-75.
    [39]贾海峰,程声通.GIS与地表水质模型WASP5的集成[J].清华大学学报(自然科学版),2001,41(8):125-128.
    [40]廖振良,徐祖信,高廷耀.苏州河环境综合整治一期工程水质模型分析[J].同济大学学报,2004,32(4):499-502.
    [41]Wang J P, Cheng S T, Jia H F. Water quality changing trends of the Miyun Reservoir [J]. Journal of Southeast University,2005(2):215-219.
    [42]James T R, Martin J, Wool T, et al. A sediment resuspension and water quality model of Lake Okeechobee[J].Journal of the American Water Resources Association,1997, 33(4):661-678.
    [43]Tufford D L, MeKellar H N. Spatial and temporal hydrodynamic and water quality modeling analysis of a large reservoir on the South Carolina (USA) coastal plain[J]. Ecological Modelling,1999,114:137-173.
    [44]Wang P F, Martin J, Morrison G. Water Quality and Eutrophication in Tampa Bay, Florida[J].Estuarine, Coastal and Shelf Science,1999,49(1):1-20.
    [45]Srinivasan R, Arnold J G. Integration of a basin-scale water quality model with GIS[J].Journal ofthe American Water Resources Association,1994,30(3):453-462.
    [46]Udoyara S T, Robert J. Evaluating agricultural Nonpoint-Source pollution using integrated geographic information systems and hydrologic/water quality model[J]. Journal of Environmental Quality,1993,23(1):25-35.
    [47]蒋宏伟,董立岩MIKE11模型在水资源管理中的应用[J].东北水利水电, 2009,(9):42-43.
    [48]马强,陈福容,王颖.基于MIKE 11 Ecolab模型的梁滩河流域水污染问题探讨[J].水电能源科学,2011,29(11):33-36.
    [49]Thompson J R, Sorenson H. R, Gavin H, et al.Application of the coupled MIKE SHE/MIKE 11 modellingsystem to a lowland wet grassland in southeast England [J]. Journal of Hydrology,2004,293:151-179.
    [50]Kazmi A A, Hansen I S. Numerical models in water quality management:a case study for the Yamuna River(India)[J]. Water Science and Technology,1997,36(5): 193-200.
    [51]Neto J M, Flindt M R, Marques J C, et al. Modelling nutrient mass balance in a temperate meso-tidal estuary:implications for management [J]. Estuarine,Coastal and Shelf Seience,2008,76(1):175-185.
    [52]杨叔子,吴雅,轩建平,等.时间序列分析的工程应用(第二版)[M].武汉:华中科技大学出版社,2007.
    [53]Shamshad A. Performance of stochastic approaches for forecasting river water quality[J]. Water Research,2001,35(18):4261-4266.
    [54]Worrall F, Burt T P. A univariate model of river water nitrate time series[J], Journal of Hydrology,1999,214:74-90.
    [55]Schoch A L, Schilling K E, Chan K S. Time-series modeling of reservoir effects on river nitrate concentrations[J]. Advances in Water Resources,2009,32(8): 1197-1205.
    [56]李冬,周川,袁朋飞,等.基于时间序列分析的渐变性水源水质预测研究[J].环境科学与技术,2012,35(6):184-188.
    [57]龙军,冀海峰,黄志尧,等.时间序列分析在水质预测中的应用[J].仪器仪表学报,2009,30(6):350-352.
    [58]邓聚龙.灰色预测与决策[M].武汉:华中理工大学出版社,1986.
    [59]王开章,刘福胜,孙鸣.灰色模型在大武水源地水质预测中的应用[J].山东农业大学学报(自然科学版),2002,33(1):66-71.
    [60]向跃霖GPSIM(1)模型在预测地表水CODMn指数中的应用[J].水资源保护,1997,(2):38-41.
    [61]郭原,徐宏亮.水质变化灰色预测方法的探讨[J].中国环境监测,1996,12(2):42-44.
    [62]李志强,王叶俊.灰色马尔科夫模型在地表水体DO浓度预测中应用[J].重庆环境科学,2002,24(3):35-37.
    [63]Kurunc A, Yurekli K, Cevik O. Performance of two stochastic approaches for forecasting water quality and streamflow data from Yesilirmak River, Turkey [J]. Environmental Modelling & Software,2005,20(9):1195-1200.
