用户名: 密码: 验证码:
固态/液态混合聚碳硅烷制备SiC纤维的关键基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了改善高分子材料的性能,对已有高分子材料进行物理共混改性是一种经济而有效的途径,也是先驱体法制备新一代高性能SiC纤维的研究热点之一。
     本研究首次将超支化液态聚碳硅烷(LPCS)与固态聚碳硅烷(PCS)进行物理共混改性,得到改性的PCS先驱体。改性后先驱体经过熔融纺丝得到原丝,原丝经氧化交联得到交联丝,最后交联丝在1250℃氮气气氛下热解得到SiC纤维。本论文对上述的制备工艺中的关键基础问题进行了系统研究。
     LPCS具有与固态PCS相似的分子结构,相容性好,不需要采用复杂的真空冷冻技术,通过普通的物理共混方法便可以得到混合均匀的先驱体,混合过程中没有发现明显的相分离现象,固液混合先驱体的组成和分子结构基本是固态PCS和LPCS的物理叠加。
     LPCS的加入明显提高了先驱体中Si-H基团的含量,红外谱中Si-H与Si-CH_3的比例从0.91(不含LPCS,PCS-0)提高到0.98(含有20%LPCS,PCS-20),核磁氢谱中Si-H与C-H比例从0.096(PCS-0)提高到0.14(PCS-20),有利于后续的交联工艺。在熔融纺丝过程中,有部分PCS和LPCS发生交联反应,消耗一部分的Si-H基团,但先驱体中的大部分Si-H基团得到了保留。经过高温熔融纺丝后,LPCS能够稳定存在于先驱体纤维中。
     LPCS的加入明显降低了先驱体的纺丝温度,从285℃(PCS-0)降低到205℃(PCS-20)。由于LPCS延长了熔体的固化区间,因此显著改善了先驱体的纺丝性能,纤维的直径和分散系数明显下降,从19.6±1.8μm(PCS-0)降低到15.4±0.5μm(PCS-20)。同时由于纺丝温度的降低,改善了先驱体的热稳定性。LPCS提高了原丝的表面质量,减少纤维表面缺陷。
     PCS原丝在空气氧化交联过程主要是Si-H键被氧化成Si-OH键,Si-OH与Si-OH发生缩合反应生成Si-O-Si交联结构的过程,此外也有Si-CH_3氧化生成Si-OH,促进交联结构的形成。在交联过程中形成的挥发物中,含有水和甲醛,从而首次从实验上证明了SiC纤维的先驱者Yajima教授所预测的氧化交联机理。
     LPCS促进氧化交联,因此可以在较低温度下实现氧化交联。在150℃氧化温度下,纯PCS交联丝的凝胶含量为0,而含有20%LPCS的交联丝凝胶含量达到80%,这不仅是因为LPCS中含有大量易于与氧反应的Si-H键,而且还因为LPCS分子量较小,通过共混可以均匀分布在PCS分子中,在交联过程中,起到了交联点的作用;
     LPCS含量10%以上的所有纤维经1250℃热解后均能保持原状不并丝,而LPCS含量5%以下的纤维,经150℃氧化交联和1250℃热解后发生并丝现象。LPCS的加入,可以提高纤维的陶瓷产率,加入10%以上的LPCS,原丝只要经过150℃氧化交联,其陶瓷产率均在81%以上,而经150℃氧化交联的纯PCS纤维陶瓷产率只有77.6%。
     相同氧化交联温度下,固液混合PCS纤维中含有较多的SiC_xO_y无定型相,抑制了β-SiC微晶的生成和长大,纤维中的无定型碳的比例高于纯PCS热解纤维。利用固液混合PCS纤维所制备的SiC纤维的拉伸强度(1.76GPa)低于由纯PCS纤维制备的SiC纤维(2.81GPa),这主要是由于氧含量过多以及氧在纤维径向不均匀分布的结果。在空气高温处理过程中,由PCS制备的陶瓷纤维拉伸强度随温度的提高逐渐降低,而由含LPCS先驱体制备的陶瓷纤维拉伸强度保持率在1400℃之前几乎为100%,这主要是因为含LPCS的纤维其表面有一层富氧层,阻止了氧进一步扩散到纤维内部使其继续氧化。
Polymer alloying is to mix different polymers to obtain the desired properties.It is widely used in industry because of its convenience,economy and adoptability.It is also one of the major interests in silicon carbide fibre production for the development of high-performance and low cost fibres.
     In this work,highly branched liquid polycarbosilane(LPCS)was used as the alloying polymer to modify the properties of polycarbosilane(PCS).The resultant blend is used as the precursor for silicon carbide ceramic fibres.The blend is melt-spun into precursor fibres,oxidation-cured in hot air,and finally converted into silicon carbide fibres by pyrolysis in nitrogen.The key scientific problems encountered in the processing are comprehensively studied in this thesis.
     LPCS has similar molecular structure to PCS.Therefore,they have good compatibility.A homogeneous blend can be obtained simply by mechanical mixing, making the expensive vacuum drying unnecessary.No obvious phase separation or chemical reaction is observed during the preparation.The blend is essentially a physical mixture of the two components.
     The addition of LPCS into PCS increases the Si-H concentration in the precursor. On the base of the FTIR spectra,the Si-H/Si/CH_3 increases from 0.91 for PCS to 0.98 for 20%LPCS/PCS.From ~1H-NMR,the Si-H/C-H increases from 0.096 for PCS to 0.14 for 20%LPCS/PCS.The high Si-H concentration is conducive to the subsequent oxidation curing.
     During melt-spinning,LPCS is partially reacted with PCS,consuming some Si-H. However,an overwhelming majority of them is preserved.In the precursor fibres, LPCS is stable during storage.LPCS reduces the spinning temperature significantly, from 285℃for PCS to 205℃for 20%LPCS/PCS.Because the LPCS prolongs the solidification of the extruded filament,the spinning ability of the precursor is markedly improved.The fibre diameter and the diameter distribution are also improved.For example,the fibre diameter decreases from 19.6±1.8μm for PCS to 15.4±0.5μm for 20%LPCS/PCS.The reduced melt spinning temperature is beneficial to the thermal stability of the precursor.The LPCS also improves the surface quality,reducing the surface defects.
     The major reactions occurred during oxidation-curing are the oxidation of Si-H bonds,forming Si-OH groups.Condensation reactions then takes place between the Si-OH groups,producing Si-O-Si linkage,which is responsible for curing.At higher curing temperature,Si-CH_3 groups are also oxidized into Si-OH,further promoting the curing process.Water and formaldehyde are the major gaseous species evolved during oxidation curing.This is the first time to experimentally confirm the proposed oxidation mechanisms by Prof Yajima.
     LPCS promotes the oxidation curing because of its richness in Si-H groups. Therefore,the fibres can be rendered infusible at lower curing temperature.At 150℃,the gel fraction of the cured fibres from PCS is almost zero,while for 20% LPCS/PCS precursor fibres,it is 80%.
     When LPCS is over 10%in the precursor,the fibre shape can be retained after pyrolysis at 1250℃.But when it is<5%,oxidation at>150℃is needed to produce sufficient curing.LPCS addition improves the ceramic yield to 81%for 15% LPCS/PCS from 77.6%for PCS.
