用户名: 密码: 验证码:
某些硫(-Ⅱ)化合物及氧化中间物的氧化反应动力学与机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用高效液相色谱(HPLC)、毛细管电泳(CE)和紫外可见光分光光度法(UV-Vis)等多种分析方法,结合色质联用技术,对硫(-II)化合物(硫氰酸盐SCN-、硫脲Tu)及其氧化中间物的氧化反应动力学进行了系统研究,以揭示其详细反应机理,推进硫(-II)化合物氧化反应非线性机理和硫物种病理机制的研究进展。
     建立了针对H2O2-SCN-氧化反应体系动力学测定的毛细管电泳间接紫外法和高效液相色谱测定方法。可在pH8.86-10.03范围内实现所有物种的基线分离,满足定性和定量分析要求。通过HPLC和CE可分别获得SCN-、H2O2和SCN-、SO42-、OCN-浓度-时间曲线。修正了Christy和Egeberg的研究关键结论:动力学分析证明弱碱性介质中,OxSCN-(x=1,2,3)为短寿命中间物,而不是CE可测定的稳定中间物;通过初始速率法计算获得反应对SCN-为一级,而不是零级。发现缓冲溶液性质影响总反应速率,按铵盐、磷酸盐、碳酸盐和硼酸盐的顺序,反应速率加快,总反应级数不受影响。由于形成过硼酸,硼酸盐对反应具有催化作用;碳酸根与H2O2形成活性过碳酸根而促进过氧化氢分解为氧气,碳酸盐则使化学反应计量比(H2O2/SCN-)明显增大。提出了基于不同缓冲溶液的动力学机理,较好的解释实验现象,并成功拟合动力学曲线(5个pH值、4种物种,共4800个数据点),误差均控制在5%以内。
     二氧化硫脲(TuO2)和三氧化硫脲(TuO3)作为硫脲氧化过程中间物,其稳定性和反应性将对硫脲氧化过程产生影响。采用HPLC研究了pH4.0-11.0范围内TuO2和TuO3的水解反应动力学。高pH值(>8)大大降低了两者稳定性,水解均呈现一级动力学行为,其表观速率常数与pH值无线性依赖关系。HPLC-MS联用定性分析了TuO2和TuO3的含硫分解产物分别为次硫酸根(SO22-)和SO32-,剩余基团则分别形成尿素和氨基腈。在各物种定量的基础上确定了水解反应化学计量方程。
     在TuO2稳定性研究基础上,使用UV-Vis监测360nm处ClO2的吸光度,探索了Tu氧化反应子体系ClO2-TuO2的反应动力学。pH1.5-3.0范围内存在ClO2自催化和TuO2的陈化效应。在陈化过程中,TuO2缓慢异构重排为高活性的甲脒亚磺酸,从而对ClO2自催化行为造成影响。实验证明了产物Cl-和中间物HOCl均能促进自催化现象的产生。基于实验提出可行性反应机理,很好的解释了自催化和陈化效应。ClO2-TuO2氧化反应涉及了TuO2的陈化异构、短寿命自催化物种及各价态含氯氧化剂之间的相互子反应。这种反应复杂性造成了速率方程无法进行简单表述,使得初始速率法计算得到ClO2、TuO2和OH-的级数均非整数。
     利用液质联用,分离检测H2O2-Tu反应体系中各种含硫中间物。质谱测定表明氧化过程中相对分子质量92.10的未知中间物种为甲脒次磺酸。研究了H2O2-Tu氧化体系中pH值对甲脒次磺酸稳定性的影响及其动力学性质。甲脒次磺酸的存在证实了几十年来硫脲氧化机理中涉及的零价硫的存在,对硫脲氧化体系机理的研究有重大意义。在物种检测和实验现象基础上优化了动力学机理。以H2O2-Tu氧化研究为基础,初步探索了ClO2-氧化Tu反应动力学。pH值越小反应速率越大;硫脲的表观级数遵循零级反应,并计算获得了不同反应条件时的表观速率常数。同时采用UV-Vis检测到反应中间物ClO2的生成。在高酸度和过量ClO2-存在时,二氧化氯的生成具有时钟现象,且时钟现象的诱导期与硫脲的消耗时间相符合,诱导期随着Tu/ClO2-的初始浓度比增大而加长。
Combined with mass spectrometry (MS), high-performance liquidchromatography-mass spectrometry (HPLC), capillary electrophoresis (CE) andultraviolet spectrophotometer (UV-Vis) have been used to investigate the oxidation ofsulfur (-II)-containning compounds (thiocyanate SCN-and thiourea Tu) and the relatedoxides. It is to reveal the detail reaction mechanism and provide evidence for betterexplanation of non-linear phenomena and pathologic role of related reactions onthiocyanate and thiourea.
