用户名: 密码: 验证码:
无镉半导体量子点的光致发光性质及其白光发光二极管应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶体量子点(QD)是可溶液加工的半导体纳米晶,具有尺寸可调谐的光电子性质,被广泛地应用在发光二极管(LED)、光伏电池和生物荧光标记等领域。量子点合成技术经过三十多年的发展,人们已经可以合成各种高质量的纳米材料,其光致发光效率可以达到90%以上。此外,经过科研人员的努力,基于量子点的QD-LED性能得到了很大的改善,其外量子效率(EQE)从不到0.01%提高到18%,已经接近于有机发光二极管(OLED)的外量子效率。但是这些量子点中大多含有Cd等重金属元素,严重影响我们的生存环境及量子点器件的商品化转换。因此,关于低毒性的,不含重金属的半导体量子点的研究被给予了广泛的关注,如I III VI族和过渡族金属掺杂量子点等。这些不含重金属的量子点的发光可通过尺寸与组分在可见和近红外区范围内调谐,其发光效率可达70-85%,适用于照明及显示等领域。然而,基于无镉量子点的发光二极管的性能远低于基于CdSe量子点的性能指标。因此,研究无镉量子点与发光二极管常用电荷传输材料间的相互作用及提高量子点自身的稳定性,对于优化无镉量子点发光器件性能具有重要的意义。本论文主要研究了无镉CuInS2-ZnS合金(ZnCuInS)量子点与有机电荷传输材料之间的能量传递过程,无镉Mn掺杂量子点的发光热稳定性和无镉Cu掺杂量子点在白光LED中的应用,获得如下创新性的研究结果:
     1、通过稳态和时间分辨光谱研究了无机/有机混合薄膜中从有机电荷传输材料到ZnCuInS量子点的能量传递过程。量子点发光强度的增加与有机电荷传输材料荧光寿命的变短说明发生了从供体有机电荷传输材料到受体量子点的能量传递过程。我们发现能量传递效率明显随着ZnCuInS量子点中Zn含量的减少和量子点尺寸的增加而迅速增大。这一结果与我们计算出的F rster半径随量子点尺寸的增加和Zn含量的减少从3nm增加到5nm的结果相吻合。此外,在小尺寸ZnCuInS量子点与电荷传输材料的混合体系中,观察到了量子点电荷分离相关的荧光猝灭现象。并基于能级取向,很好地解释了有机电荷传输材料与ZnCuInS量子点之间的能量传递和电荷分离过程。
     2、通过测量Mn:ZnS、Mn:ZnSe及Mn:ZnSeS量子点从80K到500K的变温发光强度及变温荧光寿命,研究了量子点发光的热稳定性。发现掺杂量子点基质的能级结构和壳层厚度严重影响了Mn2+离子发光的热稳定性。在500K温度下,Mn:ZnS的发光几乎没有被热猝灭,荧光量子效率仍然可以达到~50%。Mn:ZnSe及Mn:ZnSeS也表现出了很好的热稳定性,其热猝灭温度均超过了200oC,明显优于CdSe量子点。在加热-降温循环实验中发现,厚壳层的Mn掺杂量子点的发光是可逆的,但薄壳层的Mn掺杂量子点的发光只能部分恢复。此外,从理论上对Mn掺杂量子点的发光热稳定性机理进行了讨论。
     3、制备了基于具有超大斯托克斯位移的Cu:ZnInS/ZnS量子点的高效暖白光LED。通过非注入一锅法合成了发光颜色组分可调的Cu:ZnInS/ZnS量子点,其发光可从绿光逐渐调到深红光。将红、绿光Cu:ZnInS量子点与蓝光GaN基LED相结合制备出的白光LED,其显色指数可高达96,流明效率可达70-78lm/W,色温可在3800到5760K之间调节。通过时间分辨光谱的测量,发现在Cu:ZnInS量子点白光LED中,Cu:ZnInS量子点间的能量传递基本可以忽略,这与Cu:ZnInS量子点的吸收谱和发射谱之间的光谱交叠很小的结果相吻合。实验结果表明无镉Cu:ZnInS量子点适合应用于固态照明。
Colloidal quantum dots (QDs) are solution-processed nanoscale crystals ofsemiconducting materials. The QDs with unique size-dependent optical propertieshave been widely applied in light-emitting diodes (LEDs), photovoltaic cells, andbiological labels. After three decades’ development of synthesis technology for QDs,the photoluminescence (PL) quantum yield (QY) of QDs has reached90%.Moreover, the external quantum efficiency of QD-LEDs has increased to18%fromless than0.01%, which approaches to that of organic light emitting diodes (OLEDs).However, the intrinsic toxicity of elements such as cadmium potentially hinders theirultimate research transformation and commercialization. Zinc chalcogenide dopedwith transition metal ions and I-III-VI based semiconductor nanomaterials havemarkedly low toxicity and large ensemble Stokes shift, avoiding the self-absorptionprocess. These properties make them ideal for different optical applications. Thesecadmium-free QDs exhibit size-and composition-tunable emission from the visibleto NIR region and the PL QY up to70~85%, which make them relevant toapplications in solid state lighting and full color displays. Despite all, theperformances of LEDs based on cadmium-free QDs are much lower than thosebased on CdSe QDs. The energy transfer between QDs and charge transporting materials and the QD emission thermal stability are very important to optimize theperformances of QD-LEDs. Therefore, we study the energy transfer between chargetransporting materials and cadmium-free CuInS2-based QDs, the thermal stability ofcadmium-free Mn-doped QDs, and the applications of cadmium-free Cu-doped QDsin white LEDs. The original works are organized as follows:
     (1) The energy transfer processes from organic charge transporting materials(CTMs) to CuInS2-ZnS alloyed (ZCIS) QDs with different emission wavelengthwere studied by steady-state and time-resolved PL spectroscopy. The change in thePL excitation intensity of the ZCIS QDs and the PL decay time of the CTMs clearlydemonstrated an efficient energy transfer process in the ZCIS/CTM blend films. Itwas found that the efficiency of F rster resonance energy transfer significantlyincreases with increasing the particle size and decreasing the Zn content in the QDs,which is well consistent with the estimated F rster radii (R0) varying from3nm to5nm. In addition, the PL quenching of the QDs related to the charge separationprocess was also observed in some of the samples. The energy transfer and chargeseparation processes in the films were well explained based on the band alignmentbetween the ZCIS QDs and CTMs.
