用户名: 密码: 验证码:
基于土壤水分和气温的草地返青模型及植被干旱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
趋势性气候变化引起的物候变化和极端气候条件产生的干旱对于陆地植被初级生产力有显著影响,进而影响人类生产生活和地球物质循环。土壤水分是影响物候变化和干旱的重要要素,且是影响植被生长的直接水分要素,然而区域尺度的植被物候模型对水分条件的考虑比较粗略,往往采用降水来表征。论文将土壤水分作为影响植被物候的关键环境要素,结合大尺度水文模型和遥感信息,建立综合考虑土壤水分和气温的草地返青物候模型和植被干旱模型,对区域尺度物候变化和植被干旱分析有重要意义。
     基于遥感归一化植被指数,应用逻辑斯蒂模型对研究区域草地的主要物候现象进行识别,揭示了内蒙古高原草地和青藏高原草地的物候特征,分析了研究区域物候及其影响要素变化趋势,并探讨了干旱条件下逻辑斯蒂模型的适用性。
     基于不同环境要素对草地返青的影响分析,提出将水文模拟的土壤水分数据用于物候分析,借鉴热量控制的潜在返青日期指标的计算方法,构建了由土壤水分控制的潜在返青日期指标和由降水控制的潜在返青日期指标,论证分析了在大尺度物候研究中土壤水分指标和降水指标对水分条件的代表性。
     基于上述潜在返青日期指标体系,建立了草地返青模型和草地返青主导要素分析方法。构建的草地返青模型克服了固定影响要素累加时段的问题,草地返青主导要素分析方法能够描述草地返青主导要素的年际波动和多年主导要素定量分析,并可用于未来气候变化情景下草地返青影响要素的演变分析。将模型应用于内蒙古高原草地和青藏高原草地,应用结果显示两个研究区域的草地返青主导要素多数为水分条件而非热量条件,在选定的未来气候变化情景下,内蒙古高原草地多数站点的主导要素对草地返青的控制作用将增强。
     提出归一化植被指数百分位数,将其应用于干旱分析的时空强度综合法,重建了科罗拉多流域的植被干旱事件,对比了植被干旱和土壤水分干旱的差异,发现归一化植被指数百分位数是描述植被干旱更直接的指标。分析了不同月份和不同植被覆盖类型下植被指标和土壤水分指标的相关关系,提出了植被对干旱的抵抗力和恢复力的计算方法,并比较分析了多种植被对干旱的响应。
As an important factor for human activities and material cycle, Net Primary Productivity (NPP) of terrestrial ecosystem is dramatically influenced by phenology change and drought, which are easily disturbed and induced by tendentious climate change and climate extremes. Soil moisture is an important variable that related to pehnology change and drought. Existing regional phenology models do not provide enough consideration on water conditions. Precipitation is frequently used instead of soil moisture which, however, is the more direct variable that the growth of vegetation depend on. By taking soil moisture as a critical environmental variable, based on regional hydrological model and remote sensing, a regional grassland phenology model and vegetation drought reconstruction model were built up, which will be a meaningful work on regional phenology model and vegetation drought research.
     A logarithmic model was used to identify the main phenomenon of grassland phenology in the study area. The model was based on the NDVI data retrieved from AVHRR. The main characteristics of phenology over Inner Mongolia and Qinghai-Tibetan Plateau grasslands over China were disclosed. Analyses were carried out on the nonstationarities of phenology and its impact factors. The applicability of the model was also discussed.
     Based on the analyses of phenology factors, Soil moisture was found to be a better element for phenology analysis. Inspired by the idea of TSO (Thermal Spring Onset), An index was made up for potential vegetation spring-up date controlled by soil moisture, SMSO(Soil Moisture Spring green-up Onset date) and PSO (Precipitation Spring green-up Onset date) to stand for the spring-up date controlled by precipitation. Results proved that the index based on soil moisture is superior to the precipitation index in regional phenology study.
     Based on the index proposed above, a grassland spring phenology model and the grassland spring phenology dominant factor model were established, and the models were then applied over Inner Mongolia and Qinghai-Tibetan Plateau grasslands. The grassland spring phenology model avoided the drawbacks of fixed accumulation span. The grassland spring phenology dominant factor model could depict the decadal shift of dominant factor and quantitatively describe the dominant role of factors. It could also be used to analyze the evolution of dominant factors with the projection of future climate change. Results showed that the dominant factor in both grasslands (Inner Mongolia and Qinghai-Tibetan Plateau) is water condition instead of thermal condition. The control of the current dominant factors is inclined to be reinforced under the SRES B2scenario.
