用户名: 密码: 验证码:
活血药、益气活血药对肿瘤生长转移过程中调节性T细胞介导的免疫逃逸影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活血类中药在肿瘤治疗中的作用一直存在争议,临床经验表明活血药可通过合理的配伍增强其改善荷瘤机体高凝状态的作用,同时逆转(或减弱)其可能的促肿瘤转移的趋势。导师的既往课题研究观察了不同类型活血药和配伍不同剂量的益气药黄芪后对肿瘤转移的影响,结果显示:高剂量的益气药配伍活血药不但可以提高单纯活血药对小鼠Lewis肺癌的肿瘤抑制率,并且具有抑制某些单纯活血药促进肿瘤转移的趋势。对其作用机制研究显示:益气活血药与单纯的活血药比较可以降低CD4~+CD25~+调节性T细胞表达,但其分子机制有待进一步深入探讨。
     本研究是在导师前期工作的基础上,以国家自然科学基金课题为依托开展的。研究对原发性非小细胞肺癌患者外周血CD4~+CD25~+Foxp3~+调节性T细胞与健康志愿者的差异、与肺癌主要临床特征及主要单证的关系进行了小样本的研究;从丹参、苏木、水蛭三种活血药及其与益气药黄芪配伍后的三种益气活血药中选择出一组对小鼠Lewis肺癌肺转移干预作用差异最大的药物,即苏木和苏木+黄芪作为活血药与益气活血药的代表进行更深入观察;动物实验研究中主要通过免疫磁珠细胞分选、流式细胞术、实时定量PCR、荧光显微镜图像分析、ELISA、CBA flexset等技术,从Lewis肺癌荷瘤小鼠肿瘤组织和T淋巴细胞两方面观察苏木、苏木+黄芪对CD4~+CD25~+调节性T细胞、相关活化和调控分子、效应因子、Jagged1-Notch信号转导通路中主要基因表达及树突状细胞表面分子的干预作用;体外实验研究中主要通过MTT、transwell小室法检测苏木、苏木+黄芪含药血清对PG细胞增殖、运动、侵袭能力的干预作用,并运用共培养技术,建立人外周血DC、外周血CD4~+细胞、PG细胞培养上清混合培养体系,观察苏木、苏木+黄芪含药血清对T细胞分化的影响。研究从影响肿瘤免疫逃逸角度探讨活血药、益气活血药对肿瘤生长转移干预作用差异的分子机制及关键环节,取得了具有一定价值的研究结果:
     1主要研究结论
     1.1原发性非小细胞肺癌患者外周血CD4~+CD25~+Foxp3~+调节性T细胞检测及临床意义
     通过对30例原发性非小细胞肺癌患者和12例健康志愿者外周血CD4~+CD25~+Foxp3~+Treg流式细胞仪检测和对肺癌患者的临床资料分析证实,肺癌患者外周血CD4~+CD25~+Foxp3~+细胞百分比高于健康志愿者,与文献报道相一致;肺癌患者CD4~+CD25~+Foxp3~+细胞百分比升高与病期进展和肿瘤负荷增加有关,在不同性别、年龄、病理、KPS及肿瘤标志物正常与否之间比较无差异;肺癌患者CD4~+CD25~+Foxp3~+细胞百分比升高与患者出现主要单证中的气虚证和血瘀证关系最为密切。这一研究结果在CD4~+CD25~+Foxp3~+Treg与肺癌关系方面为动物和体外实验研究提供了临床数据依据,并对人外周血CD4~+CD25~+Foxp3~+细胞百分比流式检测作为一项新的免疫功能监测指标的临床意义和方法可行性作了初步探讨。
     1.2不同类型活血药、益气活血药对小鼠Lewis肺癌生长转移的干预作用观察
     选取肿瘤科常用的和血、活血、破血代表药丹参、苏木、水蛭及其与益气药代表黄芪配伍的组方用于抑瘤实验,结果表明:①丹参有促进Lewis肺癌生长及转移的趋势,丹参与黄芪配伍干预后不能逆转这种趋势;苏木、苏木+黄芪、水蛭、水蛭+黄芪在抑制小鼠Lewis肺癌生长转移方面有良好的疗效,提示不同类型活血药、益气活血药对肿瘤生长转移的干预作用不尽相同;②丹参、苏木、水蛭三种不同类型活血药配伍益气药后在增强活血药抑瘤、抗转移作用方面有共同的趋势。通过以上实验结果,选取对小鼠Lewis肺癌肺转移干预作用差异最大的一组即苏木和苏木+黄芪作为活血药和益气活血药的代表进行后续研究。
     1.3活血药、益气活血药对荷瘤小鼠脾CD4~+CD25~+Foxp3~+Treg表达干预作用动态观察
     通过对苏木、苏木+黄芪作用后Lewis肺癌荷瘤小鼠体重、瘤重、小鼠脾CD4~+CD25~+Foxp3~+细胞表达的动态观察及小鼠肺转移病理观察、生存期的分析,结果显示:①苏木、苏木+黄芪的抑瘤作用随荷瘤天数的增加总体呈降低趋势,提示中药在肿瘤早期,瘤负荷较小时抑瘤作用更明显;②苏木在肿瘤早期抑瘤作用较强,但苏木+黄芪在提高肺转移抑制率、延长生存期方面作用均优于苏木;③荷瘤对照组小鼠脾CD4~+CD25~+Foxp3~+细胞表达随荷瘤天数的增加呈上升趋势;④苏木、苏木+黄芪对荷瘤小鼠脾CD4~+CD25~+Foxp3~+细胞表达的变化趋势有不同影响,20d苏木+黄芪组小鼠脾CD4~+CD25~+Foxp3~+细胞百分比显著低于荷瘤对照组和苏木组。以上结果显示,中药可通过调控荷瘤小鼠脾CD4~+CD25~+Treg表达改善其体内存在的免疫耐受状态,益气活血药苏木+黄芪作用优于其单纯活血药成分,这可能是益气活血中药抑制小鼠Lewis肺癌生长转移、延长生存的作用靶点之一。
     1.4活血药、益气活血药对荷瘤小鼠脾CD4~+细胞培养上清中细胞因子及Jagged1-Notch1信号转导通路主要基因的影响
     通过对苏木、苏木+黄芪作用后Lewis肺癌荷瘤小鼠脾CD4~+细胞培养上清中细胞因子及Jagged1-Notch1信号转导通路主要基因检测,发现:①苏木+黄芪组小鼠脾CD4~+细胞培养上清IL-2、IFN-γ水平显著高于荷瘤对照组,而TGF-β1水平低于荷瘤对照组;②苏木、苏木+黄芪对荷瘤小鼠脾CD4~+细胞Notch1、Jagged1mRNA表达无明显干预作用。说明中药可通过调控荷瘤小鼠体内细胞因子水平改善体内存在的免疫耐受状态,苏木+黄芪组优于苏木组,而二种中药对Jagged1-Notch1信号转导通路的影响有待进一步研究。
     1.5活血药、益气活血药对荷瘤小鼠免疫逃逸相关基因表达的影响
     通过对苏木、苏木+黄芪作用后Lewis肺癌荷瘤小鼠脾CD4~+CD25~+细胞和小鼠肿瘤组织Foxp3、CTLA-4基因的表达的同步检测,发现:苏木+黄芪能减低脾CD4~+CD25~+分选后细胞Foxp3及荷瘤小鼠瘤组织CTLA-4、Foxp3 mRNA表达,作用优于苏木。说明苏木+黄芪可通过降低CTLA-4、Foxp3 mRNA的表达而减低CD4~+CD25~+Treg的活性,并且在淋巴组织和肿瘤微环境都表现出作用,为中药的全身调节特点提供了佐证。
     1.6活血药、益气活血药对荷瘤小鼠脾树突状细胞表型的影响
     通过对正常小鼠和苏木、苏木+黄芪作用后Lewis肺癌荷瘤小鼠脾树突状细胞表型CD11c、CD80、CD86百分比检测发现:①荷瘤机体存在明显的成熟DC数量减少;②苏木+黄芪干预能够显著增加荷瘤小鼠脾成熟DC表型,作用优于苏木。说明苏木+黄芪具有改善荷瘤机体中成熟DC数量减少的作用,同时为体外实验中研究DC成熟程度与T细胞分化的关系提供动物实验的基础。
     1.7活血药、益气活血药含药血清对PG细胞增殖及运动、侵袭能力干预作用观察
     为体外实验研究需要,制备了苏木、苏木+黄芪大鼠含药血清,并检测其对PG细胞增殖及运动、侵袭能力的干预作用,结果显示:①苏木、苏木+黄芪含药血清对PG细胞增殖无明显抑制作用;②苏木+黄芪含药血清对PG细胞趋化运动、侵袭能力的抑制作用显著高于对照大鼠血清和苏木含药血清。说明中药能够在多个靶点、从多种途径发挥抗肿瘤生长转移作用,对肿瘤细胞的直接抑制杀灭作用只是其中的一个方面。
     1.8 PG细胞培养上清对体外培养树突状细胞成熟的影响
     本实验从人外周血分离单个核细胞,并采用不同细胞因子体外诱导其分化为不同成熟状态的树突状细胞,以PG细胞培养上清加入DC培养体系,在体外模拟体内肿瘤微环境,并检测PG细胞培养上清干预组和无干预组中DC表型CD11c、CD86百分比,结果证实:PG细胞培养上清干预能显著抑制体外培养DC的成熟。本实验为后续体外实验提供肿瘤细胞培养上清干预抑制体外培养DC成熟的前提结论和方法学铺垫。
     1.9 PG细胞培养上清对DC、T细胞混合培养体系的影响及活血药、益气活血药对其干预作用
     本实验建立了人外周血DC、外周血CD4~+细胞、PG细胞培养上清混合培养体系,并观察混合培养体系中DC、T细胞分布,检测混合培养体系中CD4~+CD25~+Foxp3~+细胞百分比,细胞培养上清IL-12水平,细胞Jagged1、Notch1 mRNA表达,结果显示:①PG细胞培养上清干预后人外周血DC、外周血CD4~+细胞混合培养体系与无PG干预组相比具有细胞CD4~+CD25~+Foxp3~+表达显著增高、细胞Jagged1、Notch1 mRNA表达明显增高、细胞培养上清IL-12水平明显下降的特点;②苏木、苏木+黄芪含药血清对无PG细胞培养上清干预的人外周血DC、外周血CD4~+细胞混合培养体系中CD4~+T细胞向Treg的分化无干预作用,对细胞培养上清IL-12水平也无影响;③苏木+黄芪含药血清在体外人外周血DC、外周血CD4~+细胞混合培养体系中有抑制CD4~+CD25~-T细胞向CD4~+CD25~+ Treg转化的作用;④苏木+黄芪含药血清在体外有改善肿瘤细胞培养上清干预体系中IL-12水平降低作用;⑤苏木、苏木+黄芪含药血清对人外周血DC、外周血CD4~+细胞混合培养体系中细胞Jagged1、Notch1 mRNA表达无明显干预作用。说明PG细胞培养上清干预体系中Treg的产生与肿瘤细胞分泌大量免疫抑制性细胞因子、DC成熟状态和肿瘤抗原刺激量有关,是多方因素共同作用的结果,而苏木+黄芪含药血清对Treg产生的抑制及对T细胞活化的促进可能与上述因素有关。
     本研究分别以非小细胞肺癌患者、Lewis肺癌荷瘤小鼠、高转移性人巨细胞肺癌细胞PG干预的DC、T细胞共培养体系为研究对象,从临床实验、动物实验、体外实验三个不同层次探讨了CD4~+CD25~+Foxp3~+Treg与肺癌生长转移关系,从肿瘤组织和T淋巴细胞两方面观察苏木、苏木+黄芪对CD4~+CD25~+Treg、相关活化和调控分子、效应因子、Jagged1-Notch信号传导通路中主要基因表达及树突状细胞表面分子的干预作用,从整体-细胞-分子基因水平较系统地探讨了活血药、益气活血药对肿瘤生长转移干预作用差异的分子机制及关键环节,为临床更加合理有效地应用活血药和益气活血药提供了科学依据。
     2主要创新点
     本研究的创新之处主要有以下几点:
     2.1本研究分别以非小细胞肺癌患者、Lewis肺癌荷瘤小鼠、高转移性人巨细胞肺癌细胞PG干预的DC、T细胞共培养体系为研究对象,从整体-细胞-分子基因水平探讨了活血药苏木、益气活血药苏木+黄芪对肺癌生长转移过程中CD4~+CD25~+Treg介导的肿瘤免疫逃逸影响差异的分子机制和关键作用环节,为肿瘤临床治疗中更加合理有效地应用活血药、益气活血药提供了科学依据。