    [64]Singh K P, Basant A, Malik A, et al. Artificial neural network modeling of the river water quality—a case study[J]. Ecological Modelling,2009,220(6):888-895.
    [65]Rogers L L, Dowla F U. Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling [J]. Water Resources Research,1994,30(2):457-481.
    [66]Holger R M, Graeme C D. Neural networks for the prediction and forecasting of water resources variables:a review of modeling issues and applications [J]. Environmental Modelling and Software,2000, (15):101-124.
    [67]Nagy H M, Watanabe M, Hirano M. Prediction of sediment load concentration in rivers using artificial neural network model [J].Journal of Hydraulic Engineering, 2002,128(6):588-595.
    [68]Maier H R. The use of artificial neural networks for the prediction of water quality parameters [J].Water resources research,1996,32(4):1013-1022.
    [69]Huang W R, Foo S. Neural network modeling of salinity variation in Apalachicola River [J].Water Research,2002,36(1):356-362.
    [70]Recknagel F, French M, Harkonen P, et al. Artificial neural network approach for modeling and prediction of algal blooms [J]. Ecological Modelling,1997,96:11-28.
    [71]邵东国,王忠静,李元红,等.干旱内陆河流水质预测人工神经网络模型研究[J].灌溉排水,1999,18(4):7-9.
    [72]王晓萍,孙继洋,金鑫.基于BP神经网络的钱塘江水质指标的预测[J].浙江大学学报(工学版),2007,41(2):361-364.
    [73]AlyA H, Peralta R C. Optimal design of aquifer systems under uncertainty usinga neural network and a genetic algorithm [J]. Water Resources Research, 1999,35(8):2523-2531.
    [74]苑希民,李鸿雁,刘树坤,等.神经网路和遗传算法在水科学领域的应用[M].北京:中国水利水电出版社,2002.
    [75]Gullick R W, Gaffney L J, Crockett C S, et al. Developing regional early warning systems for US source waters[J]. Journal-American Water Works Association,2004, 96(6):68-82.
    [76]郑舒尹.水质预警信息自动分级和安全发布技术研究[D].杭州:浙江大学,2012.
    [77]杨忠山,武佃卫.北京市水体水质自动监测与评价体系建设[J].北京水 利,2002,(06):29-32.
    [78]袁永钦,匡科,沈军.广州市西江引水工程水质预警系统研究与实践[J].中国给水排水,2011,27(06):l-5.
    [79]刘宴辉,申一尘,王绍祥,等.黄浦江水源水质监控与预警系统研究及应用[J].给水排水,2010,36(11):119-122
    [80]高觅谛.基于WebGIS的地理信息支撑技术在水质安全预警系统中的应用研究[D]杭州:浙江大学,2012.
    [81]张贤洪.基于WebGIS的给水管网管理可视化技术的研究[D].西安:西安理工大学,2005.
    [82]王耕,吴伟.基于Gls的辽河流域水安全预警系统设计[J].大连理工大学学报,2007,47(2):175-179.
    [83]窦明,李重荣,王陶.汉江水质预警系统研究[J].人民长江,2002,33(11):38-42.
    [84]Cairns Jr J, Van der Schalie W H. Biological monitoring part I—early warning systems[J]. Water Research,1980,14(9):1179-1196.
    [85]Van der Schalie W H, Shedd T R, Knechtges P L, et al. Using higher organisms in biological early warning systems for real-time toxicity detection[J]. Biosensors and Bioelectronics,2001,16(7):457-465.
    [86]McCormick P V, Cairns Jr J. Algae as indicators of environmental change[J]. Journal of Applied Phycology,1994,6(5-6):509-526.
    [87]Fernandez A, Tejedor C, Cabrera F, et al. Assessment of toxicity of river water and effluents by the bioluminescence assay using Photobacterium phosphoreum[J]. Water research,1995,29(5):1281-1286.
    [88]Gruber D, Cairns Jr J, Hendricks A C. A computerized biological monitoring facility for demonstrating wastewater discharge compliance[C]//Proc. Ind. Waste Symp. of the 52nd Ann. Water Pollution Control Federation Conference, Houston, Texas. 1979.
    [89]李志良,任宗明,马梅,等.利用大型蚤运动行为变化预警突发性有机磷水污染[J].中国给水排水,2007,23(12):73-75.