     For the same oxidation temperature,the LPCS-containing precursor gives the ceramic fibres with higher SiC_xO_y fraction,suppressing the growth ofβ-SiC crystallites.The introduction of LPCS into the precursor results in ceramic fibres with lower tensile strength(1.76GPa for 15%LPCS/PCS)in comparison with the PCS-derived ceramic fibres(2.81GPa).It stems from the non-uniform oxygen distribution because of the active nature of LPCS toward oxygen.However,the strength retention at 1400℃is almost 100%for the 15%LPCS/PCS-derived fibres, much higher than the PCS-derived ceramic fibres.The main reason is that there is an oxygen-rich surface layer in 15%LPCS/PCS-derived fibres,impeding the diffusion of oxygen into the interior of the fibre and hence slowing down further oxidation.
引文
[1]潘金生,材料科学基础.北京:清华大学出版社,1998.
    [2]周玉.陶瓷材料学.哈尔滨:哈尔滨工业大学出版社,1995.
    [3]陈朝辉,先驱体结构陶瓷,长沙:国防科技大学出版社,2003.
    [4]Johnson D W.,Evans A G.,Goettler R W.Ceramic Fibers and Coatings:Advanced Materials for the Twenty-first Century.Publication NMAB-494,Washington D.C:National Academy Press,1998:1-49.
    [5]Russell J D.High-Performance Synthesis Fibers for Composites.Publication NMAB-458,Washington D.C:National Academy Press,1992:1-129.
    [6]彭志坚,司文捷,林仕伟,苗赫濯.用有机硅聚合物制备高温结构陶瓷材料研究进展.无机材料学报,2001,16(5):779-790.
    [7]王零森.特种陶瓷.长沙:中南工业大学出版社,1994.
    [8]吴人洁.复合材料.天津:天津大学出版社,2002.
    [9]Cooke T F.Inorganic Fibers-a Literature Review[J].J.Am.Ceram.Soc.,1991,74(12):2959-78.
    [10]Karnitz M A.,Craig D F.,Richlen S L.Continuous Fiber Ceramic Composite Program[J].Am.Ceram.Soc.Bull,1991,70(3):430-435.
    [11]Frank K.Preform Fiber Architeture for Ceramic-Matrix Composites[J].Ceramic Bulletin,1989,68(2):401-414.
    [12]Kaya H.The Application of Ceramic-Matrix Composites to the Automotive Ceramic Gas Turbine[J].Comp.Sci.Technol,1999,59:861-872.
    [13]Kroke E.,Li Y L.,Konetschny C.,Lecomte E.Silazane Derived Ceramic and Related Materials[J].Mater.Sci.Eng.,2000,R26:97-199.
    [14]Baldus P.,Jansen M.,Sporn D.Ceramics Fibers for Martix Composites in High-Temperature Engine Applications[J].Science,1999,285(30):699-703.
    [15]周小东,吉法祥,肖迎红.β-SiC高性能连续纤维的研制进展[J].材料导报,1995,(2):67-70.
    [16]冯春祥,范小林,宋永才.21世纪高性能纤维的发展应用前景及其挑战(Ⅰ)硅化物陶瓷纤维[J].高科技纤维与应用,1999,24(4):1-8.
    [17]薛金根,龙剑锋,宋永才,冯春祥.碳化硅纤维制备技术研究进展[J].合成纤维工业,2001,24(3):41-44.
    [18]Kalyvas V,Kemp A.P.,Rand B.,East G.C.,Mcintyre J.E.,Riley F.L.,Chen L.F.,Ko J.C.Processing and properties of ceramic fibres,with emphasis on silicon carbide[A].New Materials and their Applications 1990,Proceeding of the 2~(nd) International Symposium,Warwick,UK,April 10-12,1990;Holland D.,Ed.;IOP:Bristol,1990:143-156.
    [19]石南林.CVD法SiC(C芯)纤维的发展概况[J].材料导报,1994,8(1):69-71.
    [20]Hough R.L.,Schwartz R.T.Method of making metal or metalloid carbide yarn by decomposing the respective chloride in the presence of carbon yarn[P].United States Patent No.3433725.Mar.18,1969.
    [21]Galasso F.,Basche M.,Kuehl K.Preparation,structure and properties of continuous slilicon carbide filaments[J].J.Appl.Phys.Lett.,1966,9(1):37-39.
    [22]Yamade M.,SiC Whiskers Manufacture from hydrolyzed Silane and Carbon by heating in the Presence of Hydrogen,JPN.Kokai Tokoyo koho,JP 62212300,8pp.
    [23]Dicarlo J.A.,Creep of Chemically Vapor Deposited SiC Fibers[J].J.Mater.Sci.,1986,21(1):217-224.
    [24]Dicarlo J.A.,Creep Limitation of Current Polycrystalline Ceramic Fibers[J].Compos.Sci.Technol.,1994,51(2):213-217.
    [25]Dong S.M.,Chollon G,Labrugere C,Lahaye M.,Characterization of nearly Stoichiometric SiC Ceramic Fibres[J].J.Mater.Sci.,2001,36:2371-2381.
    [26]Frechette F.J.,Dover B.S.,Venkateawaran V.,Kim J.J.,High Temperature continuous sintered SiC fiber for composite applications[J].Ceram.Eng.Sci.Pro.,1991,12(7-8):991-1006.
    [27]Srinivasan G.B.,Venkateswaran V,Tensile strength evaluation of polycrystalline SiC fibers[J].Ceram.Eng.Sci.Proc,1993,14(7-8):563-572.
    [28]Okada K.,Kato H.,Nakajima K.,Preparation of silicon carbide fiber from activated carbon fiber and gaseous silicon monoxide[J].J.Am.Ceram.Soc,1994,77(6):1691-1693.
    [29]Okada K.Process for producing silicon carbide fiber[P].Untied States Patent No.6316051B2.Nov.13,2001.
    [30]Kowbel W,Withers J.C,Loutfy R.O.,Bruce C,Kyriacou C.Silicon carbide fibers and composites from graphite precursors for fusion energy applications[J].J.Nucl.Mater.,1995,219:15-25.
    [31]Ryu Z.Y.,Zheng J.T.,Wang M.Z.,Zhang B.J.,Preparation and characterization of silicon carbide fibers from activated carbon fibers[J].Carbon,2002,40:715-720.
    [32]郑经堂,刘振宇,王茂章,张碧江,刘平光,曹雅秀,一种制备碳化硅纤维或织物的方法[P].中国发明专利,公开号:CN1374416A.2002年10月16日.
    [33]Lee Y.J.,Formation of silicon carbide fibers by carbothermal reduction of silica [J].Diamond & Related Materials,2004,13:383-388.
    [34]Khalamov A.I.,Loytchenko S.V.,Kirillova N.V.,Fomenko V.V.,A heterogeneous process for the synthesis of silicon carbide fibers[J].Theoretical & Experimental Chemistry,2002,38(1):54-58.
    [35]Rice R W.Ceramics from Polymer Pyrolysis,Opportunities and Needs-a Materials Perspective[J].Am.Ceram.Soc.Bull,1983,62(8):889-892.
    [36]Laine R M.,Babonneau F.Preceramic Polymer Routes to Silicon Carbide[J].Chem.Mater.,1993,5:260-279.