     2.2在既往研究基础上,通过动态观察Lewis肺癌荷瘤小鼠在肿瘤自然病程中不同时间点脾CD4~+CD25~+Foxp3~+细胞表达,并分析其与小鼠体重、生存期等的关系以及活血药苏木、益气活血药苏木+黄芪的影响作用,提出干预CD4~+CD25~+Treg及相关活化和调控分子、效应因子表达是活血药、益气活血药在肿瘤生长转移过程中作用差异产生的重要机制,首次结合肿瘤免疫编辑学说中免疫监视和免疫逃逸理论,从影响T淋巴细胞和肿瘤微环境两方面评价不同中医治法各自特点和治疗结果差异的原因。
     2.3本研究从小样本临床研究切入,证实肺癌患者CD4~+CD25~+Treg检测的重要临床意义;继而通过动物抑瘤实验从三组不同活血药、益气活血药中筛选出一组对Lewis肺癌转移影响差异最大的药物苏木、苏木+黄芪作为代表进行深入研究;然后采用细胞分选、流式细胞术、实时定量PCR、荧光显微镜图像分析、ELISA、CBAflexset等技术从动物实验角度研究活血药、益气活血药对CD4~+CD25~+Treg及相关活化和调控分子、效应因子表达量的影响;最后采用MTT、transwell小室、细胞共培养等技术从体外实验角度观察活血药、益气活血药对Treg的产生的干预作用。围绕CD4~+CD25~+Treg作用机制的主线,通过不同层次研究,较为全面地观察了中药对肺癌生长转移过程中免疫逃逸相关分子表达和功能的干预作用。
     2.4临床实验研究中将免疫学新指标与中医基础理论相结合,首次探讨了原发性非小细胞肺癌患者外周血CD4~+CD25~+Foxp3~+Treg表达与肺癌中医证候的关系。
The role that blood activating drugs play in tumor therapy is always in dispute. The clinical experience showed that we can enhance the effect of blood activating drugs on improving the high blood coagulation state of tumor-bearing body and reverse(or decrease) the possible trend of promoting tumor metastasis by reasonable compatibility.The earlier studies of my mentor have observed influence of different types of blood activating drugs compatibility with qi-deficiency drug(Radix Astragali) in different doses on tumor metastasis.The results showed that high dosage qi-deficiency drug compatibility with blood activating drugs could improve the tumor inhibiting rate and reverse the trend of promoting tumor metastasis of simple blood activating drugs.The results of mechanism study showed that the supplementing qi and activating blood circulation drugs could down-regulate the expression of CD4~+CD25~+ Treg.The study needs further research.
     The study was carried out on the base of the earlier studies,and was supported by NSFC.We carried out a small sample clinical research on the difference of the expression of CD4~+CD25~+Foxp3~+ Treg in peripheral blood between patients with NSCLC and healthy volunteers and its relationship with main features and TCM syndrome of lung cancer.After the difference comparison studying on the inhibiting rate of lung metastasis in Lewis lung cancer model in mice,we chose a pair of representative drugs(Caesalpinina sappan(SM) and Caesalpinina sappan+Radix Astragali(SMHQ)) from three types of blood activating drugs(Salvia Miltiorrhiza Bunge,Caesalpinina sappan,Hirudo) and three types of supplementing qi and activating blood circulation drugs(blood activating drugs compatibility with Radix Astragali).In animal experiments we observed the expressions of CD4~+CD25~+Treg and its related activated molecules,regulatory molecules,effector molecules,main genes in Jagged1-Notch signal transduction pathway and cell surface molecules of DC intervened by Caesalpinina sappan(SM) and Caesalpinina sappan+Radix Astragali(SMHQ),using the main techniques of MACS,FCM,real-time PCR, fluorescence microscope,ELISA and CBA flexset.In vitro experiments we observed the ability of cell proliferation,movement,invasion in PG intervened by Caesalpinina sappan(SM) and Caesalpinina sappan+Radix Astragali(SMHQ) medicated serum, using the main techniques of MTT and transwell.We also established the mixed culture system of DCs,CD4~+T cells and culture supernatant of PG to study the T cell differentiation intervened by Caesalpinina sappan(SM) and Caesalpinina sappan+ Radix Astragali(SMHQ) medicated serum.The study explored the molecular mechanisms and key links of the different effects of blood activating drugs and supplementing qi and activating blood circulation drugs on tumor growth and metastasis from the angle of tumor immune escape.We have obtained high academic valuable data.
     1 The primary research conclusions
     1.1 Detection of CD4~+CD25~+Foxp3~+ regulatory T cells in peripheral blood of patients with NSCLC and its clinical significance
     By detecting CD4~+CD25~+Foxp3~+ regulatory T cells in peripheral blood of 30 patients with NSCLC and 12 healthy volunteers and analyzing their clinical information,we found that:The population of CD4~+CD25~+Foxp3~+ Treg in peripheral blood from patients with NSCLC was higher in comparison with that in healthy volunteers,which conformed the documental reports.The proportion of CD4~+CD25~+Foxp3~+ Treg in the patients with stageⅣlung cancer was higher than those in stageⅠ-Ⅲ.The proportion of CD4~+CD25~+Foxp3~+ Treg in the patients with tumor was higher than those in the patients without tumor.Treg expression was not obviously correlated with different genders,ages,pathological types,KPS and level of tumor markers.The increase of the proportion of CD4~+CD25~+Foxp3~+ Treg in the patients most closely correlated with Qi deficiency syndrome and blood stasis syndrome.These results had provided data basis for animal and vitro experiments on the relationship between CD4~+CD25~+Foxp3~+Treg and lung cancer.