     CE and HPLC optimized separation methods have been developed for thedetermination of the species in H2O2-SCN-reaction system. With the optimizedconditions the species in the reaction were all baseline-separated with outstandingqualitative and quantitative analyzed within the pH8.86–10.08. Concentration-timeseries of SCN-, SO42-and OCN-have been followed by CE as well as that of H2O2andSCN-by HPLC. The crucial conclusions obtained by Christy and Egeberg have beenmodified: It has been clearly demonstrated that OxSCN-(where x=1,2and3) are short-lived intermediates but undetectable with CE in weak alkaline solution; the rate law isfirst-order with respect to SCN-by initial rate method rather than zero order. In addition,it is also enlightened that the quality of the buffer strongly affect the rate of the overallreaction that increases in the order of application of ammonia, phosphate, carbonate andborate respectively, but no any effect on the reaction order. Borate reacts with hydrogenperoxide to produce peroxoborate and monoperoxoborate (or diperoxoborate) whichcould greatly accelerate the H2O2-SCN-reaction. A relatively huge shift could beobserved in the consumed H2O2/SCN-ratio in the presence of carbonate buffer due tothe higher decomposition rate of hydrogen peroxide to oxygen which cause by theformation of peroxymonocarbonate ion from the hydrogen peroxide-bicarbonatereaction. A kinetic mechanism based on different buffer solution was proposed to fitmore than4800data point of four species simultaneously at five different pH values.The average deviation was found to be less than5%.
     TuO2and TuO3, as the intermediates during thiourea oxidation, have effect on theoxidation of thiourea. The hydrolysis was studied by the means of HPLC in pH4.0-11.0. The decomposition rates increased rapidly wirh the pH value. Both displays firstorder and the dependence of pseudo-first-order rate constants (kobs, s-1) on theconcentration of OH-is not a simple linear relationship. In alkaline solution, SO22-, ureaand SO32-, urea were obtained as final hydrolysis products of TuO2and TuO3, respectively. The stoichiometric of the reactions was determined by the quantitativeanalysis of HPLC-MS.
     The oxidation of TuO2by ClO2, a subsystem of Tu oxidation, was investigatedbased on the hydrolysis of TuO2, where UV-Vis spectrophotometer was employed formonitoring the maximum absorption of ClO2at360nm. Autocatalytic fashion of ClO2and aging effect of TuO2have been found in ClO2-TuO2reaction under pH1.5-3.0. Itseems that TuO2slowly rearranges into formamidine sulfinic acid which is high activityin acid solution. Both Cl-and HOCl are able to promote the emergence of theautocatalysis. A feasibility reaction path is proposed to describe the autocatalysis andaging effect. The reaction orders for ClO2, TuO2and OH-calculated from the initial ratemethods are non-integer number and it is difficult to express the rate equation in asimply way and because of the complexity of ClO2-TuO2reaction.
     Several sulfur-containing intermediates in the H2O2-Tu reaction were seperatedand detected by HPLC successfully. Besides TuO2and TuO3, MS measurementindicates an unreported intermediate to be TuO with mass weights of92.10. The effectof pH value on stablity and reactivity of TuO in the H2O2-Tu reaction has been studied.The detection of TuO has gave evidence of the existence of S(0), and is of greatsignificance for the study of the mechanism of thiourea oxidation system for decades.Mechanism was optimized based on species detection and kinetic study. Meanwhile,the reaction of thiourea by chlorite was also studied on the basis of the research of H2O2-Tu reaction. The result indicated that the oxidation rate increases with the decreasing ofpH value and the consumption of thiourea with zero order as chlorite in access. Theapparent rate constants were obtained. The chlorite-thiourea reaction had also beenstudied by UV-Vis spectrophotometry to observe the generation of chlorine dioxide atthe same time. When pH<7and oxidant is exceed, the clock phenomenon of chlorinedioxide has been observed. Induction period of clock reaction equals to the timeconsumption of thiourea, and induction time was increased as initial concentrationincreasing.