    [37]Birot M.,Pillot J P.,Dunogues J.Comprehensive Chemistry of Polycarbosilane,Polysilazane,and Polycarbosilazane as Precursors of Ceramic[J].Chem.Rev.,1995,95(5):1443-1477.
    [38]Walker B E.,Roy J R.,Rice W.,Becher P F.,Bender B A.,Coblenz W S.Preparation and Properties of Monolithic and Composite Ceramics Produced by Polymer Pyrolysis[J].Am.Ceram.Soc.Bull.,1983,62(8):916-923.
    [39]Lipowitz J.Polymer-Derived Ceramic Fibers[J].Am.Ceram.Soc.Bull.,1991,70(12):1888-1894.
    [40]Yajima S.Special Heat-Resisting Materials from Organometallic Polymers[J].Am.Ceram.Soc.Bull.,1983,62(8):893-898.
    [41]Okamura K.Ceramic Fibers from Polymer Precursors[J].Composites,1987,18(2):107-120.
    [42]Lipowitz J.,Freeman H A.,Chen R T.,Prack E R.Composition and Structure of Ceramic Fibers Prepared from Polymer Precursors[J].Advanced Ceramic Materials,1987,2(2):121-128.
    [43]Bunsell A R.,Berger M H.Fine Diameter Ceramic Fibers[J].J.Europ.Ceram.Soc,2000,20:2249-2260.
    [44]Bunsell A R.,Berger M H.Inorganic Fibers for Composite Materials[J].Comp.Sci.Technol.,1994,51:127-133.
    [45]Richer R.,Roewer G,Bohme U.,Busch K.,Babonneau F.,Martin H.,Mullert E.Organosilicon Polymers-Synthesis,Architecture,Reactivity and Applications[J].Applied Organometallic Chemistry,1997,2:71-106.
    [46]West R.,David L D.,Djurovich P I.,YU H.,Sinclair R.Polysilastyrene:Phenylmethylsilane Dimethylsilane Copolymers as Precursors to Silicon Carbide[J].Am.Ceram.Soc.Bull.,1983,62(8):899-902.
    [47]Wills R R.,Markle R A.,Mukherjee S P.Siloxanes,Silanes,and Silazanes in the Preparation of Ceramics and Glasses[J].Am.Ceram.Soc.Bull.,1983,62(8):904-915.
    [48]Yajima S.,Hasegama Y,Hayashi J.,Iimura M.Synthesis of Continuous Silicon Carbide Fiber with high Tensile Strength and high Young's Modulus,Part 1 Synthesis of Polycarbosilane as Precursor[J].J.Mater.Sci.,1978,13:2569-2576.
    [49]Hasegawa Y,Iimura M.,Yajima S.Synthesis of Continuous Silicon Carbide Fiber,Part 2 Conversion of Polycarbosilane Fiber into Silicon Carbide Fibers[J].J.Mater.Sci.,1980,15:720-728.
    [50]Hasegawa Y Synthesis of Continuous Silicon Carbide Fiber,Part 3 Pyrolysis Process of Polycarbosilane and Structure of the Products[J].J.Mater.Sci.,1983,18:3633-3648.
    [51]Hasegawa Y Synthesis of Continuous Silicon Carbide fiber,Part 4 The Structure of Polycarbosilane as the Precursor[J].J.Mater.Sci.,1986,21:321-328.
    [52]Ichikawa H.,Machibo F.,Mitsuno S.,Ishikawa T.Synthesis of Continuous Silicon Carbide Fiber,Part 5 Factors Affecting Stability of Polycarbosilane to Oxidation[J].J.Mater.Sci.,1986,21:4352-4358
    [53]Hasegawa Y Synthesis of Continuous Silicon Carbide Fiber,Part 6 Pyrolysis Process of Cured Polycarbosilane Fiber and Structure of SiC Fiber[J].J.Mater.Sci.,1989,24:1177-1190.
    [54]Ichikawa H.,Ishikawa T.,Silicon carbide fibers (organometallic pyrolysis)[M].Comprehensive Composite Materials,Kelly A.,Zweben C,Chou T.W Eds.,Amsterdam:Elsevier,2000,Vol.1:107-145.
    [55]Baldus H.P.,Jansen M.,Novel high-performance ceramics-amorphous inorganic networks from molecular precursors[J],Angew.Chem.Int.Ed.Engl.,1997,36:328-343.
    [56]楚增勇,冯春祥,宋永才,李郊东,肖加余,王应德,先驱体转化法连续SiC 纤维国内外研究与开发现状[J],无机材料学报,2002,17(2):194-201.
    [57]Bunsell A.R.,Piant A.,A review of the development of three generations of small diameter silicon carbide fibres[J],J.Mater.Sci.,2006,41:823-839.
    [58]Yajima S.Special Heat-Resisting Materials from Organometallic Polymers[J].Am.Ceram.Soc.Bull.,1983,62(8):893-898
    [59]Yajima S,Okamura K.,Hayashi J,Omori M.Synthesis of Continuous SiC Fibers with High Tensile Strength[J].J.Am.Ceram.Soc,1976,59(7-8):324-327.
    [60]Yajima S.,hayashi J.,Okamura K.Pyrolysis of a Polyborodiphenylsiloxane[J].Nature,1977,266:521-522.
    [61]Yajima S.,Okamura K.,Matsuzawa T.,Hasegawa Y.,Shishido T.Anomalous Characteristics of the Microcrystalline State of SiC Fibers[J].Nature,1979,279:706-707.
    [62]Hermida A T.,Pailler R.,Naslain R.Continuous SiC-based Model Monofilaments with a low free Carbon Content Part 1:from the Pyrolysis of a Polycarbosilane Precursor under an Atmosphere of Hydrogen[J].J.Mater.Sci.,1997,32:2359-2366.
    [63]Shimoo T.,Toyoda F.,Okamura K.Thermal Stability of Low-Oxygen Silicon Carbide Fiber(Hi-Nicalon)Subjected to Selected Oxidation Treatment.J.Am.Ceram.Soc,2000,83(6):1450-1456.
    [64]Shimoo T,Okamura K.Thermal Stability of Low-Oxygen SiC Fibers Fired under Different Conditions[J].J.Mater.Sci.,1999,34:5623-5631.
    [65]Takeda M.,Imai Y.,Ichikawa H.,Kasai N.,Seguchi T.,Okamura K.Thermal Stability of SiC Fiber Prepared by an Irradiation-Curing Process[J].Comp.Sci.Technol.,1999,59:793-799.
    [66]Takeda M.,Sakamoto J I.,Imai Y.,Ichikawa H.Thermal Stability of the Low-Oxygen -Content Silicon Carbide fiber Hi-Nicalon[J].Comp.Sci.Technol.,1999,59:813-819.
    [67]Chollon G.,Pailler R.,Naslain R.,Laanani F.,Monthioux M,Olry P.Thermal Stability of a PCS-Derived SiC fiber with a low Oxygen Content(Hi-Nicalon)[J].J.Meter.Sci.,1997,32:327-347.
    [68]Chillon G.,Czerniak M.,Pailler R.,Bourrat X.,Naslain R.,Pillot J P.,Cannet R. A Model SiC-based Fiber with a low Oxygen Content Prepared from a Polycarbosilane Precursor[J].J.Meter.Sci.,1997,32:893-911.