     1.2 The effects on Lewis lung cancer growth and metastasis intervened by different types of blood activating drugs and supplementing qi and activating blood circulation drugs
     By studying on the inhibiting rate of lung metastasis in Lewis lung cancer model in mice,we observed the intervention effect of three types of blood activating drugs (Salvia Miltiorrhiza Bunge,Caesalpinina sappan,Hirudo) and three types of supplementing qi and activating blood circulation drugs(blood activating drugs compatibility with Radix Astragali).We found that:①Salvia Miltiorrhiza Bunge had showed the trend of promoting tumor metastasis while Salvia Miltiorrhiza Bunge+Radix Astragali could not reverse it.Caesalpinina sappan,Caesalpinina sappan+Radix Astragali,Hirudo,Hirudo+Radix Astragali had showed good curative effect on decrease tumor metastasis,which suggested that different types of blood activating drugs and supplementing qi and activating blood circulation drugs had different effects.②Supplementing qi and activating blood circulation drugs had better effect on decrease tumor growth and metastasis than blood activating drugs.So we chose a pair of representative drugs(Caesalpinina sappan(SM) and Caesalpinina sappan+Radix Astragali(SMHQ)) for further research.
     1.3 Continuous observation on the expression of CD4~+CD25~+Foxp3~+ regulatory T cells in spleen of tumor-bearing mice intervened by blood activating drugs and supplementing qi and activating blood circulation drugs
     By Continuous observing on the body weight,tumor weight,expression of CD4~+CD25~+Foxp3~+ regulatory T cells in spleen of tumor-beating mice intervened by Caesalpinina sappan(SM) and Caesalpinina sappan+Radix Astragali(SMHQ) and their survival time,we found that:①Traditional Chinese medicine had showed a more obvious tumor inhibiting effect in the early stage.②Caesalpinina sappan(SM) had showed a better tumor inhibiting effect in the early stage,while the advantages of Caesalpinina sappan+Radix Astragali(SMHQ) was in the inhibiting rate of lung metastasis and survival time.③The expression of CD4~+CD25~+Foxp3~+ Treg in spleen of tumor-beating mice in control group was increased followed with the tumor progression.④Caesalpinina sappan(SM) and Caesalpinina sappan+Radix Astragali (SMHQ) had different effect on the changing tendency of the expression of CD4~+CD25~+Foxp3~+ Treg.The decreased of CD4~+CD25~+Foxp3~+ Treg(20d) was obvious in SMHQ group.These results showed that the supplementing qi and activating blood circulation drugs could improve the tumor-bearing mouse immune tolerance condition by Treg down-regulation and this effect was better than that of blood activating drugs.
     1.4 The effects on the levels of cytokines in CD4~+ cell culture supernatant in spleen of tumor-bearing mice and the expression of main genes in Jagged1-Notch signal transduction pathway intervened by blood activating drugs and supplementing qi and activating blood circulation drugs
     By detecting the levels of cytokines in CD4~+ cell culture supernatant in spleen of tumor-bearing mice and the expression of main genes in Jagged1-Notch signal transduction pathway intervened by Caesalpinina sappan(SM) and Caesalpinina sappan+Radix Astragali(SMHQ),we found that:①The levels of IL-2,IFN-γin CD4~+ cell culture supernatant in spleen of tumor-bearing mice in SMHQ group was obviously higher than that in control group,while the levels of TGF-β1 was lower than that in control group.②Caesalpinina sappan(SM) and Caesalpinina sappan+Radix Astragali (SMHQ) had no significant effect on the expression of Notch1,Jagged1 mRNA.These results showed that the supplementing qi and activating blood circulation drugs could improve the tumor-bearing mouse immune tolerance condition by regulating the levels of cytokines in tumor-bearing mice and this effect was better than that of blood activating drugs.
     1.5 The effects on the expressions of genes related with immune escape in tumor-bearing mice intervened by blood activating drugs and supplementing qi and activating blood circulation drugs
     By real-time RT-PCR,we detected the expressions of Foxp3 and CTLA-4 mRNA in tumor tissues and in CD4~+CD25~+cells selected from spleen cells of tumor-bearing mice by magnetic activated cell sorting system.We discovered that:The expressions of Foxp3 and CTLA-4 mRNA in tumor tissues and the expression of Foxp3 mRNA in CD4~+CD25~+cells selected from spleen cells of tumor-bearing mice in SMHQ group were lower than that in control group.These results showed that the supplementing qi and activating blood circulation drugs could improve the tumor-bearing mouse immune tolerance condition by down-regulating the expressions of genes related with immune escape and this effect was showed in both lymphoid tissue and tumor micro-environment.
     1.6 The effects on the expressions of phenotypes of DC in spleen of tumor-bearing mice intervened by blood activating drugs and supplementing qi and activating blood circulation drugs
     By flow cytometry,we detected the expressions of phenotypes of DC in spleen of tumor-bearing mice.We discovered that:①There was a significantly decrease of the expressions ofphenotypes of DC in tumor-bearing bodies.②Radix Astragali(SMHQ) could increase the expressions of mature phenotypes of DC in spleen of tumor-bearing mice and this effect was better than that of blood activating drugs.These results had provided data basis for vitro experiments on the relationship between the mature degree of DC and differentiation of T cells.
     1.7 The effects on the ability of cell proliferation,movement,invasion in PG intervened by Caesalpinina sappan(SM) and Caesalpinina sappan+Radix Astragali(SMHQ) medicated serum
     By detecting the effects on the ability of cell proliferation,movement,invasion in PG intervened by Caesalpinina sappan(SM) and Caesalpinina sappan+Radix Astragali (SMHQ) medicated serum,we found that:①Caesalpinina sappan(SM) and Caesalpinina sappan+Radix Astragali(SMHQ) had no significant effect on the ability of cell proliferation in PG.②Caesalpinina sappan+ Radix Astragali(SMHQ) medicated serum had significant inhibitory effect on the ability of cell movement,invasion in PG.These results showed that traditional Chinese medicine could inhibit tumor growth and metastasis in many different targets and many different ways.Directly killing the tumor cells was only one side of these effects.
     1.8 The effects on the expressions of phenotypes of DC in vitro intervened by culture supernatant of PG
     In this study,PBMC was isolated from human peripheral blood,differentiation into different mature degrees of DC after induction in vitro.Then culture supernatant of PG was added into the culture system to simulate tumor microenvironment.By flow cytometry,we detected the expressions of phenotypes of DC in the two culture systems.We discovered that:The culture supernatant of PG could decrease the mature degree of DC in vitro.These results had provided premise conditions and experimental method for further study.
     1.9 The effects on the mixed culture system of DCs,CD4~+T cells and culture supernatant of PG intervened by Caesalpinina sappan(SM) and Caesalpinina sappan+Radix Astragali(SMHQ) medicated serum
     In this study,we established the mixed culture system of DCs,CD4~+T cells and culture supernatant of PG.By detecting the expression of CD4~+CD25~+Foxp3~+Treg, the level of IL-12 and the expression of Jagged1,Notch1 mRNA in the mixed culture system,we found that:①In the mixed culture system intervened by culture supernatant of PG,the expression of CD4~+CD25~+Foxp3~+Treg and Jagged1,Notch1 mRNA was higher compared with the control group while the level of IL-12 was decreased.②Caesalpinina sappan(SM) and Caesalpinina sappan+Radix Astragali (SMHQ) medicated serum had no significant effect on the differentiation of T cells and the level of IL-12 in the mixed culture system.③Caesalpinina sappan+Radix Astragali(SMHQ) medicated serum had inhibitory effect on CD4~+CD25-T cells differentiating into CD4~+CD25~+T cells.④Caesalpinina sappan+Radix Astragali (SMHQ) medicated serum could increase the level of IL-12 in the mixed culture system.⑤Caesalpinina sappan(SM) and Caesalpinina sappan+Radix Astragali (SMHQ) medicated serum had no significant effect on the expression of Notch1, Jagged1 mRNA in the mixed culture system.These results showed that the CD4~+CD25T cells differentiating into CD4~+CD25~+T cells in the mixed culture system intervened by culture supematant of PG related to many factors,including inhibitory cytokines secreted by tumor cells,the mature degree of DC and stimulating amount of tumor antigen.
     In this research,patients with NSCLC,Lewis lung cancer-bearing mice and PG cells were taken as the research objects.We discussed on the relationship between CD4~+CD25~+Foxp3~+Treg and the tumor growth and metastasis from three different levels of clinical experiments,animal experiments and in vitro experiments.The expressions of CD4~+CD25~+Treg and its related activated molecules,regulatory molecules,effector molecules,main genes in Jaggedl-Notch signal transduction pathway and cell surface molecules of DC intervened by Caesalpinina sappan(SM) and Caesalpinina sappan+Radix Astragali(SMHQ) were observed in both tumor tissue and T cells.The study explored the molecular mechanisms and key links of the different effects of blood activating drugs and supplementing qi and activating blood circulation drugs on tumor growth and metastasis from the levels of whole body,cell mechanism and molecular mechanism.The results had provided a scientific basis for more reasonable and effective clinical application of blood activating drugs and supplementing qi and activating blood circulation drugs.