引文
[1] Dahl, C.; Hell, R.; Leustek, T.; Knaff, D., Introduction to sulfur metabolism in phototrophicorganisms. In Sulfur Metabolism in Phototrophic Organisms[M]. Springer,2008:1-14.
    [2] Devillanova, F. A., Handbook of chalcogen chemistry: new perspectives in sulfur, selenium andtellurium[M]. Royal society of chemistry,2007.
    [3] Sievert, S. M.; Kiene, R. P.; Schultz-Vogt, H. N. The sulfur cycle[J]. Oceanography,2007,20(2):117-123.
    [4] Jagodzinski, T. S. Thioamides as useful synthons in the synthesis of heterocycles[J]. Chemicalreviews,2003,103(1):197-228.
    [5] Galloway, J., The biogeochemical cycling of sulfur and nitrogen in the remote atmosphere[M].Springer,1985.
    [6] Warneck, P., Chemistry of the natural atmosphere[M]. Academic press,1999.
    [7] Finlayson-Pitts, B.; Pitts, J., Chemistry of the upper and lower atmosphere[M]. Academic, SanDiego:2000.
    [8] Metzner, P.; Thuillier, A., Sulfur reagents in organic synthesis[M]. Academic Press New York,1994.
    [9] Komarnisky, L. A.; Christopherson, R. J.; Basu, T. K. Sulfur: its clinical and toxicologicaspects[J]. Nutrition,2003,19(1):54-61.
    [10] Alamgir, M.; Epstein, I. R. Complex dynamical behavior in a new chemical oscillator: Thechlorite-thiourea reaction in a CSTR[J]. International journal of chemical kinetics,1985,17(4):429-439.
    [11] Doona, C. J.; Blittersdorf, R.; Schneider, F. W. Deterministic chaos arising from homoclinicityin the chlorite-thiourea oscillator[J]. The Journal of Physical Chemistry,1993,97(28):7258-7263.
    [12] Doona, C. J.; Kustin, K.; Orban, M.; Epstein, I. R. Systematic design of chemical oscillators.74. Newly designed permanganate-reductant chemical oscillators[J]. Journal of the AmericanChemical Society,1991,113(20):7484-7489.
    [13] Gao, Q.; Wang, J. pH Oscillations and complex reaction dynamics in the non-buffered chlorite-thiourea reaction[J]. Chemical physics letters,2004,391(4):349-353.
    [14] Simoyi, R. H.; Masere, J.; Muzimbaranda, C.; Manyonda, M.; Dube, S. Travelling wave in thechlorite‐thiourea reaction[J]. International Journal of Chemical Kinetics,1991,23(5):419-429.
    [15] Udovichenko, V. V.; Strizhak, P. E.; Toth, A.; Horwath, D.; Ning, S.; Maselko, J. Temporal andspatial organization of chemical and hydrodynamic processes. The system Pb2+-chlorite-thiourea[J].The Journal of Physical Chemistry A,2008,112(20):4584-4592.
    [16]高庆宇;汪跃民;臧雅茹;马克勤;赵学庄.硫化合物与H2O2在非催化反应中的非线性行为[J].物理化学学报,1996,12(1):1-3.
    [17]林娟娟;高庆宇.硫脲氧化的非线性动力学研究-H2O2-SC(NH2)2-Cu2+反应体系[J].高等学校化学学报,1996,17(5):739-742.
    [18]王舜;高庆宇;王新红;林娟娟;赖顺安;莫言学.亚氯酸盐-硫代硫酸盐非缓冲体系的动力学[J].物理化学学报,2003,19(8):762-765.
    [19]高庆宇;孙康. pH探针在亚氯酸盐-硫代硫酸钠非线性反应体系研究中的应用[J].化学学报,2001,59(6):890-894.
    [20] Gao, Q.; An, Y.; Wang, J. A transition from propagating fronts to target patterns in the hydrogenperoxide-sulfite-thiosulfate medium[J]. Physical Chemistry Chemical Physics,2004,6(23):5389-5395.
    [21] Rábai, G.; Hanazaki, I. Chaotic pH oscillations in the hydrogen peroxide-thiosulfate-sulfiteflow system[J]. The Journal of Physical Chemistry A,1999,103(36):7268-7273.