    [90]李东.生物毒性快速检测与给水水质预警[J].建材与装饰,2007,7:253-254.
    [91]丁贤荣,徐健,姚琪,等.GIS与数模集成的水污染突发事故时空模拟[J].河海大学学报(自然科学版),2003,31(2):203-206.
    [92]何进朝.突发性水污染事故预警应急系统研究[D].成都:四川大学,2005.
    [93]Ouyang Y, Zhang J E, Luo S M. Dynamic data driven application system:recent development and future perspective[J]. Ecological Modeling,2007,204:1-8.
    [94]Ouyang Y, Luo S M, Cui L H, et al. Estimation of real-time N load in surface water using dynamic data-driven application system[J]. Ecological Engineering,2011, 37(4):616-621.
    [95]Michopoulos J G, Lambrakos S G. Underlying issues associated with validation and verification of dynamic data driven simulation[C]//Proceedings of the 38th conference on Winter Simulation Conference.2006:2093-2100.
    [96]Frederica Darema. Dynamic Data Driven Application Systems[R]. NSF Workshop on Dynamic Data Driven Application Systems, March 2000.
    [97]帅猛.基于局部加权学习的短时交通流预测研究[D].北京:北京大学,2009.
    [98]Kennedy C, Theodoropoulos G. Intelligent management of data driven simulations to support model building[C]//Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation. IEEE Computer Society,2006:132.
    [99]Schulze T, Straβburger S, Klein U. On-line data processing in a civil transportation federation[C]//Proceedings of the 1999 Fall Simulation Interoperability Workshop. 1999:12-17.
    [100]Hunter M, Fujimoto R, Suh W, et al. An investigation of real-time dynamic data driven transportation simulation[C]//Proceedings of the 2006 Winter Simulation Conference.2006:1414-1421.
    [101]Parashar M, Klie H, Catalyurek U, et al. Application of grid-enabled technologies for solving optimization problems in data-driven reservoir studies[J]. Future Generation Computer Systems,2005,21(1):19-26.
    [102]Zhao H, Knight D, Taskinoglu E, et al. Data driven design optimization methodology development and application[M]. Springer Berlin Heidelberg,2004.
    [103]Akcelik V, Bielak J, Biros G, et al. A framework for online inversion-based 3D site characterization[C]//Computational Science-ICCS 2004. Springer Berlin Heidelberg, 2004:717-724.
    [104]Low M Y H, Lye K W, Lendermann P, et al. An agent-based approach for managing symbiotic simulation of semiconductor assembly and test operation[C]//Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems. ACM,2005:85-92.
    [105]Low M Y H, Turner S J, Ling D, et al. Symbiotic simulation for business process re-engineering in high-tech manufacturing and service networks [C]//Simulation Conference,2007 Winter. IEEE,2007:568-576.
    [106]Aydt H, Turner S J, Cai W, et al. Symbiotic simulation control in semiconductor manufacturing[C]//Computational Science-ICCS 2008. Springer Berlin Heidelberg, 2008:26-35.
    [107]Aydt H, Turner S J, Cai W, et al. Symbiotic simulation systems:An extended definition motivated by symbiosis in Biology[C]//Principles of Advanced and Distributed Simulation,2008. PADS'08.22nd Workshop on. IEEE,2008:109-116.
    [108]Brotzge J, Chandresakar V, Droegemeier K, et al. Distributed collaborative adaptive sensing for hazardous weather detection, tracking, and predicting[C]//Computational Science-ICCS 2004. Springer Berlin Heidelberg,2004:670-677.
    [109]Mandel J, Bennethum L S, Chen M, et al. Towards a dynamic data driven application system for wildfire simulation[C]//Computational Science-ICCS 2005. Springer Berlin Heidelberg,2005:632-639.
    [110]Allen G, Bogden P, Luettich Jr R A, et al. Designing a Dynamic Data Driven Application System for Coastal and Environmental Modeling[C]//Grid-Based Problem Solving Environments. Springer US,2007:275-293.
    [111]Douglas C C, Efendiev Y, Ewing R, et al. Dynamic Data-Driven Contaminant Simulation[C]//Current Trends in High Performance Computing and Its Applications. Springer Berlin Heidelberg,2005:25-36.