引文
[1]沈自尹,王文健.中医虚证辨证参考标准.中西医结合杂志,1986,6(10):598.
    [2]程绍恩,夏洪生主编.中医证侯诊断治疗学.北京:北京科学技术出版社,1993:210.
    [3]郑筱萸主编.中药新药临床研究指导原则(试行).北京:中国医药科技出版社,2002:216.
    [4]刘人伟.检验与临床:现代实验诊断学.北京:化学工业出版社,2002:306.
    [5]Sakaguchi S,Sakaguchi N,Asano M,et al.Immunologic Self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains(CD25).Breakdown of a singlemechanism of self-tolerance causes various autoimmune diseases.J Immunol,1995,155(3):1151.
    [6]Woo EY,Chu CS,Goletz TJ,et al.Regulatory CD4~+CD25~+T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer.Cancer Res,2001,61 (12):4766.
    [7]Marshall NA,Christie LE,Munro LR,et al.Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma.Blood,2004,103(5):1755.
    [8]Alvaro T,Lejeune M,Salvado MT,et al.Outcome in Hodgkin lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells.Clin Cancer Res,2005,11(4):1467.
    [9]Fontenot JD,GavinMA,RudenskyAY.Foxp3 programs the development and function of CD4~+CD25~+regulatory T cells.Nat Immunol,2003,4(4):330.
    [10]WilliamsLM,RudenskyAY.Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3.Nat Immunol,2007,8(3):277.
    [11]雷厉.肺癌患者外周血CD4~+CD25~+调节性T细胞检测及其临床意义.现代医院,2007,9(7):72.
    [12]刘莉,姚军霞,丁乾,等.胃癌和食管癌外周血CD4~+CD25~+调节性T细胞检测及其临床意义.中国现代医学杂志,2007,2(17):301.
    [13]卢剑,袁向亮,沈立松.不同分期胃癌患者外周血淋巴细胞FoXp3mRNA表达水平的研究.临床检验杂志,2007,25(3):215.
    [1]高捷,李学,颜祥建.甲皱微循环检查在肿瘤治疗中的应用(附119例血瘀证病例观察).中日友好医院学报,1996,10(4):319.
    [2]李宏艳.恶性肿瘤患者血液流变学检测分析.实用医技杂志,2006,13(7):1105.
    [3]杨振江.活血化瘀对肿瘤转移影响的研究概况.湖南中医学院学报.2002,22(4):66.
    [4]刘锦蓉,叶松柏.川芎嗪抗肿瘤转移作用及其机理.中国药理学与毒理学杂志,1993,7(2):149.
    [5]胡素坤,李晓琳,王少君,等.赤芍801抗肿瘤作用的实验研究.中国医药学报,1990,5(3):22.
    [6]于俊阁.赤芍801对W256瘤人工血行转移的影响.中国癌症究,1993,5:226.
    [7]刘鲁明,陈震,陈培丰.对活血化瘀中药治疗恶性肿瘤的思考.中医杂志,2007,48(9):776.
    [8]丁罡,宋明志,于尔辛.丹参、赤芍对大鼠Walker256癌肝转移影响机制的研究.中国癌症杂志,2001,11(4):364.
    [9]李学汤,王永泉,傅乃武,等.几种活血化瘀药物对小鼠肝癌细胞形成肺转移影响的初步实验观察.中医杂志,1980,21(8):75.
    [10]周岱翰主编.临床中医肿瘤学.北京:人民卫生出版社,2003,43.
    [11]刘嵌.试论益气活血药对的配伍关系.甘肃中医,2006,19(12):5.
    [12]王笑民.论益气活血法治疗肿瘤.中国中医药信息杂志,1998,5(10):11.
    [13]张志勇,刘德山,宿学家,等.益气活血中药对肺癌上皮细胞粘附分子表达及侵袭的影响.实用医药杂志,2006,23(3):325.
    [14]李萍萍,吕桂芝,孙红,等.益气活血中药复方对肿瘤细胞增殖的抑制作用.中国中药杂志.1996,21(2):113.
    [15]陈建民.癌症患者血液高粘状态与活血化瘀治疗.中西医结合杂志,1985,5(2):89.
    [16]刘春英,董明,蔡硕,等.益气、活血、益气活血中药复方对S180荷瘤小鼠免疫抑瘤作用的比较研究.中国中医基础医学杂志,2003,9(7):48.
    [17]李家实.中药鉴定学.上海:上海科学技术出版社,1998.172.
    [18]任连生.苏木水提物抗癌机制的研究.山西医药杂志,2002,29(13):201.
    [19]王三龙,蔡兵,崔承彬,等.中药苏木提取物诱导K562细胞凋亡的研究.Chinese Journal of Cancer,2001,20(12):1376.
    [20]乔丽娟,徐建国,郭文杰.苏木抗癌有效成分抗移植性肝癌H22的实验研究.海南医学,2001,12(7):51.
    [21]王蒙萌,杨永波.水蛭的化学成分及药理作用.黑龙江中医药,2008,2:47.
    [22]段亚丽,谢梅冬.黄芪化学成分及其有效成分黄芪甲苷含量测定的研究现状.中国兽药杂志,2005,39(3):35.
    [23]滕佳林,邹积隆,夏丽英,等.黄芪配伍当归益气活血作用的实验研究及探讨(一).中药药理与临床,2003,19(4):1.
    [24]滕佳林,邹积隆,张静.黄芪配伍当归益气活血作用的实验研究及探讨(二).中药药理与临床,2003,19(6):9.
    [25]滕佳林,夏丽英,孙敬昌.黄芪配伍当归益气活血作用的实验研究(三).中药药理与临床,2004,20(1):4.
    [1]Sakaguchi S,Sakaguchi N,Asano M,et al.Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptorα-chains(CD25).Breackdown of single mechanism of self-tolerance causes various autoimmune diseases.J Immunol,1995,160:1151.
    [2]Sakaguchi S.Naturallyarising Foxp3-expressing CD4~+CD25~+ regulatory T cells in immuno- logical tolerance to self and non-self.Nat Immunol,2005,6(4):345.
    [3]Morgan ME,van Bilsen JH,Bakker AM,et al.Expression of FOXP3 mRNA is not confined to CD4~+CD25~+ T regulatory cells in humans.Hum Immunol,2005,66(1):13.
    [4]Suciu-Foca N,Manavalan JS,Scotto L,et al.Molecular characterization of allospecific T suppressor and tolerogenic dendritic cells:review.Int Immunopharmacol,2005,5(1):7.
    [5]李欣,崔永生,王炎,等.CD4~+CD25~+调节性T细胞在Lewis肺癌移植鼠中的检测及临床意义.现代肿瘤医学.2007,4(15):454.
    [1]Lauerova L,Dusek L,Simickova M,et al.Malignant melanoma associates with Th1/Th2imbalance that coincides with disere progression and immuno-empy response.Neoplasma,2002,49(3):159.
    [2]Groux H,Cottrez F,RouleauM,et al.A transgenic model to analyze the immuno-regulatory role of IL-10 secreted by antigen-presenting cells.J Immunol,1999,162(3):1723.
    [3]Salazar-Onfray F.Interleukin-10:A cytokine used by tumors to escape immuno-surveillance.Med Oncol,1999,16(2):86.
    [4]Allavena P,Piemonti L,Longoni D,et al.IL-10 p revents the differentiation of monocytes to dendritic cells but promotes theirmaturation to macrophages.Eur J lmmunol,1998,28(1):359.
    [5]Chang CH,Guerder S,Hong SC,et al.Mice lacking the MHC class Ⅱ transactivator(CIITA)show tissue-specific impairment of MHC class Ⅱ expression.Immunity,1996,4(2):167.
    [6]Wahl SM,HuntDA,Wong HL,et al.Transforming growth factor-beta is a potent immunosuppressive agent that inhibits IL-1 dependent lymphocyte proliferation.J hnmunol,1988,140(9):3026.
    [7]Fleming RJ.Structural conservation of Notch recep tors and ligands.Sem in Cell Dev Boil,1998,9(6):599.
    [8]Lewis J.Notch signalling and the control of cell fate choices in vertebrates.Sem in Cell Dev Boil,1998,9(6):583.
    [9]Artavanis Tsakonas S,Matsuno K,Fortini ME.Notch signaling.Science,1995,268(5208):225.
    [10]Ellisen LW,Bird J,West DC,et al.TAN-1,the human homolog of the Drosophila notch gene,is broken by chromosomal translocations in T lymphoblastic neoplasms.Cell,1991,66(4):649.
    [11]Zagouras P,Stifani S,Blaumueller CM,et al.Alterations in Notch signalingin neoplastic lesions of the human cervix.Proc Natl Acad Sci USA.1995,92(14):6414.
    [12]Leethanakul C,Patel V,Gillespie J,et al.Distinct pattern of expression of differentiation and growth-related genes in squamous cell carcinomas of the head and neck revealed by the use of laser capture microdissection and cDNA arrays.Oncogene,2000,19(28):3220.
    [13]Enlund F,Behboudi A,Andren Y,et al.Altered Notch signaling resulting from expression of a WAMTP1-MAML2 gene fusion in mucoepidermoid carcinomas and benign Warthin's tumors.Exp Cell Res,2004,292(1):21.