    [69]Takeda M.,Urano A.,Sakamoto J I.,Imai Y.Microstructure and Oxidative Degradation Behavior of Silicon Carbide Fiber Hi-Nicalon type S[J].J.Nuclear Mater,1998,258-263:1594-1599
    [70]Takeda M,Saeki A.,Sakamoto J,Imai Y,Ichikawa H.Properties of Polycarbosilane-derived Silicon Carbide Fibers with Various C/Si Compositions.Comp.Sci.Technol[J],1999,59:787-792.
    [71]Takeda M.,Saeki A,Sakamoto J,Imai Y,Ichikawa H.Effect of hydrogen atmosphere on pyrolysis of cured polycarbosilane fibers[J].J.Am.Ceram.Soc,2000,83:1063-1069
    [72]Shimoo T,Katase Y,Okamura K.,Takano W.Carbon elimination by heat-treatment in hydrogen and its effect on thermal stability of polycarbosilane-derived silicon carbide[J].J.Mater.Sci.2004 39:6243-6251.
    [73]Ichiwaka H,Imai Y,Takeda M.,Sakamoto J.Process for producing silicon carbide fibers[P].European Patent No.0653391A1.May 17,1995.
    [74]Ichiwaka H,Takeda M,Sakamoto J,Saeki A.Process for producing silicon carbide fibers[P].United States Patent No.5824281.Oct.20,1998.
    [75]Ichikawa H.Recent advances in Nicalon ceramic fibres including Hi-Nicalon Type S[J].Ann.Chim.Sci.Mat,2003,247:203-208.
    [76]Ishikawa T,Ichikawa H.Recent advances in continuous SiC fibers and the composites[J].Key Eng.Mater,2003,247:203-208.
    [77]Ishikawa T.Recent Developments of the SiC Fiber Nicalon and Its Composites Including Properties of the SiC Fiber Hi-Nicalon for Ultra-High Temperature[J].Comp.Sci.Technol,1994,51:135-144.
    [78]Toreki W,Batich C D,Sacks M D,Saleem M,Choi G J,Morrone A A,Polymer-Derived Silicon Carbide Fibers with low Oxygen Content and Improved Thermomechanical Stability[J].Comp.Sci.Technol,1994,51:145-159.
    [79]Hochet N,Berger M H,Bunsell A R.Microstructural Evolution of the latest Generation of Small-Diameter SiC-based Fibers Tested at High Temperatures[J].Journal of Microscopy,1997,185(2):243-258.
    [80]Kakimoto K I,Shimoo T,Okamura K.Oxidation-Induced Microstructural Change of Si-Ti-C-0 Fibers[J].J.Am.Ceram.Soc,1998,81(2):409-412.
    [81]Song Y C.,Feng C.,Tan Z.,Lu Y.Structure and Properties of Polytitanocarbosilane as the Precursor of SiC-TiC Fibre[J].J.Mater.Sci.Lett.,1990,9:1310-1313.
    [82]Song Y C.,Hasegawa Y.,Yang S J.,Sato M.Ceramic Fibres from Polymer Precursor Containing Si-O-Ti Bonds[J].J.Mater.Sci.,1988,23:1911-1920.
    [83]Hasegawa Y.,Feng C X.,Song Y C.,Tan Z L..Ceramic Fibres from Polymer Precursor Containing Si-O-Ti Bonds[J].J.Mater.Sci.,1991,26:3657-3664.
    [84]Vahalas C.,Monthioux M.On the Thermal Degradation of Lox-M Tyranno Fibres.J.Europ.Ceram.Soc,1995,15:445-453.
    [85]Chollon G.,Aldacourrou B.,Capes L.,Pailler R.,Naslain R.Thermal Behaviour of a Polytitanocarbosilane-Derived Fibre with a low Oxygen Content:the Tyranno Lox-E Fibre[J].J.Mater.Sci.,1998,33:901-911
    [86]王军.含过渡金属的碳化硅纤维的制备及其电磁性能.博士学位论文.长沙:国防科技大学,1997.
    [87]Yajima S.,Noda A.,Okamura K.,Hasegawa Y.,Yamamura T.Continuous inorganic fibers and process for production therof[P].United states Patent No.4663229.May 5,1987.
    [88]Yamamura T.,Masaki S.,Ishikawa T.,Sato M.,Shibuya M.,Kumagawa K.Improvement of Si-Ti(Zr)-C-O fiber and a precursor polymer for high temperature CMC[J].Ceram.Eng.Sci.Proc.,1996,17(4):184-191.
    [89]Kumagawa K.,Yamaoka H.,Shibuya M.,Yamamura T.Thermal stability and chemical corrosion resistance of newly developed continuous Si-Zr-C-O Tyranno fiber[J].Ceram.Eng.Sci.Proc.,1997,18(3):113-118.
    [90]Yamamura T.,Ishikawa T.,Shibuya M.Cross-linked polymer and its production process[P].Japan Patent No.128027(A),May 31,1988.
    [91]Yamaoka H.,Ishikawa T.,Kumagawa K.Excellent Heat Resistance of Si-Zr-C-O Fibre.J.Mater.Sci.,1999,34:1333-1339.
    [92]Ishikawa T.,Kohtoku Y.,Kumagawa K.,Yamamura T.,Nagasawa T.High-Strength Alkali-Resistant Sintered SiC Fibre Stable to 2200℃.Nature,1998,391:773-774.
    [93]Kajii M.,Tanaka S.,Suzuki Y.,Sato M.A thermally Conductive SiC-Polycrystalline Fiber and its Fiber-bonded Ceramic.Ceramic Engineering and Science Proceedings,2001,22(3):471-480.
    [94]Hinoki T.,Snead L L.,Lara-Curzio E.,Park J.,Kohyama A.Effect of Fiber Properties on Mechanical Properties of Crystalline Silicon Carbide Composites.Ceramic Engineering and Science Proceedings,2002,23(3):511-518.
    [95]Kumagawa K.,Yamaoka H.,Shibuya M.,Yamamura T.Development of Si-M-C-(O)Tyranno Fiber Containing a small amount of Sol-Gel-Derived Oxide.Ceramic Engineering and Science Proceedings,2001,22(3):399-406.
    [96]Kumagawa K.,Yamaoka H.,Shibuya M.,Yamamura T.Fabrication and Mechanical Properties of new Improved Si-M-C-(O)Tyranno Fiber.Ceramic Engineering and Science Proceedings,1998,19(3):65-72.
    [97]Wen Y,Hiroshi A.,Akira K.,Quanli H.,Hiroshi S.,Tetsuji N.Growing SiC Nanowires on Tyranno-SA SiC Fibers[J].J.Am.Ceram.Soc,2004,87(4):733-735.
    [98]Lipowitz J.,Barnard T.,Bujalski D.,Rabe J.,Zank G.Fine-Diameter Polycrystalline SiC Fibers[J].Comp.Sci.Technol.,1994,51:167-171.
    [99]Jones R E.,Petrak D.,Rabe J.,Szweda A.Sylramic SiC Fibers for CMC Reinforcement[J].J.Nuclear Mater.,2000,223:556-559.