     An index called NDVIP (NDVI Percentile) was proposed based on NDVI retrieved from MODIS, and a vegetation drought reconstruction model was established. The index was used to reconstruct the drought events over Colorado River Basin. Comparative studies showed that NDVIP is a more direct index for the description of drought. Resistance and recovery abilities of vegetation under drought were also defined and calculated. Different types of vegetations showed different responses to drought events.
引文
边金虎,李爱农,宋孟强,等.MODIS植被指数时间序列Savitzky-Golay滤波算法重构.遥感学报,2010,(04):725-741.
    常守志,王宗明,宋开山,等.基于NDVI数据的三江平原农田物候监测.遥感技术与应用,2011,26(01):82-88.
    陈效逑,胡冰,喻蓉.中国东部温带植被生长季节的空间外推估计.生态学报,2007,27(01):65-74.
    程曼,王让会,薛红喜,等.干旱对我国西北地区生态系统净初级生产力的影响.干旱区资源与环境,2012,(06):1-7.
    伏洋,张国胜,李凤霞,等.青海省草地生态环境变化态势及驱动力分析.草业科学,2007,24(05):1-8.国家气象局.农业气象观测规范.北京:气象出版社,1993.
    郭靖,郭生练,张俊,等.汉江流域未来降水径流预测分析研究.水文,2009,29(05):18-22.
    浩毕斯哈拉图.正蓝旗2007年度牧草、农作物生长发育期气象灾害分析.内蒙古草业,2008,20(04):42-43.
    胡彩虹,郭生练,彭定志,等.VIC模型在流域径流模拟中的应用.人民黄河,2005,27(10):22-24.
    胡和平,田富强.物理性流域水文模型研究新进展.水利学报,2007,38(05):511-517.
    黄振平.水文统计学.南京:河海大学出版社,2003.
    纪亚君.高寒草地毒草的危害及防除利用研究.杂草科学,2005,(04):3-5.
    季劲钧,黄玫,刘青.气候变化对中国中纬度半干旱草原生产力影响机理的模拟研究.气象学报,2005,26(03):257-266.
    金君良,陆桂华,吴志勇.VIC模型在西北干旱半干旱地区的应用研究.水电能源科学,2010,28(01):12-14.
    李荣平,周广胜,阎巧玲.植物物候模型研究.中国农业气象,2005,(04):8-12.
    李孝军,李荣平.自动土壤水分观测准确性研究.山东气象,2011,31(04):62-65.
    林忠辉,莫兴国,李宏轩,等.中国陆地区域气象要素的空间插值.地理学报,2002,57(01):47-56.
    刘立新,董云社,齐玉春.草地生态系统土壤呼吸研究进展.地理学报,2004,23(04):35-42.
    刘浏,徐宗学,黄俊雄.气候变化对西苕溪流域未来洪水影响研究—Ⅱ.情景分析.长江流域资源与环境,2011,20(04):508-512.
    陆桂华,闫桂霞,吴志勇,等.近50年来中国干旱化特征分析.水利水电技术,2010,41(3):78-82.气候变化国家评估报告编写委员会.气候变化国家评估报告.北京:科学出版社,2007.
    邵薇薇.中国非湿润地区植被与流域水循环相互作用机理研究[博士学位论文].北京:清华大学水利工程系,2009.
    石朋,芮孝芳,瞿思敏,等.一个网格型松散结构分布式水文模型的构建.水科学进展,2008,19(5):662-670.
    田汉勤,徐小锋,宋霞.干旱对陆地生态系统生产力的影响.植物生态学报,2007,31(2):231-241.
    汪潇,张增祥,赵晓丽,等.遥感监测土壤水分研究综述.土壤学报,2007,44(01):157-163.
    王纯枝,毛留喜,何延波,等.温度植被干旱指数法(TVDI)在黄淮海平原土壤湿度反演中的应用研究.土壤通报,2009,40(5):998-1005.
    王国庆,王苗苗,贺瑞敏,等.可变下渗容量模型及其在黄河流域的应用.干旱区地理,2009,32(03):397-402.
    王宏,李晓兵,莺歌,等.基于NOAANDVI的植被生长季模拟方法研究.地理科学进展,2006,25(06):21-32.
    王继林,于洪波,何虎林,等.物候观测与造林树种的选择.甘肃科技,2006,12(12):218-219.
    吴志勇,郭红丽,金君良,等.气候变化情景下黑河流域极端水文事件的响应.水电能源科学,2010,28(02):7-9.