    [14]Jundt F,Schulze Proebsting KS,Anagnostopoulos I,et al.Jagged 1-induced Notch signaling drives proliferation of multiple myeloma cells.Blood,2004,103(9):3511.
    [15]Amsen D,Blander J M,Lee G R,et al.Instruction of distinct CD4 T helper cell fates by different Notch ligands on antigen presenting cells.Cell,2004,117(4):515.
    [16]Vigouroux S,Yvon E,Wagner H,et al.Induction of antigenspecific regulatory T cells following overexpression of a Notch ligand by human B lymphocytes.J Virol,2003,77(20):10872.
    [17]Yvon E S,Vigouroux S,Rousseau R F,et al.Overexpression of the Notch ligand,Jagged-1,induces alloantigen-specific human regulatory T cells.Blood,2003,102(10):3815.
    [18]de La Coste A,Freitas A A.Notch signaling:Distinct ligands induce specific signals during lymphocyte development and maturation.Immunol Lett,2006,102(1):1.
    [19]Zagouras P,Stifani S,Blaumueller CM,et al.Alterations in Notch signalingin neoplastic lesions of the human cervix.Proc Natl Acad Sci USA.1995,92(14):6414.
    [20]Carmena A,Buff E,Halfon MS,et al.Reciprocal regulatory interactionsbetween the Notch and Ras signaling pathways in the Drosophila embryonic mesoderm.Dev Biol,2002,244(2):226.
    [1]Alegre ML,Noel PJ,Eisfelder BJ,et al.Regulation of surface and intracellular expression of CTLA-4 on mouse T cells.J Immunol,1996,157(11):4762.
    [2]Linsley PS,Brady W,Grosmaire L,et al.Binding of the B cell activation antigen B7 to CD28costimulates T cell proliferation and interleukin 2 mRNA accumulation.J Exp Med.1991,173(3):721.
    [3]Carreno BM,Collins M.The B7 family ofligands and its receptors:new pathways for costimulation and inhibition of immune responses.Annu Rev Immunol,2002,20:29.
    [4]Sharpe AH,Freeman GJ.The B7-CD28 superfamily.Nat Rev Immunol,2002,2(2):116.
    [5]Alegre ML,Frauwirth KA,Thompson CB.T-cell regulation by CD28 and CTLA-4.Nat Rev Immunol,2001,1(3):220.
    [6]Vasu C,Prabhakar BS,Holterman MJ.Targeted CTLA-4 engagement induces CD4~+CD25~+CTLA-4 high T regulatory cells with target(allo) antigen specificity.J Immunol,2004,173(4):2866.
    [7]Takahashi T,Kuniyasu Y,Toda M,et al.Immunologic self-tolerance maintained by CD25~+CD4~+ naturally anergic and suppressive T cells:induction of autoimmune disease by breaking their anergic/ suppressive state.Int Immunol,1998,10(12):1969.
    [8]Hori S,Nomura T,Sakaguchi S.Control of regulatory T cell development by the transcription factor Foxp3.Science,2003,299(5609):1057.
    [9]Brunkow ME Jeffery EW,Hjirrild KA,et al.Disruption of a new forkhead/ wingedhelix protein,scurfin,results in fatal lymphoproliferative disorder of the scurfy mouse.Nat Genet 2001,27(1):68.
    [10]Khattri R,Cox T,Yasayko SA,et al.An essential role for scurfm in CD4~+CD25~+ T regulatory cells.Nat Immunol,2003,4(4):337.
    [11]Cosmi L,Liotta F,Lazzeri E,et al.Human CD8~+CD25~+ thymocytes share phenotypic and functional features with CD4~+CD25~+ regulatory thymocytes.Blood,2003,102(12):4107.
    [12]Walker MR,Kasprowicz DJ,Gersuk VH,et al.Induction of Foxp3 and acquisition of T regulatory activity by stimulated human CD4~+CD25~-T cells.Clin Invest,2003,112(9):1437.
    [13]Khattri R,Kasprowicz D,Cox T,et al.The amount of scurfin protein determines peripheral T cell number and responsiveness.J Immunol,2001,167(11):6312.
    [14]Fontenot JD,Gavin MA,Rudensky AY.Foxp3 programs the development and function of CD4~+CD25~+regulatory T cells.Nat Immunol,2003,4(4):330.
    [15]Graca L.New tools to identify regulatory T cells.Eur J Immunol,2005,35(6):1678.
    [16]Watanabe N,Wang Y.Hassall's corpuscles instruct dendritic cells to induce CD4~+CD25~+ regulatory T cells inhuman thymus.Nature,2005,436(7054):1181.
    [17]Wang HY,Lee AD,Peng G,et al.Tumor-specific human CD4 regulatory T cells and their ligands:implication for immunotherapy.Immunity,2004,20(1):107.
    [18]Gajewski T F,Meng Y,Harlin H.Immune supp ression in the tumor microen vironment.J Immunother,2006,29(3):233.
    [19]Nair S,Boczkowski D,FassnachtM,et al.Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity.Cancer Res,2007,67(1):371.
    [20]Chen A,Liu S,Park D,et al.Dep leting intratumoral CD4~+CD25~+ regulatory T cells via FasL protein transfer enhances the therapeutic efficacy of adop tive T cell transfer.Cancer Res,2007,67(3):1291.
    [1]Steinman RM,Cohn ZA.Identification of a novel cell type in perpheral lymphoid organs of mice I.Morphology,quantitation,tissue distribution.J Exp Med,1973,137(5):1142.
    [2]HIRAOM,ONAIN,HIROISHIK,et al.CC chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells:critical role in migration from the tumor site to draining lymph nodes.Cancer Res,2000,60(8):2209.
    [3]Weber F,Byrne SN,Le S,et al.Transforming growth factorbetal immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system.Cancer Immunol Immunother,2005,54(9):898.
    [4]Lan Y Y,Wang Z,Raimondi G,et al."Alternatively activated"dendritic cells preferentially secrete IL-10,expand Foxp3~+CD4~+T cells,and induce long-term organ allograft survival in combination with CTLA4-Ig.J Immunol,2006,177(9):5868.
    [5]Park S J,Nakagawa T,Kitamura H,et al.IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation.J Immunol,2004,173(6):3844.
    [6]Ye F,Chen H Z,Xie X,et al.Ovarian carcinoma cells effectively inhibit differentiation and maturation of dendritic cells derived from hematopoietic progenitor cells in vitro.Cancer Invest,2005,23(5):379.
    [7]Caldwell S,HeitgerA,ShenW,et al.Mechanisms of ganglioside inhibition of APC function.J Immunol,2003,171(4):1676.
    [8]Walker S R,Redlinger R E,Barksdale EM,et al.Neuroblastomainduced inhibition of dendritic cell IL-12 production via abrogation of CD40 expression.J Pediatr Surg,2005,40(1):244.
    [9]Munn D H,SharmaM D,Hou D E,et al.xp ression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes.J Clin Invest,2004,114(2):280.
    [10]Lob S,Ebner S,Wagner S,et al.Are indoleamine-2,3-dioxygenase producing human dendritic cells a tool for suppression of allogeneic T-cell responses?.Transp lantation,2007,83(4):468.
    [11]Hou D Y,MullerA J,SharmaM D,et al.Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses.Cancer Res,2007,67(2):792.
    [12]程晓明,王长征,李淑平,等.小鼠脾脏树突细胞的分离培养及鉴定.第三军医大学学报.2003,23(25):2141.
    [1]#12
    [2]杨奎,张德波,史焱,等.含黄芩血清及黄岑甙影响内生致热原产生的研究.中药药理与临 床,1994,10(6):131.
    [3]叶永安,朱陵群.中药复方血清药理学在中医药研究中应用的思考.中国中医基础医学杂志,2001,7(5):323.
    [4]雷燕.关于血清药理学的若干思考.中国中西医结合杂志,1999;19(5):264.
    [5]潘卫松,刘美凤,石钺,等.血清药理学、血清化学和中药药代动力学.世界科学技术-中药现代化,2002,4(3):51.
    [6]王宁生.关于血清药理学的若干思考.中国中西医结合杂志,1999,19(5):263.
    [1]李胜福,冯刚,步宏,等.成人外周血来源树突状细胞体外诱导培养及成熟调控.生物医学工程杂志,2002,19(2):268.
    [2]Berthier R,Martinon Ego C,Laharie AM,et al.A two-step culture method starting with early growth factory permits enhanced production dendritic cells from murine splenocytes.J Jmmunol Methods,2000,239(1-2):95.
    [3]刘欣,孙自敏,朱薇波,等.树突状细胞与抗肿瘤免疫.国外医学肿瘤学分册,2000,27(6):366.
    [4]Nikolaus Romai.Prloiferation dendritic cell progenitors in human Blood.J Exp Med,1994,180:83.
    [5]张在云,吴金民.树突状细胞及其肿瘤疫曲.国外医学肿瘤学分册,2002,29(5):348.
    [6]BoonT,Old LJ.Cancertumorantigens.CurrOPinIinmunol.1997,9:681.