    [100]Kroke E.,Li Y L.,Konetschny C,Lecomte E.Silazane Derived Ceramic and Related Materials[J].Mater.Sci.Eng.,2000,R26:97-199.
    [101]Baldus P.,Jansen M.,Sporn D.Ceramics Fibers for Martix Composites in High-Temperature Engine Applications[J].Science,1999,285(30):699-703.
    [102]Jansen M.,Baldus H.P.,Wagner O.Silicon boron nitride ceramic and precursor compounds,a process for their preparation and their use[P].United States Patent No.5312942.May 17,1994.
    [103]Baldus H.P.Process for the production of preceramic polyborosilazanes and ceramic materials derived thereform[P].United States Patent No.5312942.May 17,1994.
    [104]Baldus H.P.,passing G.,Scholz H.,Sporn D.,Hansen M.,Goring J.Properties of amorphous SiBNC-ceramic fibres[J].Key Eng.Mater.,1997,127-131:177-184.
    [105]Weisbarth R.,Jansen M.Investigations on reactive coatings applied to Siboramic(SiBN_3C)fibers[J].J.Mater.Chem.,2003,13:1926-1929.
    [106]Baldus H.P.,Perchenck N.,Thierauf A.,Herborn R.,Sporn D.Ceramic fibers in the system silicon-boron-nitrogen-carbon[P].United States Patent No.5968859.Otc.19,1999.
    [107]楚增勇,冯春祥,宋永才,李效东,肖加余,王应德.先驱体转化法连续SiC 纤维国内外研究与开发现况[J].无机材料学报,2002,17(2):193-201.
    [108]Tan Z.L.,Lu J.K.,Feng C.X.,Song Y.C,Lu Y.Studies on the reaction between titanium tetreabutoxide and ploycarbosilane[A].New materials and Processer for the Future:Processing of 1~(st)of Japan International SAMPE Symposium and exhibition,Nov.28-Dec.1,1989.901-905.
    [109]宋永才.高含钛量碳化硅纤维的研制[J].国防科技大学学报,1989,11(2):101-106
    [110]李爱平,宋永才.聚钛碳硅烷的结构与性能研究[J].国防科技大学学报,1991,13(1):25-30
    [111]宋永才,冯春祥,陆逸,谭自烈.聚钛碳硅烷的新合成方法及其研究[J].国防科技大学学报,1991,13(1):31-37
    [112]王亦菲,冯春祥,宋永才.电阻率可调的含钛碳化硅纤维的制备与性能研究[J].宇航材料工艺,1999,(1):28-31
    [113]王亦菲,赵鹏,宋永才.富碳的含钛碳化硅纤维先驱体的合成[J].宇航材料工艺,2001,(2):24-27.
    [114]楚增勇,冯春祥,宋永才.耐高温多晶碳化硅纤维的制备方法[P].中国发明专利,公开号:CN1410606A.2003年4月16日.
    [115]李效东,王应德,曹峰,王军,邹治春,张卫中,王海玉.含铝连续碳化硅纤维的制备方法[P].中国发明专利,公开号:CN1715466A.2006年1月4日.
    [116]Cao F.,Kim D.P.,Li X.D.,Feng C.X.,Song Y.C.Synthesis of polyaluminocarbosilane and reaction mechanism study[J].J.Appl.Polym.Sci.,2002,85:2787-2792.
    [117]Yu Yuxi,Li Xiaodong,Cao Feng.Synthesis and Characterization of Polyaluminocarbosilane as SiC Ceramic Precursor[J].Transactions of Nonferrous Metals Society of China,2004,14(4):641-644.
    [118]Yu Yuxi,Li Xiaodong,Cao Feng.A near-Stoichiometric SiC-based Fiber Obtained from a Polyaluminocarbosilane Precursor.[J]Advanced Composites Letters,2004,13(5):245-249.
    [119]Yu Yuxi,Li Xiaodong,Cao Feng,Wang Yingde,Zou Zhichun,Wang Jun,Zheng Chunman,Zhao Dafang.Preparation and Properties of Continuous Al-Containing Silicon Carbide Fibers[J].Transactions of Nonferrous Metals Society of China,2005,15(3).
    [120]Yu Yuxi,Li Xiaodong,Cao Feng.Synthesis and Characterization of Polyaluminocarbosilane[J].J.Mater.Sci.,2005,40(8):2093-2095.Yu Yuxi,Li Xiaodong,Cao Feng.Properties and Performances of Aluminum-Containing Silicon Carbide Fibers[J].J.Mater.Sci.Lett.,No.JMSL10550-04.
    [121]余煜玺,李效东,曹峰,邢欣,冯春祥.先驱体法制备含异质元素SiC陶瓷纤维的现状与进展[J].硅酸盐学报,2003,31(4):371-375.
    [122]余煜玺,李效东,曹峰,冯春祥.SiC陶瓷先驱体聚铝碳硅烷的合成及其陶瓷化[J].硅酸盐学报,2004,32(4):494-496.
    [123]余煜玺,李效东,曹峰.SiC(Al)纤维耐高温性能的研究[J].硅酸盐学报,2004,32(7):812-815.
    [124]余煜玺,李效东,曹峰.耐高温的SiC(Al)纤维,复合材料学报[J].2004,21(5):79-82.
    [125]余煜玺,李效东,曹峰,王应德,王军,王亦菲,冯春祥.先驱体法制备的含铝SiC纤维的组成和结构研究[J].无机材料学报,2006,21(1):94-102.
    [126]余煜玺,李效东,曹峰,郑春满,王应德,王军.先驱体转化法制备的连续SiC(OAl)纤维[J].稀有金属材料科学与工程,2006,35(4):665-668.
    [127]余煜玺,李效东,曹峰.SiC(Al)陶瓷纤维先驱体聚铝碳硅烷的合成与表征[J].高分子材料科学与工程,2004,20(2):85-88.
    [128]余煜玺,李效东,曹峰.SiC陶瓷纤维力学性能评价,材料科学与工程学报[J].2004,22(2):296-300.
    [129]余煜玺,李效东,曹峰.先驱体法制备SiC陶瓷纤维过程中聚碳硅烷纤维的交联方式[J].宇航材料工艺,2002,32(6):10-13.
    [130]余煜玺,李效东,曹峰.化学计量比SiC陶瓷纤维先驱体制备方法,高科技纤维与应用[J].2003,28(2):21-25.
    [131]余煜玺,李效东,曹峰,郑春满.连续含铝碳化硅纤维,第13届全国复合材料学术会议论文集(NCCM-13),复合材料-成本、环境与产业化[J].2004.10.10-14,成都.
    [132]赵大方,李效东,郑春满,胡天娇.采用聚硅碳硅烷与乙酰丙酮铝合成聚铝碳硅烷的机理[J].北京科技大学学报,2007,29(2):130-134.
    [133]郑春满,李效东,余煜玺,王浩,曹峰,赵大方.耐超高温SiC(Al)纤维先驱 体—聚铝碳硅烷纤维的研究[J].高分子学报,2006,(6):768-773.
    [134]郑春满,李效东,余煜玺,曹峰.先驱体转化法制备耐高位Si-Al-C-O纤维[J].材料工程,2004,(12):25-28.
    [135]郑春满,李效东,余煜玺,赵大方,曹峰.聚铝碳硅烷预氧化过程组成结构演变的研究[J].化学学报,2006,64(15):1581-1586.