    [22] Orban, M.; Epstein, I. R. A new bromite oscillator. Large-amplitude pH oscillations in thebromite-thiosulfate-phenol flow system[J]. The Journal of Physical Chemistry,1995,99(8):2358-2362.
    [23] Orban, M.; Epstein, I. R. Systematic design of chemical oscillators.62. The minimalpermanganate oscillator and some derivatives: oscillatory oxidation of S2O32-, SO32-, and S2-bypermanganate in a CSTR[J]. Journal of the American Chemical Society,1990,112(5):1812-1817.
    [24] Gao, Q.; Xie, R. The Transition from pH Waves to iodine waves in the iodate/sulfite/thiosulfatereaction-diffusion system[J]. ChemPhysChem,2008,9(8):1153-1157.
    [25] An, Y.; Bai, Y.; Gao, Q. Pulse waves in hydrogen peroxide-sulfite-thiosulfate-perchlorate acidsystem[J]. Chinese Science Bulletin,2005,50(16):1688-1690.
    [26] Doona, C. J. Influences of catalytic metal ions on oligooscillations in the chlorite-thiocyanatereaction[J]. The Journal of Physical Chemistry,1995,99(46):17059-17060.
    [27] Doona, C. J.; Doumbouya, S. I. Period-doubling route to chaos in the chlorite-thiocyanatechemical oscillator[J]. The Journal of Physical Chemistry,1994,98(2):513-517.
    [28] Figlar, J. N.; Stanbury, D. M. Kinetics and a revised mechanism for the autocatalytic oxidationof SCN-by ClO2[J]. The Journal of Physical Chemistry A,1999,103(29):5732-5741.
    [29] Nagy, P.; Lemma, K.; Ashby, M. T. Kinetics and mechanism of the comproportionation ofhypothiocyanous acid and thiocyanate to give thiocyanogen in acidic aqueous solution[J]. Inorganicchemistry,2007,46(1):285-292.
    [30] Figlar, J. N.; Stanbury, D. M. Thiocyanogen as an intermediate in the oxidation of thiocyanateby hydrogen peroxide in acidic aqueous solution[J]. Inorganic chemistry,2000,39(22):5089-5094.
    [31] Barnett, J. J.; McKee, M. L.; Stanbury, D. M. Acidic aqueous decomposition of thiocyanogen[J].Inorganic chemistry,2004,43(16):5021-5033.
    [32] Liu, L.; Feng, J.; Wu, G.; Lü, X.; Gao, Q. Dynamical complexity in electrochemical oxidationsof thiocyanate[J]. Chinese Journal of Chemistry,2009,27(4):649-654.
    [33] Gao, Q.; Sun, K.; Meng, F.; Cai, Z.; Zhao, X. Bioscillation and birhythmicity in the H2O2-KSCN-CuSO4-NaOH system[J]. Chemical Research in Chinese Universities,2001,17(3):299-304.
    [34] Takenaka, N.; Furuya, S.; Sato, K.; Bandow, H.; Maeda, Y.; Furukawa, Y. Rapid reaction ofsulfide with hydrogen peroxide and formation of different final products by freezing compared tothose in solution[J]. International journal of chemical kinetics,2003,35(5):198-205.
    [35] Miller, B.; Chen, A. Oscillatory instabilities during the electrochemical oxidation of sulfide ona Pt electrode[J]. Journal of Electroanalytical Chemistry,2006,588(2):314-323.
    [36]刘海苗;熊孝根;赵长春;郑菊花;高庆宇.过氧化氢氧化硫化钠反应体系的复杂振荡[J].物理化学学报,2008,24(10):1897-1901.
    [37] Fecher, F.; Strasser, P.; Eiswirth, M.; Schneider, F.; Münster, A. Spatial entrainment of patternsduring the polymerization of acrylamide in the presence of the methylene blue-sulfide chemicaloscillator[J]. Chemical physics letters,1999,313(1):205-210.
    [38] Feng, J.; Gao, Q.; Xu, L.; Wang, J. Nonlinear phenomena in the electrochemical oxidation ofsulfide[J]. Electrochemistry communications,2005,7(12):1471-1476.
    [39] Feng, J.; Gao, Q.; Li, J.; Liu, L.; Mao, S. Current oscillations during the electrochemicaloxidation of sulfide in the presence of an external resistor[J]. Science in China Series B: Chemistry,2008,51(4):333-340.