    [7]Tsujitani S,Kakejl Y,Watanabe A,et al.Infiltration of dendritic cells in relation to tumor invasion and lymph node metastasis in human gastric cancer.Cancer.1990,66:2012.
    [8]Giannini A,Bianehi S,Messerini L,et al.Prognostic significance of accessory cells and lymphocytes in Nasopharyngeal carcinoma.Pathol Res Pract.1991,18:496.
    [9]Zeid NA,Muller HK.S100 positive dendritic cells in human lung tumors associated with cell differentiation and enhanced survival.Pathology.1993,25:338.
    [10]Enk AH,Jonuleit H,Saloga J,et al.Dendritic cells as mediators of tumor-induecd tolerance in metastatic melanoma.Int J Cancer,1997,73:309.
    [11]Bell D,Chomarat P,Broyles D,et al.In breast careinoma tissue,immature dendritic cells reside within the tumor,whereas mature dendritic cells are located in peritumoral areas.J Exp Med.1999,190:1417.
    [12]Lespagnard L,Gancberg D,Rouas G,et al.Tumor-infiltrating dendritic cells inne-oplasms with a correlation to usual prognostic factors and to clinical outcome.Int J Cancer.1999,84:309.
    [13]Scarpino S,StoPPacciaro A,Ballerini F,et al.Papillary carcinoma of the thyroid:Growth Factor(HGF)stimulates tumor cells torelease chemokines active in recruiting dendritic cells.Am J Pathol.2000,156:831.
    [14]Gabrilovich DI,ChenHI,Girgis KR,et al.Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells.Nat Med.l996,2:1096-1103.
    [15]Terabe M,Matsui S,Park JM,MamuraM,et al.Transforming growth factor-β production and myeloid cells are an effector mechanism through which CDld-restricted T cells block cytotoxic T Lymphocyte-mediated tumor immunosurveillance:abrogation prevents tumor recurrence.J Exp Med.2003,198:1741.
    [16]Beissert S,Hosoi J,Grabbe S,AsahinaA,et al.IL-10 inhibits tumor antigen presentation by epidermal antigen-presenting cells.J Immunol.1995,154:1280.
    [17]Menetrie-Caux G,Montmain G,Dieu MC,BainC,et al.Inhibition of the diVeren-tiation of dendritic cells from CD34~+ progenitors by tumor cells:role of interleukin-6 and macrophage colony-stimulating fact.Blood.1998,92:4778.
    [18]Kalinski P,Schuitemaker H,Hilkens CMU,et al.Prostaglandin E2 Induces the final maturation of IL-1-deficient CDla~+ CD83~+ dendritic cells:the levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation.J Immunol,1998,161:2804.
    [19]Luft T,Je Vord M,Luetjens P,et al.Functionally distinct dendritic cell(DC)populations induced by physiologic stimuli:prostaglandinE(2)regulates the Migratory capaeity of specific DC subsets.Blood.2002,100:1362.
    [20]SteinmanvRM,Hawiger D,Liu K,et al.Dendritic cell function in vivo during the steady state:a role in peripheral tolerance.Ann NY Acad Sc,2003,987:15.
    [21]Dhodapkar MV,Steinman RM,KrasovskyJ,et al.Antigen specific inhibition of effector T cell function in humans after injection of immature dendritic cells.J Exp Med.200,193:23.
    [1]Chen W,J in W,Hardegen N,et al.Conversion of peripheral CD4~+CD25~-naive T cells to CD4~+CD25~+ regulatory T cells byTGF-beta induction of transcription,factor Foxp3.J Exp Med,2003,198(12):1875.
    [2]Ghiringhelli F,Puig PE,Roux S,et al.Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4~+CD25~+ regulatory T cell proliferation.J Exp Med,2002(7):919.
    [3]Hoyne GF,Dallman MJ,Champ ion BR,et al.Notch signalling in the regulation of peripheral immunity.Imm unol Rev,2001,182(2):215.
    [4]Hoyne GF,Dallman MJ,Lamb JR.T2cell regulation of peripheral tolerance and immunity:the potential role for Notch signal.Immunology,2000,100(3):281.
    [1]杜娟.中药抗肿瘤免疫的研究进展.中医药临床杂志,2004,16(5):507.
    [2]郭凤丽.白术对小鼠淋巴细胞增殖、IL-2和抗体产主的影响.中国中医药杂志,2003,(2):85.
    [3]解庆东.黄芪抗肿瘤机制研究与临床应用.医药导报,2003,2(2):109.
    [4]黄婉,杨耀芳.女贞子及其有效成分的药理及临床研究进展.现代中西医结合杂志,2003,12(7):772.
    [5]马杰.莪术对小鼠免疫功能的影响.中药药理与临床,2003,19(4):28.
    [6]刘伯阳.血府逐瘀汤对荷瘤小鼠的免疫抑瘤作用.中国药业,2002,(10):44.
    [7]王琪,程德春,王磊.川芎嗪对荷瘤鼠化疗后免疫功能的影响.齐齐哈尔医学院学报,2003,24(3):243.
    [8]倪红梅.理气药治疗肝癌作用与机制实验研究.山西中医,2002,2(1):47.
    [9]叶加.理气药对荷瘤小鼠肿瘤坏死因子和NK细胞活性的影响.中草药,1995,26(5):272.
    [10]崔澂,王润田,佟慧,等.青蒿琥酯、苦参素对Colon26肿瘤细胞免疫抑制的影响.现代免疫学,2006,26(2):152.
    [11]刘春英,董明,蔡硕,等.益气、活血、益气活血中药复方对S180荷瘤小鼠免疫抑瘤作用的 比较研究.中国中医基础医学杂志,2003,9(7):48.
    [12]王洪琦,崔娜娟,胡玲,等.清热解毒和补益中药对小鼠腹水肝癌H_(22)细胞的作用及免疫学机制比较.广州中医药大学学报,2006,23(2):156.
    [13]李红喆,范小磊,张丽,等.参杞合剂对荷瘤小鼠免疫功能及细胞周期的影响.中国免疫学杂志,2003,19(6):397.
    [14]丁松云.参附注射液对晚期肺癌化疗患者免疫功能影响的临床研究.实用中医内科杂志,2001,15(4):3.
    [15]倪爱娣,束家和,周荣耀,等.平消胶囊配合化疗对肿瘤疗效及免疫指标观察.上海中医药杂志,2000,7:15.
    [16]史春雷,尹刚,李颖.参麦注射液对原发性肝癌患者免疫功能的影响.山东中医杂志,200019(10):615.
    [17]李明春,梁东升,许自明,等.灵芝多糖对小鼠腹腔巨噬细胞蛋白激酶A活性的影响.中草药,2000,31(5):353.
    [18]KIM G Y,OH Y H,PARK Y M.Acidic polysaeeharide isolated from Phellinus induces nitric oxide mediated tumorieidal activity of macrophages through protein tyrosine kinase and protein kinase C.Bioehem Biophys Res Commun,2003,309(2):399.
    [19]张丽.蘑姑多糖对小鼠腹腔巨噬细胞作用的体外研究.Suzhou university journal of mekical science,2003,23(1):25.
    [20]梁文杰,刘东青,单保恩,等.北豆根提取物对小鼠和人淋巴细胞及巨噬细胞作用的体外实验研究.中国免疫学杂志,2005,21:56.
    [21]高凤兰,杜华贞.黄芪增免散对围手术期食管癌患者免疫功能的影响.山东医药2006,46(22):70.
    [22]黎洪浩,梁俊雄,陈积圣.托里消毒散对手术前后肝癌患者细胞免疫功能的影响.中国中西医结合杂志,2001,21(10):739.
    [23]刘嘉湘,施志明,赵丽红,等.正得康在癌症治疗中扶正作用的研究.中医药学刊,2001,19(5):423.
    [24]袁洪新,于志坚.艾迪注射液联合肝动脉介入治疗原发性肝癌.临床肿瘤学杂志,2005,10(1):64.
    [25]殷朔,谭广,罗海峰,等.树突细胞联合β-榄香烯对小鼠胰腺癌治疗的实验研究.中国癌症杂志,2007,17(1):50.
    [26]黄林清,周世文,张诗平,等.蚕蛹多糖对小鼠免疫功能的影响.解放军药学学报,2002,18(1):11.
    [27]张秀娟,季宇彬.真菌多糖的免疫药理作用的研究.哈尔滨商业大学学报,2002,18(1):63.
    [28]罗晶,郭焱,勾敏慧,等.人参养荣汤对小鼠免疫功能的调节.中国现代医学杂志,2002,12(5):27.
    [29]封文军.参附注射液对晚期肿瘤患者免疫球蛋白及血液流变性的影响.中国中医急症,2002,11(5):361.
    [30]张运芳,李俊,金涌,等.芪加合剂对荷瘤小鼠体液免疫功能的影响.安徽医科大学学报,2000,35(2):118.
    [31]何岚,徐月红,刘亚萍.抗肿瘤中药复方免疫调节作用的实验研究思路.中医药学报,2003,31(5):16.
    [32]邵树军,刘彩玉,刘雄伯,等.牛膝多糖对小鼠免疫功能影响的研究.月中瘤防治杂志,2002,9(1):57.