    夏军,王纲胜,谈戈,等.水文非线性系统与分布式时变增益模型.中国科学D辑:地球科学,2004,34(11):1062-1071.
    谢正辉,苏凤阁,曾庆存,等.具有Horton及Dunne机制的径流模型在VIC模型中的应用(英).AdvancesinAtmosphericSciences,2003,20(02):165-172.
    徐联,申俊初,翟英涛.影响土壤水分观测精确度的原因及观测注意事项探讨.贵州气象,2011,35(04):52-53.
    许继军.分布式水文模型在长江流域的应用研究[博士学位论文].北京:清华大学水利工程系,2007.
    薛龙琴,陈海波,师丽魁.河南省自动土壤水分监测网的建设与运行管理.气象与环境科学,2011,34(04):84-87.
    杨涛,宫辉力,李小娟,等.土壤水分遥感监测研究进展.生态学报,2010,30(22):6264-6277.
    俞鑫颖,刘新仁.分布式冰雪融水雨水混合水文模型.河海大学学报:自然科学版,2002,30(5):23-27.
    张俊,郭生练,陈华,等.与MM5气象模式耦合的VIC分布式水文模型构建.人民长江,2008,39(08):92-95.
    张立军,梁宗锁.植物生理学.北京:科学出版社,2007.
    张利平,陈小凤,张晓琳,等.VIC模型与SWAT模型在中小流域径流模拟中的对比研究.长江流域资源与环境,2009,18(08):745-752.
    张霄羽,毕于运,李召良.遥感估算热惯量研究的回顾与展望.2008,27(3):166172.
    张学霞,葛全胜,郑景云.北京地区气候变化和植被的关系—基于遥感数据和物候资料的分析.植物生态学报,2004,28(04):499506.
    张学霞,葛全胜,郑景云.近50年北京植被对全球变暖的响应及其时效—基于遥感数据和物候资料的分析.生态学杂志,2005,24(02):123130.
    赵亮,王芳,杨志华,等.物候分化对天然草地群落生产力的影响.草业科学,2011,28(06):10481051.
    赵求东,叶柏生,丁永建,等.典型寒区流域水文过程模拟及分析.冰川冻土,2011,33(03):595605.
    朱求安,张万昌,赵登忠.基于PRISM和泰森多边形的地形要素日降水量空间插值研究.地理科学,2005,25(2):233238.
    Abdulla F A, Lettenmaier D P, Wood E F, et al. Application of a macroscale hydrologic model to estimate the water balance of the Arkansas Red River basin. Journal of Geophysical Research-atmospheres,1996,101(D3):7449-7459.
    Adegoke J O, Carleton A M. Relations between soil moisture and satellite vegetation indices in the US Corn Belt. Journal of Hydrometeorology,2002,3(4):395-405.
    Andreadis K M, Clark E A, Wood A W, et al. Twentieth-Century Drought in the Conterminous United States. Journal of Hydrometeorology,2005,6(6):985-1001.
    Baret F, Guyot G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment,1991,35(2-3):161-173.
    Bradley B A, Jacob R W, Hermance J F, et al. A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sensing of Environment,2007,106(2):137-145.
    Brown J F, Wardlow B D, Tadesse T, et al. The Vegetation Drought Response Index (VegDRI):A new integrated approach for monitoring drought stress in vegetation. GIScience&Remote sensing,2008,45(1):16-46.
    Cai G, Xue Y, Hu Y, et al. Soil moisture retrieval from MODIS data in Northern China Plain using thermal inertia model. International Journal of Remote Sensing,2007,28(16):3567-3581.
    Cayan D R, Kemmerdiener S A, Dettinger M D, et al. Changes in the onset of spring in the western United States. Bulletin of the American Meteorological Society,2001,82:399-415.
    Champagne C, Berg A, Belanger J, et al. Evaluation of soil moisture derived from passive microwave remote sensing over agricultural sites in Canada using ground-based soil moisture monitoring networks. International Journal of Remote Sensing,2010,31(14):3669-3690.
    Chen J, Jonsson P, Tamura M, et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sensing of Environment,2004,91(3-4):332-344.
    Cosby B J, Hornberger G M, Clapp R B, et al. A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils. Water Resources Research,1984, 20(6):682-690.
    Czikowsky M J, Fitzjarrald D R. Evidence of seasonal changes in evapotranspiration in eastern US hydrological records. Journal of Hydrometeorology,2004,5(5):974-988.
    de Beurs K M, Henebry G M. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sensing of Environment,2004,89(4):497-509.