     (2) The thermal stability of luminescence is important for application of QDs inlight-emitting devices. The temperature-dependent PL intensities and decay times ofMn-doped ZnS, ZnSe, and ZnSeS alloyed core/shell QD films were studied in thetemperature range from80to500K by steady-state and time-resolved PLspectroscopy. It was found that the thermal stability of Mn-doped QD emissions wassignificantly dependent on the shell thickness and the host bandgap, which washigher than that of workhorse CdSe QDs. Nearly no PL quenching took place inMn:ZnS QDs with a thick ZnS shell, which kept a high PL QY of~50%even at500K. And the thermally stable PL was also observed in highly luminescent Mn:ZnSeand Mn:ZnSeS QDs with the quenching temperature over200oC. Further, thestability of Mn-doped QDs with different shell thickness at high temperature wasalso examined through heating-cooling cycling experiments. The PL quenching in the thick shell-coated Mn-doped QDs was almost totally recovered. The PLquenching mechanisms of the Mn2+ion emissions were discussed.
     (3) The efficient white LEDs based on Cu:ZnInS/ZnS core/shell QDs withsuper large Stokes shifts were fabricated. The composition-controllableCu:ZnInS/ZnS QDs with tunable emission from deep red to green wereprepared by a one-pot noninjection synthetic approach. The high performanceCu:ZnInS QD-white LEDs with colour rendering index up to96, luminousefficiency of70-78lm/W, and colour temperature of3800-5760K weresuccessfully fabricated by integration of red and green Cu-doped QDs.Negligible energy transfer between Cu-doped QDs was clearly found bymeasuring the PL lifetimes of the QDs, consistent with the small spectraloverlap between QD emission and absorption. The experimental resultsindicated low toxic Cu:ZnInS/ZnS QDs could be suitable for solid statelighting.
引文
[1] L. Esaki, R. Tsu. Superlattice and negative differential conductivity insemiconductors [J]. IBM J. Res. Develop.,1970,14(1):61-65
    [2] A. L. Efros, A. L. Efros. Interband absorption of light in a semiconductor sphere[J]. Soviet Phys. Semiconductors-USSR,1982,16(7):772-775
    [3] A. I. Ekimov, A. A. Onushchenko. Quantum size effect in3-dimensionalmicroscopic semiconductor crystals [J]. JETP Lett.,1981,34:345–349
    [4] L. Brus. A simple model for the ionization potential, electron affinity, andaqueous redox potentials of small semiconductor crystallites [J]. The J. Phys. Chem.,1983,79(11):5566-5571
    [5] A. Henglein. Small-particle research: Physicochemical properties of extremelysmall colloidal metal and semiconductor particles [J]. Chem. Rev.,1989,89(8):1861-1873
    [6] A. Yoffe. Low-dimensional systems: Quantum size effects and electronicproperties of semiconductor microcrystallites (zero-dimensional systems) and somequasi-two-dimensional systems [J]. Adv. in Phys.,1993,42(2):173-262
    [7] A. Yoffe. Semiconductor quantum dots and related systems: Electronic, optical,luminescence and related properties of low dimensional systems [J]. Adv. in Phys.,2001,50(1):1-208
    [8] C. M. Niemeyer. Nanoparticles, proteins, and nucleic acids: Biotechnology meetsmaterials science [J]. Angew. Chem. Int. Ed.,2001,40(22):4128-4158
    [9] Y. Shirasaki, G. J. Supran, M. G. Bawendi, et al. Emergence of colloidalquantum-dot light-emitting technologies [J]. Nat. Photonics,2013,7(1):13-23
    [10]S. Coe, W.-K. Woo, M. Bawendi, et al. Electroluminescence from singlemonolayers of nanocrystals in molecular organic devices [J]. Nature,2002,420(6917):800-803
    [11]A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, et al.Depleted-heterojunction colloidal quantum dot solar cells [J]. ACS Nano,2010,4(6):3374-3380