    [112]Douglas C C, Cole M J, Dostert P, et al. Dynamically identifying and tracking contaminants in water bodies[C]//Computational Science-ICCS 2007:1002-1009.
    [113]Douglas C C, Dostert P, Efendiev Y, et al. DDDAS predictions for water spills[C]//Computational Science-ICCS 2008:54-63.
    [114]Douglas C C, Efendiev Y, Ewing R E, et al. Improving predictions for water spills using DDDAS[C]//Parallel and Distributed Processing,2008:1-5.
    [115]周云,黄柯棣,胡德文.动态数据驱动应用系统的概念研究[J].系统仿真学报,2009(8):2138-2141.
    [116]欧阳颖,骆世明,崔理华.动态数据驱动应用系统在农业和环境科学中的应用前景[J].中国生态农业学报,2008,16(6):1597-1602.
    [117]杨广斌,唐小明,李亦秋.动态数据驱动的林火蔓延模型模拟误差自适应修正[J].东北林业大学学报,2011,39(11):29-33.
    [118]毛锋,李强.城市公共安全的应急响应模拟[J].城市问题,2010(7):82-85.
    [119]韩守鹏,邱晓刚,黄柯棣.动态数据驱动的适应性建模与仿真[J].系统仿真学报,2006,18(2):147-151.
    [120]蒙丽容.三峡库区水质预警系统框架研究[D].重庆:重庆大学,2009.
    [121]Wang C, Feng Y, Zhao S, et al. A dynamic contaminant fate model of organic compound:A case study of Nitrobenzene pollution in Songhua River, China[J]. Chemosphere,2012,88(1):69-76.
    [122]Ganoulis J. Engineering risk analysis of water pollution[M]. New York:VCH,1994.
    [123]Beck M B. Water quality modeling:a review of the analysis of uncertainty[J]. Water Resources Research,1987,23(8):1393-1442.
    [124]陈光明.河流水质模型参数估值方法探讨[J].中国测试技术,2004,30(5):31-32.
    [125]王薇,曾光明,何理.用模拟退火算法估计水质模型参数[J].水利学报,2004,6:61-67.
    [126]袁利敏,黄川友,胡波.遗传算法在水质模型参数率定中的应用[J].东北水利水电,2003,21(8):25-28.
    [127]傅国伟.河流水质数学模型及其模拟计算[M].北京:中国环境科学出版社,1987.
    [128]徐礼强.钱塘江水环境主要污染物通量研究[D].杭州:浙江大学,2008.
    [129]Rauch W, Henze M, Koncsos L, et al. River Water Quality Modeling:I. State of the Art [J]. Water Science & Technology,1998,38(11):237-244.
    [130]Althoff K D. Case-based reasoning [J]. Handbook on Software Engineering and Knowledge Engineering,2001,1:549-587.
    [131]Sycara K. Using case-based reasoning for plan adaptation and repair[C]// Proceedings of the DARPA Case-Based Reasoning Workshop.1988,425:434.
    [132]Hammond K J. Case-based planning[M]. Elsevier Science,2012.
    [133]孟宪福,王蒴,关迎晖.基于案例推理的企业信用评估系统[J].计算机工程,2003,29(22):170-172.
    [134]郭儒,李宇斌,富国.河流中污染物衰减系数影响因素分析[J].气象与环境学报,2008,24(1):56-59.
    [135]中国环境规划院.全国水环境容量核定技术指南[R].中国:环境规划院,2003.
    [136]Grupe F H, Urwiler R, Ramarapu N K, et al. The application of case-based reasoning to the software development process[J]. Information and software technology,1998, 40(9):493-499.
    [137]Bonissone P P, Ayub S. Similarity measures for case-based reasoning systems[C]//IPMU'92—Advanced Methods in Artificial Intelligence. Springer Berlin Heidelberg,1993:159-172.
    [138]Mauricio A H, Salvator J S. Real World Data is Dirty:Data Cleaning and the Merge/Purge Problem [J].Data Mininand Knowledged Discovery,1998, (2):9-37.
    [139]Rvachev V L, Sheiko T I, Shapiro V, et al. Transfinite interpolation over implicitly defined sets[J]. Computer Aided Geometric Design,2001,18(3):195-220.