    Do F C, Goudiaby V A, Gimenez O, et al. Environmental influence on canopy phenology in the dry tropics. Forest Ecology and Management,2005,215(1-3):319-328.
    Gao B. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment,1996,58(3):257-266.
    Hansen M C, Defries R S, Townshend J R G, et al. Global land cover classification at1km spatial resolution using a classification tree approach. International Journal of Remote Sensing,2000,21(6-7):1331-1364.
    Hardisky M A, Klemas V, and Smart R M. The influence of soil-salinity, growth form, and leaf moisture on the spectral radiance of spartina-alterniflora canopies. Photogrammetric Engineering and Remote Sensing,1983,49(1):77-83.
    Holben B N. Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing,1986,7(11):1417-1434.
    Holdridge L R. Determination of World Plant Formations From Simple Climatic Data. Science,1947,105(2727):367-368.
    Hosseini M, Saradjian M R. Multi-index-based soil moisture estimation using MODIS images. International Journal of Remote Sensing,2011,32(21):6799-6809.
    Idso S B, Jackson R D, Reginato R J. Extending the "Degree Day" Concept of Plant Phenological Development to Include Water Stress Effects. Ecology,1978,59(3):431-433.
    IPCC. Climate Change2007:The Physical Science Basis:Summary for Policymakers. Intergovernmental Panel on Climate Change, Geneva, Switzerland,2007.
    Jeong S, Ho C, Gim H, et al. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period1982-2008. Global Change Biology,2011,17(7):2385-2399.
    Jolly W M, Running S W. Effects of precipitation and soil water potential on drought deciduous phenology in the Kalahari. Global Change Biology,2004,10(3):303-308.
    Julien Y, Sobrino J A. Global land surface phenology trends from GIMMS database. International Journal of Remote Sensing,2009,30(13):3495-3513.
    Kaduk J, Heimann M. A prognostic phenology scheme for global terrestrial carbon cycle models. Climate Research,1996,6(1):1-19.
    Kang S, Running S W, Lim J, et al. A regional phenology model for detecting onset of greenness in temperate mixed forests, Korea:an application of MODIS leaf area index. Remote Sensing of Environment,2003,86(2):232-242.
    Karl T, Wright W. Atlas of Monthly Palmer Hydrological Drought Indices (1931-1983) for the Contiguous United States:Historical Climatology Series3-7. Asheville:National Climatic Data Center,1985
    Kobayashi K D, Fuchigami L H, English M J. Modeling temperature requirements for rest development in cornus-sericea. Journal of the American Society for Horticultural Science,1982,107(5):914-918.
    Kogan F N. Droughts of the Late1980s in the United States as Derived from NOAA Polar-Orbiting Satellite Data. Bulletin of the American Meteorological Society,1995,76(5):655-668.
    Korner C, Basler D. Phenology Under Global Warming. Science,2010,327:1461-1462.
    Lambers H, Chapin III F S, Pons T L. Plant Physiology Ecology (2nd edition). Springer Science+Business Media, LLC, New York,2008.
    Landsberg J J. Apple fruit bud development and growth-analysis and an empirical model. Annals of Botany,1974,38(158):1013-1023.
    Liang X, Lettenmaier D P, Wood E F, et al. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research,1994,99(D7):14415-14428.
    Liang X, Wood E F, Lettenmaier D P. Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global and Planetary Change,1996,13(1-4):195-206.
    Lloyd D. A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. International Journal of Remote Sensing,1990,11(12):2269-2279.
    Lohmann D, Mitchell K E, Houser P R, et al. Streamflow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System project. Journal of Geophysical Research (Atmospheres),2004,109(D07S91D7)
    Lohmann D, Nolteholube R, Raschke E. A large-scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus Series A-Dynamic Meteorology and Oceanography,1996,48(5):708-721.
    Lohmann D, Raschke E, Nijssen B, et al. Regional scale hydrology:I. Formulation of the VIC-2L model coupled to a routing model. Hydrological Sciences Journal (Journal Des Sciences Hydrologiques),1998,43(1):131-141.
    Lu H, Shi J C. Reconstruction and analysis of temporal and spatial variations in surface soil moisture in China using remote sensing. Chinese Science Bulletin,2012,57(22):2824-2834.
    Lucht W, Prentice I C, Myneni R B, et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science,2002,296(5573):1687-1689.
    Ma M, Veroustraete F. Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China. Advances in Space Research,2006,37(4):835-840.