    [12]K. Dohnalová, A. N. Poddubny, A. A. Prokofiev, et al. Surface brightens up siquantum dots: Direct bandgap-like size-tunable emission [J]. Light: Sci. Appl.,2013,2(1): e47
    [13]V. I. Klimov. Mechanisms for photogeneration and recombination ofmultiexcitons in semiconductor nanocrystals: Implications for lasing and solar energyconversion [J]. J. Phys. Chem. B,2006,110(34):16827-16845
    [14]Y. Wang, A. Suna, J. McHugh, et al. Optical transient bleaching ofquantum-confined CdS clusters: The effects of surface-trapped electron–hole pairs [J].The J. Phys. Chem.,1990,92(11):6927-6939
    [15]R. Beaulac, P. I. Archer, S. T. Ochsenbein, et al. Mn2+-doped CdSe quantum dots:New inorganic materials for spin-electronics and spin-photonics [J]. Adv. Funct.Mater.,2008,18(24):3873-3891
    [16]中国科学院、吉林物理所、中国科学技术大学、固体发光编写组.固体发光[M].1976.
    [17]A. Hazarika, A. Layek, S. De, et al. Ultranarrow and widely tunableMn2+-induced photoluminescence from single Mn-doped nanocrystals of ZnS-CdSalloys [J]. Phys. Rev. Lett.,2013,110(26):267401
    [18]R. Xie, U. Kolb, J. Li, et al. Synthesis and characterization of highly luminescentCdSe core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals [J]. J. Am. Chem. Soc.,2005,127(20):7480-7488
    [19]N. Pradhan, D. M. Battaglia, Y. Liu, et al. Efficient, stable, small, andwater-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels [J].Nano Lett.,2007,7(2):312-317
    [20]A. R. Maity, S. Palmal, S. Basiruddin, et al. Doped semiconductor nanocrystalbased fluorescent cellular imaging probes [J]. Nanoscale,2013,5(12):5506-5513
    [21]S. Cao, J. Zheng, J. Zhao, et al. Highly efficient and well-resolved Mn2+ionemission in MnS/ZnS/CdS quantum dots [J]. J. Mater. Chem. C,2013,1(14):2540-2547
    [22]X. Wang, X. Yan, W. Li, et al. Doped quantum dots for white-light-emittingdiodes without reabsorption of multiphase phosphors [J]. Adv. Mater.,2012,24(20):2742-2747
    [23]X. Yuan, J. Zheng, R. Zeng, et al. Thermal stability of Mn2+ion luminescence inMn-doped core-shell quantum dots [J]. Nanoscale,2014,6(1):300-307
    [24]S. Sarkar, N. S. Karan, N. Pradhan. Ultrasmall color-tunable copper-dopedternary semiconductor nanocrystal emitters [J]. Angew. Chem. Int. Ed.,2011,50(27):6065-6069
    [25]W. Zhang, X. Zhou, X. Zhong. One-pot noninjection synthesis of Cu-dopedZnxCd1-xS nanocrystals with emission color tunable over entire visible spectrum [J].Inorg. Chem.,2012,51(6):3579-3587
    [26]W. Zhang, Q. Lou, W. Ji, et al. Color-tunable highly bright photoluminescence ofcadmium-free Cu-doped Zn-In-S nanocrystals and electroluminescence [J]. Chem.Mater.,2014,26(2):1204-1212
    [27]N. Pradhan, X. Peng. Efficient and color-tunable Mn-doped ZnSe nanocrystalemitters: Control of optical performance via greener synthetic chemistry [J]. J. Am.Chem. Soc.,2007,129(11):3339-3347
    [28]P. K. Santra, P. V. Kamat. Mn-doped quantum dot sensitized solar cells: Astrategy to boost efficiency over5%[J]. J. Am. Chem. Soc.,2012,134(5):2508-2511
    [29]V. Wood, J. E. Halpert, M. J. Panzer, et al. Alternating current drivenelectroluminescence from ZnSe/ZnS:Mn/ZnS nanocrystals [J]. Nano Lett.,2009,9(6):2367-2371
    [30]H. Yang, P. H. Holloway. Electroluminescence from hybrid conjugatedpolymer-CdS:Mn/ZnS core/shell nanocrystals devices [J]. J. Phys. Chem. B,2003,107(36):9705-9710
    [31]S. K. Panda, S. G. Hickey, H. V. Demir, et al. Bright white-light emittingmanganese and copper co-doped ZnSe quantum dots [J]. Angew. Chem. Int. Ed.,2011,50(19):4432-4436
    [32]H.-F. Wang, Y. He, T.-R. Ji, et al. Surface molecular imprinting on Mn-dopedZnS quantum dots for room-temperature phosphorescence optosensing ofpentachlorophenol in water [J]. Anal. Chem.,2009,81(4):1615-1621