    [40] Klebanoff, S.; Clem, W.; Luebke, R. The peroxidase-thiocyanate-hydrogen peroxideantimicrobial system[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,1966,117(1):63-72.
    [41] De Wit, J.; Van Hooydonk, A. Structure, functions and applications of lactoperoxidase innatural antimicrobial systems[J]. Nederlands melk en Zuiveltijdschrift,1996,50(2):227-244.
    [42] Reiter, B.; Oram, J.; Pope, G.; Pickerin, A. In Peroxidase-thiocyanate inhibition of streptococciin raw milk, Journal of General Microbiology, Soc General Microbiology Marlborough House,Basingstoke Rd, Spencers Woods, Reading Rg71AE, Berks, England:1963; pp12.
    [43] Reiter, B.; Harnulv, G. Lactoperoxidase antibacterial system; natural occurrence, biologicalfunctions and practical applications[J]. Journal of Food Protection,1984,47:724-732.
    [44] Kimura, H. Hydrogen sulfide: from brain to gut[J]. Antioxidants&redox signaling,2010,12(9):1111-1123.
    [45] Gadalla, M. M.; Snyder, S. H. Hydrogen sulfide as a gasotransmitter[J]. Journal ofneurochemistry,2010,113(1):14-26.
    [46] Kimura, H. Hydrogen sulfide as a neuromodulator[J]. Molecular neurobiology,2002,26(1):13-19.
    [47] Wang, R. Hydrogen sulfide: the third gasotransmitter in biology and medicine[J]. Antioxidants&redox signaling,2010,12(9):1061-1064.
    [48] Shatalin, K.; Shatalina, E.; Mironov, A.; Nudler, E. H2S: a universal defense against antibioticsin bacteria[J]. Science,2011,334(6058):986-990.
    [49] Hall, A. H.; Dart, R.; Bogdan, G. Sodium thiosulfate or hydroxocobalamin for the empirictreatment of cyanide poisoning?[J]. Annals of emergency medicine,2007,49(6):806-813.
    [50] Cicone, J. S.; Petronis, J. B.; Embert, C. D.; Spector, D. A. Successful treatment of calciphylaxiswith intravenous sodium thiosulfate[J]. American Journal of Kidney Diseases,2004,43(6):1104-1108.
    [51] Giles, G. I.; Jacob, C. Reactive sulfur species: an emerging concept in oxidative stress[J].Biological chemistry,2002,383(3-4):375-388.
    [52] Arlandson, M.; Decker, T.; Roongta, V. A.; Bonilla, L.; Mayo, K. H.; MacPherson, J. C.; Hazen,S. L.; Slungaard, A. Eosinophil peroxidase oxidation of thiocyanate. Characterization of majorreaction products and a potential sulfhydryl-targeted cytotoxicity system[J]. Journal of BiologicalChemistry,2001,276(1):215-224.
    [53] Furtmüller, P. G.; Burner, U.; Obinger, C. Reaction of myeloperoxidase compound I withchloride, bromide, iodide, and thiocyanate[J]. Biochemistry,1998,37(51):17923-17930.
    [54] Slungaard, A.; Mahoney, J. Thiocyanate is the major substrate for eosinophil peroxidase inphysiologic fluids. Implications for cytotoxicity[J]. Journal of Biological Chemistry,1991,266(8):4903-4910.
    [55] Haukioja, A.; Ihalin, R.; Loimaranta, V.; Lenander, M.; Tenovuo, J. Sensitivity of helicobacterpylori to an innate defence mechanism, the lactoperoxidase system, in buffer and in human wholesaliva[J]. Journal of medical microbiology,2004,53(9):855-860.
    [56] Lemma, K.; Ashby, M. T. Reactive sulfur species: kinetics and mechanism of the reaction ofhypothiocyanous acid with cyanide to give dicyanosulfide in aqueous solution[J]. Chemical researchin toxicology,2009,22(9):1622-1628.
    [57] Hawkins, C. L. The role of hypothiocyanous acid (HOSCN) in biological systems[J]. Freeradical research,2009,43(12):1147-1158.
    [58] Morgan, P. E.; Pattison, D. I.; Talib, J.; Summers, F. A.; Harmer, J. A.; Celermajer, D. S.;Hawkins, C. L.; Davies, M. J. High plasma thiocyanate levels in smokers are a key determinant ofthiol oxidation induced by myeloperoxidase[J]. Free Radical Biology and Medicine,2011,51(9):1815-1822.