    Menzel A, Fabian P. Growing season extended in Europe. Nature,1999,397(6721):659.
    Moulin S, Kergoat L, Viovy N, et al. Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements. Journal Of Climate,1997,10(6):1154-1170.
    Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from1981to1991. Nature,1997,386(6626):698-702.
    Narasimhan B, Srinivasan R. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology,2005,133(1-4):69-88.
    Nash J E, Sutcliffe J V. River flow forecasting through conceptual models part Ⅰ-A discussion of principles. Journal of Hydrology,1970,10(3):282-290.
    New M, Hulme M, Jones P. Representing Twentieth-Century Space-Time Climate Variability. Part I: Development of a1961-90Mean Monthly Terrestrial Climatology. Journal of Climate,1999,12(3):829-856.
    Palmer W. Meteorological drought. Washington DC:U.S. Weather Bureau,1965.
    Pan Y, Li X, Gong P, et al. An integrative classification of vegetation in China based on NOAA AVHRR and vegetation-climate indices of the Holdridge life zone. International Journal of Remote Sensing,2003,24(5):1009-1027.
    Piao S L, Fang J Y, Zhou L M, et al. Variations in satellite-derived phenology in China's temperate vegetation. Global Change Biology,2006a,12(4):672-685.
    Piao S, Friedlingstein P, Ciais P, et al. Effect of climate and CO2changes on the greening of the Northern Hemisphere over the past two decades. Geophysical Research Letters,2006b,33(23): L23402.
    Price J C. Thermal inertia mapping:new view of earth. Journal of Geophysical Research (Oceans and Atmospheres),1977,82(18):2582-2590.
    Rawls, J. W, Gimenez, et al. Use of soil texture, bulk density, and slope of the water retention curve to predict saturated hydraulic conductivity. Transactions of the ASAE,1998,41(4)
    Reed B C, Brown J F, Vanderzee D, et al. Measuring phenological variability from satellite imagery. Journal of Vegetation Science,1994,5(5):703-714.
    Rouse Jr J W, Haas R H, Shell J A, et al. Monitoring vegetation systems in the Great Plains with ERTS.//In S. C. Freden, E.P. Mercanti, and M. Becker (EDS.), Third Earth Resources Techonology Satellite-1Symposium. Technical presentations, section A, vol.1, Washington, DC:National Aeronautics and Space Administration (NASA SP-351),1973:309-317.
    Savitzky A, Golay M J E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry,1964,36(8):1627-1639.
    Seghieri J, Vescovo A, Padel K, et al. Relationships between climate, soil moisture and phenology of the woody cover in two sites located along the West African latitudinal gradient. Journal of Hydrology,2009,375(1-2):78-89.
    Shen M, Tang Y, Chen J, et al. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology,2011,151(12):1711-1722.
    Shinoda M, Ito S, Nachinshonhor G U, et al. Phenology of Mongolian Grasslands and Moisture Conditions. Journal of the Meteorological Society of Japan. Ser. II,2007,85(3):359-367.
    Sparks T H, Jeffree E P, Jeffree C E. An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. International Journal of Biometeorology,2000,44(2):82-87.
    Sridhar V, Hubbard K G, You J, et al. Development of the Soil Moisture Index to Quantify Agricultural Drought and Its "User Friendliness" in Severity-Area-Duration Assessment. Journal of Hydrometeorology,2008,9(4):660-676.
    Su F G, Adam J C, Bowling L C, et al. Streamflow simulations of the terrestrial Arctic domain. Journal of Geophysical Research (Atmospheres),2005,110(D08112D8).
    Su F G, Adam J C, Trenberth K E, et al. Evaluation of surface water fluxes of the pan-Arctic land region with a land surface model and ERA-40reanalysis. Journal of Geophysical Research (Atmospheres),2006,111(D05110D5).
    Tao F, Yokozawa M, Zhang Z, et al. Land surface phenology dynamics and climate variations in the North East China Transect (NECT),1982-2000. International Journal of Remote Sensing,2008,29(19):5461-5478.
    Thiessen A H. Precipitation averages for large areas. Monthly Weather Review,1911,39(7):1082-1089.
    Thompson S E, Harman C J, Konings A G, et al. Comparative hydrology across AmeriFlux sites: The variable roles of climate, vegetation, and groundwater. Water Resources Research,2011,47(W00J07)
    Tian F, Hu H, Lei Z. Thermodynamic watershed hydrological model:Constitutive relationship. Science in China Series E:Technological Sciences,2008,51(9):1353-1369.