    [33]Y. He, H. F. Wang, X. P. Yan. Self-assembly of Mn-doped ZnS quantumdots/octa (3-aminopropyl) octasilsequioxane octahydrochloride nanohybrids foroptosensing DNA [J]. Chem. Eur. J.,2009,15(22):5436-5440
    [34]P. Wu, L. N. Miao, H. F. Wang, et al. A multidimensional sensing device for thediscrimination of proteins based on manganese-doped ZnS quantum dots [J]. Angew.Chem. Int. Ed.,2011,50(35):8118-8121
    [35]M. Geszke-Moritz, G. Clavier, J. Lulek, et al. Copper-or manganese-doped ZnSquantum dots as fluorescent probes for detecting folic acid in aqueous media [J]. J.Lumin.,2012,132(4):987-991
    [36]F. V. Mikulec, M. Kuno, M. Bennati, et al. Organometallic synthesis andspectroscopic characterization of manganese-doped CdSe nanocrystals [J]. J. Am.Chem. Soc.,2000,122(11):2532-2540
    [37]S. C. Erwin, L. Zu, M. I. Haftel, et al. Doping semiconductor nanocrystals [J].Nature,2005,436(7047):91-94
    [38]N. Pradhan, D. Goorskey, J. Thessing, et al. An alternative of CdSe nanocrystalemitters: Pure and tunable impurity emissions in ZnSe nanocrystals [J]. J. Am. Chem.Soc.,2005,127(50):17586-17587
    [39]R. Thakar, Y. Chen, P. T. Snee. Efficient emission from core/(doped) shellnanoparticles: Applications for chemical sensing [J]. Nano Lett.,2007,7(11):3429-3432
    [40]Y. Yang, O. Chen, A. Angerhofer, et al. On doping CdS/ZnS core/shellnanocrystals with Mn [J]. J. Am. Chem. Soc.,2008,130(46):15649-15661
    [41]D. H. Son, S. M. Hughes, Y. Yin, et al. Cation exchange reactions in ionicnanocrystals [J]. Science,2004,306(5698):1009-1012
    [42]R. Beaulac, P. I. Archer, J. van Rijssel, et al. Exciton storage by Mn2+in colloidalMn2+-doped CdSe quantum dots [J]. Nano Lett.,2008,8(9):2949-2953
    [43]D. Awschalom, J. Warnock, S. Von. Molnar. Low-temperature magneticspectroscopy of a dilute magnetic semiconductor [J]. Phys. Rev. Lett.,1987,58(8):812
    [44]R. Beaulac, L. Schneider, P. I. Archer, et al. Light-induced spontaneousmagnetization in doped colloidal quantum dots [J]. Science,2009,325(5943):973-976
    [45]B. Chen, H. Zhong, M. Wang, et al. Integration of CuInS2-based nanocrystals forhigh efficiency and high colour rendering white light-emitting diodes [J]. Nanoscale,2013,5(8):3514-3519
    [46]T. Torimoto, T. Adachi, K.-i. Okazaki, et al. Facile synthesis of ZnS-AgInS2solidsolution nanoparticles for a color-adjustable luminophore [J]. J. Am. Chem. Soc.,2007,129(41):12388-12389
    [47]Y. Jiang, Y. Wu, X. Mo, et al. Elemental solvothermal reaction to produce ternarysemiconductor CuInE2(E=S, Se) nanorods [J]. Inorg. Chem.,2000,39(14):2964-2965
    [48]Q. Lu, J. Hu, K. Tang, et al. Synthesis of nanocrystalline CuMS2(M=In or Ga)through a solvothermal process [J]. Inorg. Chem.,2000,39(7):1606-1607
    [49]S. L. Castro, S. G. Bailey, R. P. Raffaelle, et al. Nanocrystalline chalcopyritematerials (CuInS2and CuInSe2) via low-temperature pyrolysis of molecularsingle-source precursors [J]. Chem. Mater.,2003,15(16):3142-3147
    [50]C. Murray, D. J. Norris, M. G. Bawendi. Synthesis and characterization of nearlymonodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites [J].J. Am. Chem. Soc.,1993,115(19):8706-8715-
    [51]D. Pan, L. An, Z. Sun, et al. Synthesis of Cu-In-S ternary nanocrystals withtunable structure and composition [J]. J. Am. Chem. Soc.,2008,130(17):5620-5621
    [52]R. Xie, M. Rutherford, X. Peng. Formation of high-quality--Vsemiconductor nanocrystals by tuning relative reactivity of cationic precursors [J]. J.Am. Chem. Soc.,2009,131(15):5691-5697
    [53]H. Nakamura, W. Kato, M. Uehara, et al. Tunable photoluminescence wavelengthof chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidalsystem [J]. Chem. Mater.,2006,18(14):3330-3335