    [33]周德丽,欧阳寿,黄敏,等.海参猴桃液辅以少量rIL-2对免疫杀伤细胞活性的正向调节研究.广西中医药,2000,23(2):46.
    [34]李明春,雷林生,梁东升,等.灵芝多糖对小鼠腹腔巨噬细胞内游离Ca2+浓度的影响.中国药学杂志,1999,34(12):805.
    [35]李明春,雷林生,梁东升,等.灵芝多糖体外对小鼠巨噬细胞pH的影响.中国药理学通报,1999,15(6):513.
    [36]李明春,雷林生,梁东升,等.灵芝多糖对小鼠巨噬细胞三磷酸肌醇和二酰基甘油作用的影响.中药药理与临床,1999,15(5):20.
    [37]李明春,雷林生,梁东升,等.灵芝多糖对小鼠巨噬细胞蛋白激酶C活性的影响.中国药理学通报,2000,16(1):45.
    [38]周军,李伟芳,李茂,等.泰福康胶囊抗肿瘤作用的研究.广西医学,2002,24(12):1939.
    [39]娄海燕,张世玲.胃安康对荷瘤小鼠免疫功能的影响.山东中医杂志,2002,21(6):354.
    [40]Schroder S,Schwarts W,Rehpenning W,et al.Dendritic of Langhans cells and prognosis in patients with papillary thyroid carcinoma.Am J Clin Pathol,1988,89(2):295.
    [41]Zeid NA,Muller HK.S100 positive dendritic cells in human lung tumors associated with cell differentiation and enhanced survival.Pathology,1993,25:338.
    [42]Gabrilovich DI,Corak J,Ciemik IF,et al.Decreased antigen presentation by dendritic cells in patients with breast cancer.Clin Cancer Res,1997,3(3):483.
    [43]Troy AJ,Summers KL,Davidson PJ,et al.Minimal recruitment and activation of dendritic cells within renal cell carcinoma.Clin Cancer Res,1998,4(3):585.
    [44]童向民,陆国华,马成坚,等.虫草多糖对慢性粒细胞白血病来源的树突细胞发育的影响.中华血液学杂志,2007,28(3):208.
    [45]邵鹏,赵鲁杭.黄芪多糖对树突状细胞表型及功能成熟的影响.中华微生物学和免疫学杂志,2006,26(7):637.
    [46]邓旻,窦晓兵,史亦谦,等.黄芪多糖体外诱导脐血单核细胞分化为树突状细胞及其免疫学特征.医学研究杂志,2006,35(9):22.
    [47]董静,顾华丽,马承泰,等.大剂量黄芪对急性白血病患儿外周血树突状细胞的诱导和抗原呈递功能的影响.中国中西医结合杂志,2005,25(10):872.
    [48]郑红刚,朴炳奎,林洪生,等.肺瘤平膏对非小细胞肺癌患者树突状细胞亚型及免疫功能的影响.北京中医,2007,26(4):214.
    [49]魏海明,刘杰,田志刚.检测Th1/Th2亚群的临床意义.中华医学检验杂志,1998,21(1):56.
    [50]刘海涛,戴锡孟.中药扶正合剂对LA795转移性肺癌小鼠的抑瘤作用和机制研究.江苏中医药,2004,25(10):56.
    [51]倪峰.免疫活性的中药多糖.福建中医学院学报,2001,11(1):57.
    [52]邓春生,吕作舟.阿魏侧耳水溶性多糖免疫活性的研究.华中农业大学学报,2002,10(5):447.
    [53]奚谨磊,彭仁诱,杨哲琼,等.当归多糖及其中性组分对巨噬细胞分泌TNF的影响.武汉大学学报(医学版),2002,23(1):21.
    [54]熊一平.中医药红细胞免疫强化作用的研究进展.微生物学免疫学进展,2000,28(1):95.
    [55]刘积良,张永锋,李雪梅,等.红免灵对小鼠红细胞免疫功能的影响.深圳中西医结合杂志,2002,12(3):144.
    [56]王美,秦筱梅,王育学.中药复方JHL免疫抑制作用的实验研究.中国中医基础医学杂志,2003,9(11):853.
    [57]马玲娣,张彦,文世宏,等.苦参碱抗肿瘤作用及其机制的初步研究.中国免疫学杂志,2007.23:434.
    [1]Ehrlich P.Ueber den jetzigen Stand der Ueber den jetzigen Stand.Ned Tijdschr Geneeskd,1909,5(Part):273.
    [2]Discussion TL.In cellular and humoral aspects of hypersensitive states.Lawrence HS,ed.New York:Hoeber-Harper,1959:529.
    [3]Dunn GP,Bruce AT,Ikeda H.Cancer immunoediting:from immunosurveillance to tumor escape.Nat Immunol,2002,3:991.
    [4]陈复兴,李玺,刘军权,等.肿瘤免疫编辑与免疫治疗.医学与哲学,2007,4(28):59.
    [5]Sakaguchi S,Sakaguchi N,Asano M,et al.Immunologic Self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains(CD25).Breakdown of a singlemechanism of self-tolerance causes various autoimmune diseases.J Immunol,1995,155(3):1151.
    [6]Nishizuka Y,Sakakura T.Thymus and reproduction:sex-linked dysgenesiaof the gonad after neonatal thymectomy in mice.Science,1969,166:753.
    [7]Asano M,Toda M,Sakaguchi N,et al.Autoimmune disease as aconsequence of developmental abnormality of a T cell subpopulation.J Exp Med,1996,184(2):387.
    [8]Papiernik M,de Moraes ML,Pontoux C,et al.Regulatory CD4~+T cells:expression of IL2-alpha chain,resistance to clonal deletion and IL-2 dependency.Int Immunol,1998,10(4):371.
    [9]Jordan MS,Boesteanu A,Reed AJ,et al.Thymic selection of CD4~+CD25~+regulatory T cells induced by an agonist self-peptide.Nat Immunol,2001,2(4):301.
    [10]Pacholczyk R,Kraj P,Ignatowicz L.Peptide specificity of thymic selection of CD4~+CD25~+T cells.J.Immunol,2002,168(2):613.
    [11]Lechler.R.Dendritic cells in transplantation-friend or foe?Immunity,2001,14,357.
    [12]Piccirillo CA,Thomton AM.Cornerstone of peripheral tolerance:naturally occurring CD4~+CD25~+regulatory T cells.Trends Immunol,2004,25(7):374.
    [13]Sempowski G D,Cross S J,Heinly C S et al.CD7 and CD28 are required formurine CD4~+CD25~+regulatory T cell homeostasis and prevention of thyroiditis.J Immunol,2004,172(2):787.
    [14]Taams L,Vukmanovic-Stejic M,Salmon M.Immune regulation by CD4~+CD25~+regulatory T cells:implications for transplantation tolerance.Trans Immunol,2003,11(3-4):277.
    [15]Viguier M,Lemaitre F,Verola O,et al.Foxp3 expressing CD4~+CD25(high)regulatory T cells are overrepresented in human metastatic melanoma lymphnodes and inhibit the function of infiltrating T cells.J Immunol,2004,1/3:1444.
    [16]Thornton AM,Shevach EM.Suppressor e.ector function of CD4~+CD25~+immunoregulatory T cells is antigen nonspecific.J Immunol,2000,164:183.
    [17]Read S,Malmstrom V,Powrie F.Cytotoxic T lymphocyte-associatedantigen 4 plays an essential role in the function of CD25 CD4+regulatory cells that control intestinal inflammation.J Exp Med,2000,192:295.
    [18]Levings MK,Sangregorio R,Sarukhan A,et al.Human CD25~+CD4 T suppressor cell clones produce transforming growth factor beta,but not interleukin 10,and are distinct from type 1 T regulatory cells.J Exp Med,2002,196:1335.
    [19]Zou L,Barnett B,Safah H.Bone marrow is a reservoir for CD4~+CD25~+ regulatory T cells that traffic through CXCL12/CXCR4 signals.Cancer Res,2004,64(22):8451.
    [20]Chang,C.C.Tolerization of dendritic cells by Ts cells:the crucial role ofinhibitory receptors ILT3 and ILT4.Nat Immunol,2002,3:237.
    [21]Baecher-Allan C,Brown JA,Freeman GJ,et al.CD4~+CD25~(high)regulatory cells in human peripheral blood.J Immunol,2001,167(3):1245.
    [22]Higgins J,Metcalf JA,Stevens RA,et al.Effects of lymphocyteisolation and timing of processing on detection of CD 127 expression on T cells in human immunodeficiency virusinfected patients.Clin Diagn Lab Immunol,2005,12(1):228.
    [23]Hartigan-O'Connor DJ,Poon C,Sinclair E,et al.Human CD4~+ regulatory T cells express lower levels of the IL-7 receptor alphachain(CD127),allowing consistent identification and sorting of live cells.J Immunol Methods,2007,319(1-2):41.
    [24]Triebel F.LAG-3:a regulator of T-cell and DC responses and its use in therapeutic vaccination.Trends Immunol.2003,24:619.
    [25]Huang CT,Workman CJ,Flies D,et al.Role of LAG-3 in regulatory T cells.Immunity.2004,21:503.