    [59] Nagy, P.; Beal, J. L.; Ashby, M. T. Thiocyanate is an efficient endogenous scavenger of thephagocytic killing agent hypobromous acid[J]. Chemical research in toxicology,2006,19(4):587-593.
    [60] Lloyd, M.; van Reyk, D.; Davies, M.; Hawkins, C. Hypothiocyanous acid is a more potentinducer of apoptosis and protein thiol depletion in murine macrophage cells than hypochlorous acidor hypobromous acid[J]. Biochem. J,2008,414:271-280.
    [61] Xulu, B. A.; Ashby, M. T. Small molecular, macromolecular, and cellular chloramines reactwith thiocyanate to give the human defense factor hypothiocyanite[J]. Biochemistry,2010,49(9):2068-2074.
    [62] Alamgir, M.; Epstein, I. R. Systematic design of chemical oscillators. Part31. New chloriteoscillators: chlorite-bromide and chlorite-thiocyanate in a CSTR[J]. The Journal of PhysicalChemistry,1985,89(17):3611-3614.
    [63] Chinake, C. R.; Mambo, E.; Simoyi, R. H. Complex oligooscillatory behavior in the reactionof chlorite with thiocyanate[J]. The Journal of Physical Chemistry,1994,98(11):2908-2916.
    [64] Orbán, M. Oscillations and bistability in the copper (II)-catalyzed reaction between hydrogenperoxide and potassium thiocyanate[J]. Journal of the American Chemical Society,1986,108(22):6893-6898.
    [65] Luo, Y.; Orban, M.; Kustin, K.; Epstein, I. R. Mechanistic study of oscillations and bistabilityin the copper (II)-catalyzed reaction between hydrogen peroxide and potassium thiocyanate[J].Journal of the American Chemical Society,1989,111(13):4541-4548.
    [66] Amrehn, J.; Resch, P.; Schneider, F. Oscillating chemiluminescence with luminol in the CSTR
    [continuous flow stirred tank reactor][J]. The Journal of Physical Chemistry,1988,92(12):3318-3320.
    [67] Pekala, K.; Jurczakowski, R.; Lewera, A.; Orlik, M. Luminescent chemical waves in the Cu(II)-catalyzed oscillatory oxidation of SCN-ions with hydrogen peroxide[J]. The Journal of PhysicalChemistry A,2007,111(18):3439-3442.
    [68] Pekala, K.; Wisniewski, A.; Jurczakowski, R.; Wisniewski, T.; Wojdyga, M.; Orlik, M.Monitoring of spatiotemporal patterns in the oscillatory chemical reactions with the infrared camera:experiments and model interpretation[J]. The Journal of Physical Chemistry A,2010,114(30):7903-7911.
    [69] Chandler, J. D.; Day, B. J. Thiocyanate: a potentially useful therapeutic agent with host defenseand antioxidant properties[J]. Biochemical pharmacology,2012,84(11):1381-1387.
    [70] Li, J.; Safarzadeh, M. S.; Moats, M. S.; Miller, J. D.; LeVier, K. M.; Dietrich, M.; Wan, R. Y.Thiocyanate hydrometallurgy for the recovery of gold Part III: Thiocyanate stability[J].Hydrometallurgy,2012,113:19-24.
    [71] Kholmogorov, A.; Kononova, O.; Pashkov, G.; Kononov, Y. Thiocyanate solutions in goldtechnology[J]. Hydrometallurgy,2002,64(1):43-48.
    [72] Douglas Gould, W.; King, M.; Mohapatra, B. R.; Cameron, R. A.; Kapoor, A.; Koren, D. W. Acritical review on destruction of thiocyanate in mining effluents[J]. Minerals Engineering,2012,34:38-47.
    [73] Bjerrum, N.; Kirschner, A. Thiocyanates of gold and free thiocyanogen[J]. K. Dan. Vidensk.Selsk,1918,8:1-76.
    [74] Lecher, H.; Wittwer, M.; Speer, W. über die Amide der unterrhodanigen S ure[J]. Berichte derdeutschen chemischen Gesellschaft (A and B Series),1923,56(5):1104-1112.