    [54]L. Li, A. Pandey, D. J. Werder, et al. Efficient synthesis of highly luminescentcopper indium sulfide-based core/shell nanocrystals with surprisingly long-livedemission [J]. J. Am. Chem. Soc.,2011,133(5):1176-1179
    [55]K.-T. Kuo, D.-M. Liu, S.-Y. Chen, et al. Core-shell CuInS2/ZnS quantum dotsassembled on short Zno nanowires with enhanced photo-conversion efficiency [J]. J.Mater. Chem.,2009,19(37):6780-6788
    [56]T.-L. Li, Y.-L. Lee, H. Teng. High-performance quantum dot-sensitized solarcells based on sensitization with CuInS2quantum dots/CdS heterostructure [J]. EnergyEnviron. Sci.,2012,5(1):5315-5324
    [57]P. K. Santra, P. V. Nair, K. George Thomas, et al. CuInS2-sensitized quantum dotsolar cell. Electrophoretic deposition, excited-state dynamics, and photovoltaicperformance [J]. J. Phys. Chem. Lett.,2013,4(5):722-729
    [58]H. McDaniel, N. Fuke, N. S. Makarov, et al. An integrated approach to realizinghigh-performance liquid-junction quantum dot sensitized solar cells [J]. Naturecommunications,2013,4:2887
    [59]Z. Pan, H. Zhang, K. Cheng, et al. Highly efficient inverted type-i CdS/CdSecore/shell structure qd-sensitized solar cells [J]. ACS Nano,2012,6(5):3982-3991
    [60]J. Wang, I. Mora-Seró, Z. Pan, et al. Core/shell colloidal quantum dot exciplexstates for the development of highly efficient quantum-dot-sensitized solar cells [J]. J.Am. Chem. Soc.,2013,135(42):15913-15922
    [61]L. Li, T. J. Daou, I. Texier, et al. Highly luminescent CuInS2/ZnS core/shellnanocrystals: Cadmium-free quantum dots for in vivo imaging [J]. Chem. Mater.,2009,21(12):2422-2429
    [62]T. Pons, E. Pic, N. Lequeux, et al. Cadmium-free CuInS2/ZnS quantum dots forsentinel lymph node imaging with reduced toxicity [J]. Acs Nano,2010,4(5):2531-2538
    [63]Z. Tan, Y. Zhang, C. Xie, et al. Near-band-edge electroluminescence fromheavy-metal-free colloidal quantum dots [J]. Adv. Mater.,2011,23(31):3553-3558
    [64]B. Chen, H. Zhong, W. Zhang, et al. Highly emissive and color-tunableCuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects andimproved electroluminescence performance [J]. Adv. Funct. Mater.,2012,22(10):2081-2088
    [65]J. Y. Tsao. Light emitting diodes (LEDs) for general illumination: An OIDAtechnology roadmap update, optoelectronics industry development association(OIDA), Washington, DC, USA.;2002.
    [66]C. C. Lin, R.-S. Liu. Advances in phosphors for light-emitting diodes [J]. J. Phys.Chem. Lett.,2011,2(11):1268-1277
    [67]H. S. Jang, H. Yang, S. W. Kim, et al. White light-emitting diodes with excellentcolor rendering based on organically capped CdSe quantum dots and Sr3SiO5:Ce3+,Li+phosphors [J]. Adv. Mater.,2008,20(14):2696-2702
    [68]V. Wood, V. Bulovi. Colloidal quantum dot light-emitting devices [J]. NanoRev.,2010,1:5202
    [69]Q. Dai, C. E. Duty, M. Z. Hu. Semiconductor-nanocrystals-based whitelight-emitting diodes [J]. Small,2010,6(15):1577-1588
    [70]V. Colvin, M. Schlamp, A. Alivisatos. Light-emitting diodes made from cadmiumselenide nanocrystals and a semiconducting polymer [J]. Nature,1994,370(6488):354-357
    [71]J. Zhao, J. A. Bardecker, A. M. Munro, et al. Efficient CdSe/CdS quantum dotlight-emitting diodes using a thermally polymerized hole transport layer [J]. NanoLett.,2006,6(3):463-467
    [72]A. H. Mueller, M. A. Petruska, M. Achermann, et al. Multicolor light-emittingdiodes based on semiconductor nanocrystals encapsulated in gan charge injectionlayers [J]. Nano Lett.,2005,5(6):1039-1044
    [73]S. Coe-Sullivan. Nanotechnology for displays: A potential breakthrough forOLED displays and LCDs. Display week2012.