    [140]许国辉,余春林.时间序列分析方法的研究[J].广州大学学报(自然科学版),2003,2(6):556-559.
    [141]Schwarz G. Estimating the dimension of a model [J].The Annals of Statistics,1978, 6(2):461-464.
    [142]Zhang B, Qin Y, Huang M X, et al. SD-GIS-based temporal-spatial simulation of water quality in sudden water pollution accidents [J]. Computers & Geosciences, 2011,37(7):874-882.
    [143]HJ589-2010,突发环境事件应急监测技术规范[S].
    [144]陈英.突发性环境污染事故应急监测预案的研究[D].镇江:江苏大学,2007.
    [145]雷洋,袁九毅,仝纪龙,等.大气环境风险预测在应急监测布点上的应用[J].环境科学与技术,2008,31(6):94-97.
    [146]王明贤,陈英,张先塞,等.突发性大气环境污染事故应急监测布点研究[J].中国环境监测,2007,23(4),9-13.
    [147]Palmer R, Mackenzie M.Optimization of water quality monitoring networks [J].Journal of Water Resources Planning and Management,1985, 111(4):478-493.
    [148]金菊良,汪明武,魏一鸣.用投影寻踪分类模型进行环境监测优化布点[J].安全与环境学报,2004,4(4):10-12.
    [149]韩波,林华荣.主成分分析在水质监测优化布点中的应用[J].中国环境监测,1991,7(1):12-14.
    [150]周新明,一维河流水质模型在应急监测中的应用分析[J].绿色科技,2011,(6):10-11.
    [151]胡越,张戈Matlab在河流突发性污染事故应急监测布点中的应用[J].中国应急救援,2009,(6):36-38.
    [152]Chang D Y. Applications of the Extent Analysis Method on Fuzzy AHP [J]. European Journal of Operational Research,1996,95:649-655.
    [153]田依林.城市突发公共事件综合应急能力评价研究[D].厦门:厦门大学,2008.
    [154]SL219-98,水环境监测规范[S].
    [155]GB/T50594-2010,水功能区划分标准[S].
    [156]赵焕臣.层次分析法:一种简易的新决策方法[M].科学出版社,1986.
    [157]Saaty T L. A Scaling method for priorities in hierarchical structures [J].Journal of Mathematical Psychology,1977,15:234-281.
    [158]Saaty T L. Decision making—the analytic hierarchy and network processes (AHP/ANP)[J]. Journal of systems science and systems engineering,2004,13(1): 1-35
    [159]张晶,董哲仁,孙东亚,等.河流健康全指标体系的模糊数学评价方法[J].水利水电技术,2010,41(12):16-21.
    [160]谢季坚,刘承平.模糊数学方法及其应用[M].武汉:华中科技大学出版社.2006:31-32.
    [161]GB3838-2002,地表水环境质量标准[S].
    [162]中国城市经济学会中小城市经济发展委员会、《中国中小城市发展报告》编纂委员会编.中国中小城市发展报告(2010):中国中小城市绿色发展之路[M].北京:社会科学文献出版社,2010.
    [163]国家统计局编.中国区域经济统计年鉴:2011[M].北京:中国统计出版社,2012.
    [164]杨广斌.动态数据驱动的林火蔓延模拟系统关键技术研究[D].北京:中国林业科学研究院,2008.
    [165]Seong N K, Yeo S M, Kim C H. The modeling of over-current reclosing relay using dynamic link library[C]//Transmission & Distribution Conference & Exposition: Asia and Pacific,2009. IEEE,2009:1-4.
    [166]孙醒龙.基于服务模板的自适应工作流建模及动态执行研究[D].上海:上海交通大学,2011.
    [167]张荣梅Visual C++程序设计案例教程[M].北京:北京大学出版社,2009.
    [168]骆斌,费翔林.多线程技术的研究与应用[J].计算机研究与进展,2000,37(4):407-412.
    [169]詹泽东,谢爽,藏文亚,等.利用反射技术实现一种新型软件系统维护模型[J].微型机与应用,2012,(1):70-72.
    [170]中华人民共和国环境保护部.关于开展环境污染损害鉴定评估工作的若干意见(环发[2011]60号)[EB/OL].http://www.zhb.gov.cn/gkml/hbb/bwj/201105 /t20110530_211357.htm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700