    [136]Zheng C.M.,Li X.D.,Yu Y.X.,Zhao D.F.Conversion of polyaluminocarbosilane(PASC)to Si-Al-C-(O)fibers:evolutions and effect of oxygen[J].Trans.Nonferrous Met.Soc.China,2006,16:254-258.
    [137]Cao F.,Li X.D.,Peng P.,Feng C.X.,Wang J.,Kim D.P.Structural evolution and associated properties on conversion from Si-C-O-Al ceramic fibers to Si-C-Al fiber by Sintering[J].J.Mater.Chem.2002,12:606-610.
    [138]Cao F.,Li X.D.,Wang W.Y.,Wang J.,Song Y.C.,Kim D.P.Preparation of high-temperature resistant SiC fibre with low content of oxygen and free carbon [J].Advanced Composites Letters,2002,11(2):61-65.
    [139]卢玲,宋永才,冯春祥.含硼Si-N-C纤维的高温结构组成研究[J].高技术通讯,1997,(9):15-19.
    [140]Fan X.L.,Feng C.X.,Song Y.C.,Li X.D.Preparation of Si-C-O-N-B ceramic fibers from polycarbosilane[J].J.Mater.Sci.Lett.,1999,18:629-630.
    [141]Chu Z.Y.,Feng C.X.,Song Y.C.Development of a new Si-C-O-N-B ceramic fibers using a hybrid precursor of polycarbosilane and polycorosilazane[J].J.Mater.Sci.Lett.,2003,22:725-728.
    [142]曹峰.耐超高温碳化硅纤维新型先驱体研究及纤维制备[D].国防科学技术大学,博士论文,2002.
    [143]Laine R M.,Babonneau F.,Y.Blohowiak K.,Kermish R A.,Rahn J A.,Exharos G J.The Evolutionary Process during Pyrolytic Transformation of Poly(n-methylsilazane)from a Preceramic Polymer into an Amorphous Silicon Nitride/Carbon Composite[J].J.Am.Ceram.Soc.,1995,78:137-145.
    [144]Zhang C.,Babonneau F.,Bonhomme C.,Laine R M.,Soles C L.,Hristov H A.,Yee A F.Highly Porous Polyhedral Silsesquioxane Polymers:Synthesis and Characterization[J].J.Am.Chem.Soc.,1998,120:8380-8391.
    [145]Okamura K.,Seguchi T.Application of Radiation Curing in the Preparation of Polycarbosilane-Derived SiC Fibers[J].J.Inorg.Organomet.Polym.,1992, 2(1):171-179.
    [146]Okamura K.Ceramic Fibers from Polymer Precursors[J].Composites,1987,18(2):107-120.
    [147]Okamura K.,Sato M.High-Temperature Strength Improvement of Si-C-O Fiber by the Reduction of Oxygen Content[J].Proceedings of the 1th Japanese International SAMPE Symposium.1989:929-934.
    [148]苏波,吴小进.低分子聚硅氮烷/二乙烯基苯的交联及其对裂解产物的影响.材料研究学报[J].1994,8(2):163-171.
    [149]Hasegawa Y.New Curing Method for Polycarbosilane with Unsaturated Hydrocarbos and Application to Thermally Stable SiC Fiber[J].Comp.Sci.Technol.,1994,51:161-166.
    [150]Hasegawa Y.SiC fibre prepared from polycarbosilane cured without oxygen[J].J.Inorg.Organomet.Polym.,1992,2(1):161-169.
    [151]Ghosh A.,Jenkins M G.,White K W.,Kobayashi A S.,Bradt R C.Elevated-Temperature Fracture Resistance of a Sintered α-Silicon Carbide[J].J.Am.Ceram.Soc.,1989,72(2):242-247.
    [152]Suganuma K.,Sasaki G.,Fujita T.Mechanical Properties and Microstructures of Machinable Silicon Carbide[J].J.Mater.Sci.,1993,28:1175-1181.
    [153]Itatani K.,Takahashi F.,Aizawa M.,Okda I.,Davies I J.,Suemasu H.,Nozue A.Densification and Microstructual Developments during the Sintering of Aluminium Silicon Carbide[J].J.Mater.Sci.,2002,37:335-342.
    [154]Maeda M.,Nakamura K.,Yamada M.Oxidation Resistance Evaluation of Silicon Carbide Ceramics with Various Additives[J].J.Am.Ceram.Soc,1989,72(3):512-14.
    [155]Osendi M I.,Bender B A.,Lewis D.Microstrucrure and Mechanical Properties of Mullite-Silicon Carbide Composites[J].J.Am.Ceram.Soc.,1989,72(6):1049-54.
    [156]Zheng J.,Unal O.,Akinc M.Green State Joining of Silicon Carbide Using Polycarbosilane[J].J.Am.Ceram.Soc,2000,83(7):1687-92.
    [157]Ju C P.,Wang C K.,Cheng H Y.,Chen J H.Process and Wear Behavior of Monolithic SiC and Short Carbon fiber-SiC Matrix Composite[J].J.Am.Ceram.Soc.,2000,35:4477-4484.
    [158]Hu Y I.Preparation of Silicon Oxycarbide Glass Fibers from Organical Modified Silicates[J].J.Am.Ceram.Soc,2000,35:3155-3159.
    [159]Goh K L.,Mathias K L.,Aspden R M.,Hukins D W L.Finite Element Analysis of the Effect of Fiber Shape on Stresses in an Elastic Fiber Surrounded by a Plastic Matrix[J].J.Am.Ceram.Soc,2000,35:2493-2497.
    [160]Toreki W.,Greed N.M.,Batich C.D.Silicon-Containing vinyl polymer as precursors to ceramic materials[J].Polym.Prepr.,1990,31:611-612
    [161]Toreki W.,Batich C.D.,Greed N.M.Polymer-derived silicon carbide fibers with low oxygen content and improved thermomechanical stability[J].Compos.Sci.Technol,1994,51:145-159
    [162]Idesaki A.,Narisawa K.,Okamura K.,Sugimoto M.,Morita Y.,Seguchi T.,Itoh M.Fine silicon carbide fibers synthesized from polycarbosilane-polyvinylsilane polymer blend using electron beam curing[J].J.Mater.Sci.,2001,36:357-362.
    [163]Narisawa K.,Kitano S.,Okamura K.Synthesis of silicon carbide fiber from blended prcursor of organosilicon polymer[J].J.Amer.Ceram.Sco.,1995,78:3405-3408.
    [164]Idesaki A.,Narisawa M.,Okamura K.,Sugimoto M.,Tanaka S.,Morita Y,Seguchi T.& Itoh M.,Fine SiC fiber synthesized from organosilicon polymers:relationship between spinning temperature and melt viscosity of precursor polymers[J].J.Mater.Sci.,2001,36,5565-5569.
    [1]Yajima,S,Hayashi,J.& Omori,M.,Continuous silicon carbide fiber of high tensile strength[J].Chem.Lett,1975,9:931-934.
    [2]Yajima,S.,Hayashi,J.,Omori,M.& Okamura,K.,Development of a silicon carbide fiber with high tensile strength[J].Nature,1976,261:683-685.