    [74]J. Kwak, W. K. Bae, D. Lee, et al. Bright and efficient full-color colloidalquantum dot light-emitting diodes using an inverted device structure [J]. Nano Lett.,2012,12(5):2362-2366
    [75]T.-H. Kim, K.-S. Cho, E. K. Lee, et al. Full-colour quantum dot displaysfabricated by transfer printing [J]. Nat. Photonics,2011,5(3):176-182
    [76]Y. Li, A. Rizzo, R. Cingolani, et al. Bright white-light-emitting device fromternary nanocrystal composites [J]. Adv. Mater.,2006,18(19):2545-2548
    [77]A. Rizzo, M. Mazzeo, M. Biasiucci, et al. White electroluminescence from amicrocontact-printing-deposited CdSe/ZnS colloidal quantum-dot monolayer [J].Small,2008,4(12):2143-2147
    [78]P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, et al. Electroluminescence from amixed red green blue colloidal quantum dot monolayer [J]. Nano Lett.,2007,7(8):2196-2200
    [79]H. S. Chen, S. J. J. Wang, C. J. Lo, et al. White-light emission fromorganics-capped ZnSe quantum dots and application in white-light-emitting diodes [J].Appl. Phys. Lett.,2005,86(13):131905
    [80]H.-Y. Lu, S.-Y. Chu, S.-S. Tan. The low-temperature synthesis and opticalproperties of near-white light emission nanophosphors based on manganese-dopedzinc sulfide [J]. Jpn. J. Appl. Phys.,2005,44(7R):5282
    [81]A. Nag, D. D. Sarma. White light from Mn2+-doped CdS nanocrystals: A newapproach [J]. J. Phys. Chem. C,2007,111(37):13641-13644
    [82]G. Blasse, B. C. Grabmaier. Luminescent materials [M]. Springer,Berlin,1994,chap.1
    [83]J. R. Lakowicz. Principles of fluorescence spectroscopy [M].3rd ed.Springer-verlag: Berlin, germany,.2006
    [84]徐叙瑢,苏勉曾.发光学与发光材料[M].北京:化学工业出版社,2004
    [85]许少鸿.固体发光[M].清华大学出版社,2011
    [86]P. Anikeeva, C. Madigan, J. Halpert, et al. Electronic and excitonic processes inlight-emitting devices based on organic materials and colloidal quantum dots [J]. Phys.Rev. B,2008,78(8):085434
    [87]W. U. Huynh, J. J. Dittmer, A. P. Alivisatos. Hybrid nanorod-polymer solar cells[J]. science,2002,295(5564):2425-2427
    [88]H. Zhong, S. S. Lo, T. Mirkovic, et al. Noninjection gram-scale synthesis ofmonodisperse pyramidal CuInS2nanocrystals and their size-dependent properties [J].ACS nano,2010,4(9):5253-5262
    [89]J. Zhang, R. Xie, W. Yang. A simple route for highly luminescent quaternaryCu-Zn-In-S nanocrystal emitters [J]. Chem. Mater.,2011,23(14):3357-3361
    [90]W. Zhang, X. Zhong. Facile synthesis of ZnS-CuInS2-alloyed nanocrystals for acolor-tunable fluorchrome and photocatalyst [J]. Inorg. Chem.,2011,50(9):4065-4072
    [91]D. Pan, D. Weng, X. Wang, et al. Alloyed semiconductor nanocrystals with broadtunable band gaps [J]. Chem. Commun.,2009,(28):4221-4223
    [92]A. R. Clapp, I. L. Medintz, J. M. Mauro, et al. Fluorescence resonance energytransfer between quantum dot donors and dye-labeled protein acceptors [J]. J. Am.Chem. Soc.,2004,126(1):301-310
    [93]S. Sadhu, A. Patra. Composition effects on quantum dot-based resonance energytransfer [J]. Appl. Phys. Lett.,2008,93(18):183104-183104-3
    [94]M. Lunz, A. L. Bradley, V. A. Gerard, et al. Concentration dependence of f rsterresonant energy transfer between donor and acceptor nanocrystal quantum dot layers:Effect of donor-donor interactions [J]. Phys. Rev. B,2011,83(11):115423
    [95]A. A. Lutich, G. Jiang, A. S. Susha, et al. Energy transfer versus chargeseparation in type-ii hybrid organic inorganic nanocomposites [J]. Nano Lett.,2009,9(7):2636-2640
    [96]P. Jing, X. Yuan, W. Ji, et al. Shell-dependent energy transfer from1,3,5-tris(n-phenylbenzimidazol-2, yl) benzene to CdSe core/shell quantum dots [J]. J. Phys.Chem. C,2010,114(45):19256-19262
    [97]P. Jing, X. Yuan, W. Ji, et al. Efficient energy transfer from hole transportingmaterials to CdSe-core CdS/ZnCdS/ZnS-multishell quantum dots in type ii alignedblend films [J]. Appl. Phys. Lett.,2011,99(9):093106
    [98]I. Moreels, K. Lambert, D. De Muynck, et al. Composition and size-dependentextinction coefficient of colloidal pbse quantum dots [J]. Chem. Mater.,2007,19(25):6101-6106