    Tucker C J, Pinzon J E, Brown M E, et al. An extended AVHRR8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing,2005,26(20):4485-4498.
    Villegas D, Aparicio N, Blanco R, et al. Biomass accumulation and main stem elongation of durum wheat grown under Mediterranean conditions. Annals of Botany,2001,88(4):617-627.
    Wagener T, Sivapalan M, Troch P A, et al. The future of hydrology:An evolving science for a changing world. Water Resources Research,2010,46(5):W5301.
    Wang A, Bohn T J, Mahanama S P, et al. Multimodel Ensemble Reconstruction of Drought over the Continental United States. Journal of Climate,2009,22(10):2694-2712.
    Wang A, Lettenmaier D P, Sheffield J. Soil Moisture Drought in China,1950-2006. Journal of Climate,2011,24(13):3257-3271.
    Wang J Y. A critique of the heat unit approach to plant response studies. Ecology,1960,41:785-789.
    Wang L, Qu J J. NMDI:a normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophysical Research Letters,2007a,34(20): L20401-L20405.
    Wang X, Piao S, Ciais P, et al. Spring temperature change and its implication in the change of vegetation growth in North America from1982to2006. Proceedings of the National Academy of Sciences,2011,108(4):1240-1245.
    Wang X, Xie H, Guan H, et al. Different responses of MODIS-derived NDVI to root-zone soil moisture in semi-arid and humid regions. Journal of Hydrology,2007b,340(1-2):12-24.
    Weaver S E, Tan C S, Brain P. Effect of temperature and soil moisture on time of emergence of tomatoes and four weed species. Canadian Journal of Plant Science,1988,68(3):877-886.
    Wei H Y, Heilman P, Qi J G, et al. Assessing phenological change in China from1982to2006using AVHRR imagery. Frontiers of Earth Science,2012,6(3):227-236.
    White M A, Thornton P E, Running S W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles,1997,11(2):217-234.
    Wilhite D A, Glantz M H. Understanding:the Drought Phenomenon:The Role of Definitions. Water International,1985,10(3):111-120.
    Xie Z, Yuan F, Duan Q, et al. Regional Parameter Estimation of the VIC Land Surface Model: Methodology and Application to River Basins in China. Journal of Hydrometeorology,2007,8(3):447-468.
    Yang D, Li C, Hu H, et al. Analysis of water resources variability in the Yellow River of China during the last half century using historical data. Water Resources Research,2004,40(6): W6502.
    Yang D, Musiake K. A continental scale hydrological model using the distributed approach and its application to Asia. Hydrological Processes,2003,17(14):2855-2869.
    Yang X, Mustard J F, Tang J, et al. Regional-scale phenology modeling based on meteorological records and remote sensing observations. Journal of Geophysical Research (Biogeosciences),2012,117(G03029).
    Ye S, Yaeger M A, Coopersmith E, et al. Exploring the hysical controls of regional patterns5of flow duration curves-Part2:Role of seasonality and associated process controls. Hydrology and Earth System Sciences Discussion,2012,9:7035-7084, doi:10.5194/hessd-9-7035-2012.
    Yu F, Price K P, Ellis J, et al. Response of seasonal vegetation development to climatic variations in eastern central Asia. Remote Sensing of Environment,2003,87(1):42-54.
    Yu H, Luedeling E, Xu J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences,2010,107(51):22151-22156.
    Zhang X, Friedl M A, Schaaf C B, et al. Monitoring vegetation phenology using MODIS. Remote Sensing of Environment,2003,84(3):471-475.
    Zhang X, Tarpley D, and Sullivan J T. Diverse responses of vegetation phenology to a warming climate. Geophysical Research Letters,2007,34, L19405, doi:10.1029/2007GL031447.
    Zheng J, Ge Q, Hao Z, et al. Spring phenophases in recent decades over eastern China and its possible link to climate changes. Climatic Change,2006,77(3-4):449-462.
    Zheng J Y, Ge Q S, Hao Z X. Impacts of climate warming on plants phenophase in China for the last40years. Chinese Science Bulletin,2002,47:1826-1831.
    Zhou L M, Tucker C J, Kaufmann R K, et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during1981to1999. Journal of Geophysical Research (Atmospheres),2001,106(D17):20069-20083.
    Zhu C, Lettenmaier D P. Long-term climate and derived surface hydrology and energy flux data for Mexico:1925-2004. Journal of Climate,2007,20(9):1936-1946.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700