    [3]Yajima,S.,Okamura,K.,Hayashi,J.& Omori,M.,Synthesis of continuous silicon carbide fibers with high tensile strength[J].J.Am.Ceram.Soc.,1976,59:324-3277.
    [4]Birot M.,Pillot J P.,Dunogues J.Comprehensive Chemistry of Polycarbosilane,Polysilazane,and Polycarbosilazane as Precursors of Ceramic[J].Chem.Rev,1995,95(5):1443-1477.
    [5]宋永才,商瑶,冯春祥,陆逸.聚二甲基硅烷的热分解研究[J].高分子学报,1995,6:753-757
    [6]Whitmarsh C K,Interrante L V.Synthesis and structure of a highly branched polycarbosilane derived from(chloromethyl)trichlorosilane[J].Organometallics,1991,10:1336-1344.
    [7]国防科技大学连续碳化硅纤维研究课题组,连续碳化硅纤维研究—技术报告系列,2001.2.
    [8]ASTM D 3379-75:Standard Test Method for Tensile Strength and Young's Modulus for High-Modulus Single-Filament Materials.
    [1]Yajima S.,Hasegama Y,Hayashi J.,Iimura M.Synthesis of Continuous Silicon Carbide Fiber with high Tensile Strength and high Young's Modulus,Part 1 Synthesis of Polycarbosilane as Precursor[J].J.Mater.Sci.,1978,13:2569-2576.
    [2]Hasegawa Y,Iimura M.,Yajima S.Synthesis of Continuous Silicon Carbide Fiber,Part 2 Conversion of Polycarbosilane Fiber into Silicon Carbide Fibers[J].J.Mater.Sci.,1980,15:720-728.
    [3]Hasegawa Y.Synthesis of Continuous Silicon Carbide Fiber,Part 3 Pyrolysis Process of Polycarbosilane and Structure of the Products[J].J.Mater.Sci.,1983,18:3633-3648.
    [4]Hasegawa Y Synthesis of Continuous Silicon Carbide fiber,Part 4 The Structure of Polycarbosilane as the Precursor[J].J.Mater.Sci.,1986,21:321-328.
    [5]Ichikawa H.,Machibo F.,Mitsuno S.,Ishikawa T.Synthesis of Continuous Silicon Carbide Fiber,Part 5 Factors Affecting Stability of Polycarbosilane to Oxidation[J].J.Mater.Sci.,1986,21:4352-4358
    [6]Hasegawa Y Synthesis of Continuous Silicon Carbide Fiber,Part 6 Pyrolysis Process of Cured Polycarbosilane Fiber and Structure of SiC Fiber[J].J.Mater.Sci.,1989,24:1177-1190.
    [7]Suwardie H.,Kalyon,D.M.& Kovenklioglu,S.,Thermal behavior and curing kinetics of poly(carbosilane)[J].J.Appl.Polym.Sci.,1991,42,1087-1095.
    [8]Narisawa M.,Shimoda,M.,Okamura,K.,Sugimoto,M.& Seguchi,T.,Reaction mechanism of the pyrolysis of polycarbosilane and polycarbosilazane as ceramic precursors[J].Bull.Chem.Soc.Jpn.,1995,68,1098-1104.
    [9]Silverstein R.M.,Bassler G C.& Morrill T.C.Spectrometric identification of organic compounds[B],Wiley,New York,1991.
    [10]Narisawa M.,Kitano A.,Idesaki K.,Thermal oxidation crosslinking in the blended precursors of organosilicon polymers containing polyvinylsilane with polycarbosilane[J].J.Mater.Sci.1998,33:2663-2666
    [11]Whitmarsh C K,Interrante L V.Synthesis and structure of a highly branched polycarbosilane derived from (chloromethyl)trichlorosilane[J].Organometallics, 1991,10:1336-1344.
    [12]Idesaki A.,Narisawa M.,Okamura K.,Sugimoto M.,Tanaka S.,Morita Y.,Seguchi T.& Itoh M.,Fine SiC fiber synthesized from organosilicon polymers:relationship between spinning temperature and melt viscosity of precursor polymers[J].J.Mater.Sci.,2001,36,5565-5569.
    [1]Russell J.D.High-Performance Synthesis Fibers for Composites.Publication NMAB-458,Washington D.C.:National Academy Press,1992:1-129.
    [2]高绪珊,吴大诚.纤维应用物理学[D].北京:中国纺织出版社,2001.
    [3]齐锦宁.聚碳硅烷流变性能的研究[D].长沙:国防科技大学,1988.
    [4]Ichikawa H.,Teranishi H.,Ishikawa T.Effect of curing condition on mechanical properties of SiC fiber(Nicalon)[J].J.Mater.Sci.Lett.,1987,6:420-422.
    [5]汪萍,王军.聚碳硅烷纤维不熔化反应程度的表征[J].光谱实验室,2004,21(6):1403-1405.
    [6]李晓霞,宋永才,冯春祥.耐高温、抗氧化碳化硅纤维的制备[J].材料导报,1997,4:67-69.
    [7]Yajima S.,Hasegawa Y.,Okamura K.Development of a SiC fiber with high tensile strength[J].Nature,1976,261:683-685
    [8]Yajima S.,Hasegawa Y.,Okamura K.Development of high tensile strength silicon carbide fiber using an organosilicon polymer precursor[J].Nature,1978,273:525-527.
    [9]Suwardie,H.,Kalyon,D.M.& Kovenklioglu,S.Thermal behavior and curing kinetics of poly(carbosilane)[J].J.Appl.Polym.Sci.,1991,42,1087-1095.
    [10]Narisawa,M.,Shimoda,M.,Okamura,K.,Sugimoto,M.& Seguchi,T.,Reaction mechanism of the pyrolysis of polycarbosilane and polycarbosilazane as ceramic precursors[J].Bull.Chem.Soc.Jpn.,1995,68,1098-1104.
    [11]Hasegawa,Y.& Okamura,K.,Synthesis of continuous silicon carbide fiber.Part 4.The structure of polycarbosilane as the precursor[J].J.Mater.Sci.,1986,21,321-328.
    [12]Silverstein R.M.,Bassler G.C.& Morrill T.C.,Spectrometric identification of organic compounds[J].Wiley,New York,1991.
    [13]Ly H.Q.,Taylor R.,Day R.J.,Heatley F.Conversion of polycarbosilane(PCS)to SiC-based ceramic Part 1.Characterisation of PCS and curing products[J].2001,36:4037-4043.
    [14]Yajima S.,Hasegama Y.,Hayashi J.,Iimura M.Synthesis of Continuous Silicon Carbide Fiber with high Tensile Strength and high Young's Modulus,Part 1Synthesis of Polycarbosilane as Precursor[J].J.Mater.Sci.,1978,13: 2569-2576.
    [15]Hasegawa Y.,Iimura M.,Yajima S.Synthesis of Continuous Silicon Carbide Fiber,Part 2 Conversion of Polycarbosilane Fiber into Silicon Carbide Fibers[J].J.Mater.Sci.,1980,15:720-728.
    [16]Hasegawa Y.Synthesis of Continuous Silicon Carbide Fiber,Part 3 Pyrolysis Process of Polycarbosilane and Structure of the Products[J].J.Mater.Sci.,1983,18:3633-3648.