    [99]W. W. Yu, L. Qu, W. Guo, et al. Experimental determination of the extinctioncoefficient of CdTe, CdSe, and CdS nanocrystals [J]. Chem. Mater.,2003,15(14):2854-2860
    [100] P. T. Chin, R. A. Hikmet, R. A. Janssen. Energy transfer in hybrid quantumdot light-emitting diodes [J]. J. Appl. Phys.,2008,104(1):013108
    [101] S. Kaufmann, T. Stoferle, N. Moll, et al. Resonant energy transfer within acolloidal nanocrystal polymer host system [J]. Appl. Phys. Lett.,2007,90(7):071108
    [102] P. Anikeeva, C. Madigan, S. Coe-Sullivan, et al. Photoluminescence ofCdSe/ZnS core/shell quantum dots enhanced by energy transfer from aphosphorescent donor [J]. Chem. Phys. Lett.,2006,424(1):120-125
    [103] M. Anni, L. Manna, R. Cingolani, et al. F rster energy transfer fromblue-emitting polymers to colloidal CdSe∕ZnS core shell quantum dots [J]. Appl.Phys. Lett.,2004,85(18):4169-4171
    [104] W. Zhang, Y. Li, H. Zhang, et al. Facile synthesis of highly luminescentMn-doped ZnS nanocrystals [J]. Inorg. Chem.,2011,50(20):10432-10438
    [105] R. Zeng, T. Zhang, G. Dai, et al. Highly emissive, color-tunable,phosphine-free Mn:ZnSe/ZnS core/shell and Mn:ZnSeS shell-alloyed dopednanocrystals [J]. J. Phys. Chem. C,2011,115(7):3005-3010
    [106] D. Norris, N. Yao, F. Charnock, et al. High-quality manganese-doped ZnSenanocrystals [J]. Nano Lett.,2001,1(1):3-7
    [107] W. Chen, A. G. Joly, J.-O. Malm, et al. Full-color emission and temperaturedependence of the luminescence in poly-p-phenylene ethynylene-ZnS/Mn2+composite particles [J]. J. Phys. Chem. B,2003,107(27):6544-6551
    [108] Y. Zhao, C. Riemersma, F. Pietra, et al. High-temperature luminescencequenching of colloidal quantum dots [J]. ACS Nano,2012,6(10):9058-9067
    [109] V. Bachmann, C. Ronda, A. Meijerink. Temperature quenching of yellowCe3+luminescence in YAG:Ce [J]. Chem. Mater.,2009,21(10):2077-2084
    [110] J. Zheng, W. Ji, X. Wang, et al. Improved photoluminescence of MnS/ZnScore/shell nanocrystals by controlling diffusion of Mn ions into the ZnS shell [J]. J.Phys. Chem. C,2010,114(36):15331-15336
    [111] Y. Yang, O. Chen, A. Angerhofer, et al. Radial-position-controlled doping ofCdS/ZnS core/shell nanocrystals: Surface effects and position-dependent properties[J]. Chem. Eur. J.,2009,15(13):3186-3197
    [112] H.-Y. Chen, S. Maiti, D. H. Son. Doping location-dependent energy transferdynamics in Mn-doped CdS/ZnS nanocrystals [J]. ACS nano,2012,6(1):583-591
    [113] H. Menkara, R. Gilstrap, T. Morris, et al. Development of nanophosphors forlight emitting diodes [J]. Opt. Express,2011,19(104): A972-A981
    [114] R. Zeng, M. Rutherford, R. Xie, et al. Synthesis of highly emissiveMn-doped ZnSe nanocrystals without pyrophoric reagents [J]. Chem. Mater.,2010,22(6):2107-2113
    [115] J. Zheng, X. Yuan, M. Ikezawa, et al. Efficient photoluminescence of Mn2+ions in Mns/ZnS core/shell quantum dots [J]. J. Phys. Chem. C,2009,113(39):16969-16974
    [116] W. Chen, F. Su, G. Li, et al. Temperature and pressure dependences of theMn2+and donor–acceptor emissions in ZnS: Mn2+nanoparticles [J]. J. Appl. Phys.,2002,92(4):1950-1955
    [117] P. Jing, J. Zheng, M. Ikezawa, et al. Temperature-dependentphotoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots [J]. J.Phys. Chem. C,2009,113(31):13545-13550
    [118] E. J. McLaurin, V. A. Vlaskin, D. R. Gamelin. Water-soluble dual-emittingnanocrystals for ratiometric optical thermometry [J]. J. Am. Chem. Soc.,2011,133(38):14978-14980
    [119] V. A. Vlaskin, N. Janssen, J. van Rijssel, et al. Tunable dual emission indoped semiconductor nanocrystals [J]. Nano Lett.,2010,10(9):3670-3674
    [120] R. Beaulac, P. I. Archer, D. R. Gamelin. Luminescence in colloidalMn2+-doped semiconductor nanocrystals [J]. J. Solid State Chem.,2008,181(7):1582-1589
    [121] H. Y. Chen, D. H. Son. Energy and charge transfer dynamics in dopedsemiconductor nanocrystals [J]. Isr. J. Chem.,2012,52(11-12):1016-1026
    [122] K. P. Kadlag, M. J. Rao, A. Nag. Ligand-free, colloidal, and luminescentmetal sulfide nanocrystals [J]. J. Phys. Chem. Lett.,2013,4(10):1676-1681