    [26]Paust S,Lu L,McCarty N,et al.Engagement of B7 on effector T cells by regulatory T cells prevent s autoimmune disease.Proc Natl Acad Sci USA,2004,101(28):10398.
    [27]Mellor AL,Munn DH.IDO expression by dendritic cells:tolerance and tryptophan catabolism.Nat Rev Immunol,2004,4(10):762.
    [28]Stephens GL,McHugh RS,Whitters MJ,et al.Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4~+CD25~+ T cells.J Immunol,2004,173(8):5008.
    [29]Fontenot JD,Rudensky AY.A well adapted regulatory contrivance:regulatory T cell development and the forkhead family transcription factor Foxp3.Nat Immunol,2005,6(4):331.
    [30]毛春芳,张巧花.CD4~+D25~+调节性T细胞与肿瘤免疫治疗.中华临床医学研究杂志.2006,12(4):512.
    [31]Sakaguchi,S.Naturally arising Foxp3-expressing CD25~+CD4~+regulatory T cells in immunological tolerance to self and nonself.Nat.Immunol.2005,6:345.
    [32]Von Boehmer,H.Mechanisms of suppression by suppressor T cells.Nat.Immunol.2005,6:338.
    [33]Ghiringhelli,F.,C.Menard,M.Terme,et al.CD4~+CD25~+regulatory T cellsinhibit natural killer cell functions in a transforming growthfactor-beta-dependent manner.J.Exp.Med.2005,202:1075.
    [34]KronenbergM,Rudensky A.Regulation of immunity by self-reactive T cells.Nature,2005,435(7042):598.
    [35]Birebent B,Lorho R,Lechartier H,et al.Suppressive properties of human CD4~+CD25~+regulatory T cells are dependent on CTLA-4 expression.Eur J Immunol,2004,34(12):3485.
    [36]Obst R,van Santen HM,Mathis D,et al.Antigen persistence is required throughout the expansion phase of a CD4~+ T cell response.J Exp Med,2005,201(10):1555.
    [37]TangQ,KrummelMF.Imaging the function of regulatory T cells in vivo.CurrOp in Immunol,2006,18(4):496.
    [38]Von Boehmer H.Mechanisms of suppression by suppressor T cells.Nat Immunol,2005,6(4):338.
    [39]Groux H,Cottrez F,RouleauM,et al.A transgenic model to analyze the immuno-regulatory role of IL-10 secreted by antigen-presenting cells.J Immunol,1999,162(3):1723.
    [40]Salazar-Onfray F.Interleukin-10:A cytokine used by tumors to escape immuno-surveillance.Med Oncol,1999,16(2):86.
    [41]Allavena P,Piemonti L,Longoni D,et al.IL-10 p revents the differentiation of monocytes to dendritic cells but promotes theirmaturation to macrophages.Eur J Immunol,1998,28(1):359.
    [42]Chang CH,Guerder S,Hong SC,et al.Mice lacking the MHC class Ⅱ transactivator(CIITA)show tissue-specific impairment of MHC class Ⅱ expression.Immunity,1996,4(2):167.
    [43]Wahl SM,HuntDA,Wong HL,et al.Transforming growth factor-beta is a potent immunosuppressive agent that inhibits IL-1 dependent lymphocyte proliferation.J Immunol,1988,140(9):3026.
    [44]Kubo T,Hatton RD,Oliver J,et al.Regulatory T cell suppression and anergy are differentially regulated by p roinflammatory cytokines produced by TLR-activated dendritic cells.J Immunol,2004,173(12):7249.
    [45]Pasare C,Medzhitov R.Toll pathway-dependent blockade of CD4~+CD25~+ T cell-mediated suppression by dendritic cells.Science,2003,299(5609):1033.
    [46]高强,邱双健,樊嘉.CD4~+CD25~+Foxp3~+调节性T细胞在肿瘤免疫逃逸中的作用研究进展.中国癌症杂志,2007,17(8):657.
    [47]Enarsson K,Johnsson E,Lindholm C,et al.Differential mechanisms for T lymphocyte recruitment in normal and neoplastic human gastric mucosa.Clin Immunol,2006,118(1):24.
    [48]Knazaie K,von Boehmer H.The impact of CD4~+CD25~+Tregon tumor specific CD8~+T cell cytotoxicity and cancer.Semin Cancer Biol,2006,16(2):124.
    [49]Groux H,O'Garra A,Bigler M,et al.A CD4~+T-cell subset inhibits antigen-specific T-cell responses and prevents colitis.Nature,1997,3899(6652):737.
    [50]Kemper C,Chan A C,Green J M,et al.Activation of human CD4~+ cells with CD3 and CD46induces a T-regulatory cell 1 phenotype.Nature,2003,421(6921):388.
    [51]Faria A M,Weiner HL.Oral tolerance.Immunol Rev,2005,206:232.
    [52]Shevach E M.Regulatory/suppressor T cells in health and disease.Arthritis Rheum,2004,50(9):2721.
    [53]蔡勇,刘玉兰.调节性T细胞研究进展及其临床应用前景.中国免疫学杂志,2008,8(24):766.
    [1]Steinman RM,Cohn ZA.Identification of a novel cell type in perpheral lymphoid organs of mice I.Morphology,quantitation,tissue distribution.J Exp Med,1973,137(5):1142.
    [2]Chatila TA.Role of regulatory T cells in human diseases.Allergy Clin Immunol,2005,116(5):949.
    [3]Munn D H,SharmaM D,Lee J R,et al.Potential regulatory function of human dendritic cells expressing indoleamine 2,32dioxygenase.Science,2002,297(5588):1867.
    [4]HIRAOM,ONAIN,HIROISHIK,et al.CC chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells:critical role in migration from the tumor site to draining lymph nodes.Cancer Res,2000,60(8):2209.
    [5]KIDD P.Th1/Th2 balance:the hypothesis,its limitations,and imp lications for health and disease.AlternMed Rev,2003,8(3):223.
    [6]L IU S,YU Y,ZHANGM,et al.The involvement of TNF-alpha-related apoptosis-inducing ligand in the enhanced cytotoxicity of IFN-beta-stimulated human dendritic cells to tumor cells.J Immunol,2001,166(9):5407.
    [7]Kemp TJ,Elzey BD,Griffith TS.lasmacytoid dendritic cell-derived IFN-alpha induces TNF-related apoptosis-inducing ligand/Apo-2L-mediated antitumor activity by human monocytes following CpG oligodeoxynucleotide stimulation.J Immunol,2003,171(1):212.
    [8]Dmitry I,Frank C,David P,et al.Dendritic cells in antitumor immune responses defective antigen presentation in tumorbearing hosts.Cell Immunol 1996,170(1):101.
    [9]Dmitry I,Sorena N,Jadranko C,et al.Dendritic cells grown from bone marrow precursors,but not mature DC from tumor bearing mice,are effective antigen carriers in the therapy of established tumor.Cell Immunol,1996,170(1):111.
    [10]Pirtskhalaishvili G,Shurin GV,Gambotto A,et al.Transduction of dendritic cells with Bcl-X1increases their resistance to prostate cancer-induced apoptosis and antitumor effect in mice.J Immunol,2000,165(4):1956.
    [11]Vermi W,Bonecchi R,Facchetti F,et al.Recruitment of immature plasmacytoid dendrtic cells(plasmacytoid monocytes) and mveloid dendritic cells in primary cutaneous melanomas.J Pathol,2003,200(2):255.
    [12]Yanagimoto H,Takai S,Satoi S,et al.Impaired function of circulating dendritic cells in patients with pancreatic cancer.Clin Immunol,2005,114(1):52.
    [13]张晶.树突状细胞与肿瘤免疫逃逸.国外医学免疫学分册,2005,28(3):173.
    [14]Oderup C,Cederbom L,Makowska A,et al.Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4~+CD25~+ regulatory T-cell-mediated suppression.Immunology,2006,118(2):240.
    [15]Wang Z,Larregina AT,ShufeskyWJ,et al.Use of the inhibitory effect of apop totic cells on dendritic cells for graft survival via T-cell deletion and regulatory T cells.Am J Transplant,2006,6(6):1297.
    [16]VeldhoenM,Moncrieffe H,Hocking RJ,et al.Modulation of dendritic cell function by naive and regulatory CD4~+ T cells.J Immunol,2006,176(10):6202.
    [17]Watanabe N,Wang YH,Lee HK,et al.Hassallps corpuscles instruct dendritic cells to induce CD4~+CD25~+ regulatory T cells in human thymus.Nature,2005,436(7054):1181.
    [18]Tarbell KV,Yamazaki S,Steinman RM.The interactions of dendritic cells with antigenspecific,regulatory T cells that suppress autoimmunity.Semin Immunol,2006,18(2):93.
    [19]Zhang X,Huang H,Yuan J,et al.CD4~-8~-dendritic cells p rime CD4~+ T regulatory 1 cells to suppress antitumor immunity.J Immunol,2005,175(5):2931.
    [20]黄立锋,姚咏明,盛志勇,等.树突状细胞与调节性T细胞相互作用研究进展.中国病理生理杂志,2008,24(3):610.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700