    [17]Hasegawa Y.Synthesis of Continuous Silicon Carbide fiber,Part 4 The Structure of Polycarbosilane as the Precursor[J].J.Mater.Sci.,1986,21:321-328.
    [18]Ichikawa H.,Machibo F.,Mitsuno S.,Ishikawa T.Synthesis of Continuous Silicon Carbide Fiber,Part 5 Factors Affecting Stability of Polycarbosilane to Oxidation[J].J.Mater.Sci.,1986,21:4352-4358
    [19]Hasegawa Y.Synthesis of Continuous Silicon Carbide Fiber,Part 6 Pyrolysis Process of Cured Polycarbosilane Fiber and Structure of SiC Fiber[J].J.Mater.Sci.,1989,24:1177-1190.
    [20]李晓霞,冯春祥,宋永才.聚碳硅烷纤维的不熔化处理研究(Ⅲ)—不熔化机理的探讨[J].宇航材料工艺,2000,2:33-36.
    [21]李晓霞,冯春祥,宋永才.聚碳硅烷纤维的不熔化处理研究(Ⅱ)—放大工艺研究.宇航材料工艺,1998,5:25-28.
    [22]董炎明.高分子材料实用剖析技术[D].北京:中国石化出版社,2001.
    [23]吴刚.材料结构表征及应用[D].北京:化学工业出版社,2002.
    [24]卞慕唐.质谱法概要[D].北京:化学工业出版社,1981.
    [1]Yajima S.,Hasegama Y,Hayashi J.,Iimura M.Synthesis of Continuous Silicon Carbide Fiber with high Tensile Strength and high Young's Modulus,Part 1 Synthesis of Polycarbosilane as Precursor[J].J.Mater.Sci.,1978,13:2569-2576.
    [2]Hasegawa Y,Iimura M.,Yajima S.Synthesis of Continuous Silicon Carbide Fiber,Part 2 Conversion of Polycarbosilane Fiber into Silicon Carbide Fibers[J].J.Mater.Sci,1980,15:720-728.
    [3]Hasegawa Y Synthesis of Continuous Silicon Carbide Fiber,Part 3 Pyrolysis Process of Polycarbosilane and Structure of the Products[J],J.Mater.Sci,1983,18:3633-3648.
    [4]Hasegawa Y Synthesis of Continuous Silicon Carbide fiber,Part 4 The Structure of Polycarbosilane as the Precursor[J].J.Mater.Sci,1986,21:321-328.
    [5]Ichikawa H,Machibo F,Mitsuno S,Ishikawa T.Synthesis of Continuous Silicon Carbide Fiber,Part 5 Factors Affecting Stability of Polycarbosilane to Oxidation[J].J.Mater.Sci,1986,21:4352-4358
    [6]Hasegawa Y Synthesis of Continuous Silicon Carbide Fiber,Part 6 Pyrolysis Process of Cured Polycarbosilane Fiber and Structure of SiC Fiber[J].J.Mater.Sci,1989,24:1177-1190.
    [7]Bouillon E,Mocaer D,Villeneuve J.F,Pailler R.Composition-microstucture-property relationships in ceramic monofilaments resulting from the pyrolysis a polycarbosilane precursor at 800 ℃ to 1400℃[J].J.Mater.Sci,1991,26:1517-1530.
    [8]Soraru G D,Babonneau F,Mackenzie J.D.Structural Evolutions from polycarbosilaine to SiC ceramic[J].J.Mater.Sci,1990,25:3886-3893.
    [9]Ly H.Q,Taylor R,Day R.J,Heatley F.Conversion of polycarbosilane (PCS) to SiC-based ceramic Part II.pyrolysis and characterization[J].2001,36:4045-4057.
    [10]Ichikawa,H,Teranishi,H.& Ishikawa,T,Effect of curing conditions on mechanical properties of silicon carbide fiber (Nicalon).J.Mater.Sci.Lett,1987,6,420-422.
    [11]Okamura,K.,Ceramic fibers from polymer precursors[J].Composites,1987,18,107-120.
    [12]Cooke,T.F.,Inorganic fibers-a literature review[J].J.Am.Ceram.Soc.,1991,74,2959-2578.
    [13]Laine,R.M.,& Babonneau,F.,Preceramic polymer routes to silicon carbide[J].Chem.Mater.,1993,5,260-279.
    [14]Shimoo T.,Sugimoto M.& Okamura K.,Effect of Crystallinity on Pyrolytic Rate of Silicon Carbide Fiber.J.Ceram.Soc.Jpn.,1990,98,1324-1329.
    [15]Bouillon E.,Pailler R.,Naslain R.New Poly(carbosilane)Models.5.Pyrolysis of a Series of Functional Poly(carbosilanes)[J].Chem.Mater.,1991,3(2):356-367.
    [16]楚增勇.先驱体法碳化硅纤维缺陷形成机理与性能提高研究.博士学位论文.长沙:国防科技大学,2003.
    [17]Weibull W.A Statistical Distribution Function of Wide Applicability[J].J.Appl.Mech.,1951:293.
    [18]Wu H F.,Netravali A N.Weibull Analysis of Strength Length Relationships in Single Nicalon SiC Fibers[J].J.Mater.Sci.,1992,27:3318-3324.
    [19]Bergman B.On the Estimation of the Weibull Modulus[J].J.Mater.Sci.Lett.,1984,3:689-692.
    [20]贺福.碳纤维的强度理论[J].碳素,1985,4:1-9.
    [21]Frank W Z.,Chen X.,Christian H W.Tensile Strength of SiC Fibre[J].J.Am.Ceram.Soc,1995,78(7):1965-1968.
    [22]李晓霞,冯春祥,宋永才.聚碳硅烷纤维的不熔化处理研究(Ⅲ)—不熔化机理的探讨[J].宇航材料工艺,2000,2:33-36.
    [23]Narisawa,M.,Kitano,S.,Okamura,K.& Itoh,M.,Synthesis of silicon carbide fiber from blended precursor of organosilicon polymers[J].J.Am.Ceram.Soc,1995,78,3405-3408.
    [24]Johnson,S.M.,Brittain,R.D.,Lamoreaux,R.H.& Rowcliffe,D.J.,Degradation mechanisms of silicon carbide fibers[J].J.Am.Ceram.Soc,1988,71,132-135.
    [25]Bouillon,E.,Langlais,F.,Pailler,R.,Naslain,R.,Cruege,F.,Huong,P.V.,Sarthou,J.C,Delpuech,A.& Laffon,C,Conversion mechanisms of a polycarbosilane precursor into a silicon-carbide-based ceramic material[J]1.J. Mater.Sci.,1991,26,1333-1345.
    [26]Shimoo,T.,Chen,H.& Okamura,K.,Pyrolysis of Si-C-O fibers(Nicalon)at temperatures from 1473 K to 1673 K[J].J.Ceram.Soc.Jpn.,1992,100,48-53.
    [27]Vahlas,C.,Rocabois,P.& Bernard,C.,Thermal degradation mechanisms of Nicalon fiber:a thermodynamic simulation[J].J.Mater.Sci.,1994,29,5839-5846.
    [28]Vahlas,C.& Laanani,F.,Thermodynamic study of the thermal degradation of SiC-based fibers:influence of SiC grain size[J].J.Mater.Sci.Lett.,1995,14,1558-1561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700