    [123] G. Morello, M. Anni, P. D. Cozzoli, et al. Picosecond photoluminescencedecay time in colloidal nanocrystals: The role of intrinsic and surface states [J]. J.Phys. Chem. C,2007,111(28):10541-10545
    [124] J. F. Suyver, J. J. Kelly, A. Meijerink. Temperature-induced line broadening,line narrowing and line shift in the luminescence of nanocrystalline ZnS:Mn2+[J]. J.Lumin.,2003,104:187–196
    [125] E. F. Schubert, J. K. Kim. Solid-state light sources getting smart [J]. Science,2005,308(5726):1274-1278
    [126] M. Sun, D. Zhu, W. Ji, et al. Exploring the effect of band alignment andsurface states on photoinduced electron transfer from CuInS2/CdS core/shell quantumdots to TiO2electrodes [J]. ACS Appl. Mater. Interfaces,2013,5(23):12681-12688
    [127] E. Jang, S. Jun, H. Jang, et al. White-light-emitting diodes with quantum dotcolor converters for display backlights [J]. Adv. Mater.,2010,22(28):3076-3080
    [128] A. Lita, A. L. Washington, L. van de Burgt, et al. Stable efficient solid-statewhite-light-emitting phosphor with a high scotopic/photopic ratio fabricated fromfused CdSe-silica nanocomposites [J]. Adv. Mater.,2010,22(36):3987-3991
    [129] J. Kundu, Y. Ghosh, A. M. Dennis, et al. Giant nanocrystal quantum dots:Stable down-conversion phosphors that exploit a large stokes shift and efficientshell-to-core energy relaxation [J]. Nano Lett.,2012,12(6):3031-3037
    [130] X. Yuan, J. Zhao, P. Jing, et al. Size-and composition-dependent energytransfer from charge transporting materials to ZnCuInS quantum dots [J]. J. Phys.Chem. C,2012,116(22):11973-11979
    [131] K. H. Ku, M. P. Kim, K. Paek, et al. Multicolor emission of hybrid blockcopolymer–quantum dot microspheres by controlled spatial isolation of quantum dots[J]. Small,2013,9(16):2667-2672
    [132] W.-S. Song, H. Yang. Fabrication of white light-emitting diodes based onsolvothermally synthesized copper indium sulfide quantum dots as color converters[J]. Appl. Phys. Lett.,2012,100(18):183104
    [133] P. Mandal, S. Talwar, S. Major, et al. Orange-red luminescence from Cudoped CdS nanophosphor prepared using mixed langmuir-blodgett multilayers [J]. J.Phys. Chem.,2008,128(11):114703
    [134] C. Corrado, Y. Jiang, F. Oba, et al. Synthesis, structural, and opticalproperties of stable ZnS:Cu nanocrystals [J]. J. Phys. Chem. A,2009,113(16):3830-3839
    [135] S. Jana, B. B. Srivastava, S. Acharya, et al. Prevention of photooxidation inblue–green emitting Cu doped ZnSe nanocrystals [J]. Chem. Commun.,2010,46(16):2853-2855
    [136] R. Xie, X. Peng. Synthesis of Cu-doped inp nanocrystals (d-dots) with ZnSediffusion barrier as efficient and color-tunable NIR emitters [J]. J. Am. Chem. Soc.,2009,131(30):10645-10651
    [137] W. Chung, H. Jung, C. H. Lee, et al. Fabrication of high color renderingindex white LED using Cd-free wavelength tunable Zn doped CuInS2nanocrystals [J].Opt. Express,2012,20(22):25071-25076
    [138] M. J. Bowers, J. R. McBride, S. J. Rosenthal. White-light emission frommagic-sized cadmium selenide nanocrystals [J]. J. Am. Chem. Soc.,2005,127(44):15378-15379
    [139] H. V. Demir, S. Nizamoglu, T. Erdem, et al. Quantum dot integrated LEDsusing photonic and excitonic color conversion [J]. Nano Today,2011,6(6):632-647
    [140] D. J. Norris, A. L. Efros, S. C. Erwin. Doped nanocrystals [J]. Science,2008,319(5871):1776-1779
    [141] X. Wang, W. Li, K. Sun. Stable efficient CdSe/CdS/ZnS core/multi-shellnanophosphors fabricated through a phosphine-free route for whitelight-emitting-diodes with high color rendering properties [J]. J. Mater. Chem.,2011,21(24):8558-8565
    [142] S. Nizamoglu, G. Zengin, H. V. Demir. Color-converting combinations ofnanocrystal emitters for warm-white light generation with high color rendering index[J]. Appl. Phys. Lett.,2008,92(3):031102
    [143] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, et al. Status and future ofhigh-power light-emitting diodes for solid-state lighting [J]. J. Display Technol.,2007,3(2):160-175

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700