    [75] Nagy, P.; Jameson, G. N.; Winterbourn, C. C. Kinetics and mechanisms of the reaction ofhypothiocyanous acid with5-thio-2-nitrobenzoic acid and reduced glutathione[J]. Chemicalresearch in toxicology,2009,22(11):1833-1840.
    [76] Zeng, Y.; Zheng, S.; Meng, L. Studies on reactions INCX→IXCN (X=O, S, and Se)[J].Inorganic chemistry,2004,43(17):5311-5320.
    [77] Nagy, P.; Alguindigue, S. S.; Ashby, M. T. Lactoperoxidase-catalyzed oxidation of thiocyanateby hydrogen peroxide: a reinvestigation of hypothiocyanite by nuclear magnetic resonance andoptical spectroscopy[J]. Biochemistry,2006,45(41):12610-12616.
    [78] Aune, T. M.; Thomas, E. L. Accumulation of hypothiocyanite ion during peroxidase-catalyzedoxidation of thiocyanate Ion[J]. European Journal of Biochemistry,1977,80(1):209-214.
    [79] Van Dalen, C.; Whitehouse, M.; Winterbourn, C.; Kettle, A. Thiocyanate and chloride ascompeting substrates for myeloperoxidase[J]. Biochem. J,1997,327:487-492.
    [80] Wever, R.; Kast, W.; Kasinoedin, J.; Boelens, R. The peroxidation of thiocyanate catalysed bymyeloperoxidase and lactoperoxidase[J]. Biochimica et Biophysica Acta (BBA)-Protein Structureand Molecular Enzymology,1982,709(2):212-219.
    [81] Ashby, M. T.; Carlson, A. C.; Scott, M. J. Redox buffering of hypochlorous acid by thiocyanatein physiologic fluids[J]. Journal of the American Chemical Society,2004,126(49):15976-15977.
    [82] Mokhtari, B.; Azadi, R.; Rahmani-Nezhad, S. In situ-generated N-thiocyanatosuccinimide(NTS) as a highly efficient reagent for the one-pot thiocyanation or isothiocyanation of alcohols[J].Tetrahedron Letters,2009,50(47):6588-6589.
    [83] Falck, J.; Gao, S.; Prasad, R. N.; Koduru, S. R. Electrophilic α-thiocyanation of chiral andachiral N-acylimides. A convenient route to5-substituted and5,5-disubstituted2,4-thiazolidinediones[J]. Bioorganic&medicinal chemistry letters,2008,18(6):1768-1771.
    [84] Toste, F. D.; Stefano, V. D.; Still, I. W. A versatile procedure for the preparation of arylthiocyanates using N-thiocyanatosuccinimide (NTS)[J]. Synthetic communications,1995,25(8):1277-1286.
    [85] Samadi-Maybodi, A.; Amiri, M. T. Studies of oscillating chemical in the H2O2-KSCN-CuSO4-NaOH system using a conductometry method[J]. Transition metal chemistry,2004,29(7):769-773.
    [86] Kamiya, K.; Hashimoto, K.; Nakanishi, S. Acceleration effect of adsorbed thiocyanate ions onelectrodeposition of CuSCN, causing spontaneous electrochemical oscillation[J]. Chemical PhysicsLetters,2012,530:77-80.
    [87] Pruitt, K. M.; Mansson-Rahemtulla, B.; Baldone, D. C.; Rahemtulla, F. Steady-state kinetics ofthiocyanate oxidation catalyzed by human salivary peroxidase[J]. Biochemistry,1988,27(1):240-245.
    [88] Nagy, P.; Wang, X.; Lemma, K.; Ashby, M. T. Reactive sulfur species: Hydrolysis ofhypothiocyanite to give thiocarbamate-S-oxide[J]. Journal of the American Chemical Society,2007,129(51):15756-15757.
    [89] Ashby, M. T., Advances in inorganic chemistry. Hypothiocyanite[M].1nd ed. Elsevier:.2012;Vol.64, p263-303.
    [90] Wang, J.-G.; Mahmud, S. A.; Nguyen, J.; Slungaard, A. Thiocyanate-dependent induction ofendothelial cell adhesion molecule expression by phagocyte peroxidases: a novel HOSCN-specificoxidant mechanism to amplify inflammation[J]. The Journal of Immunology,2006,177(12):8714-8722.
    [91] Welcher, R. P.; Cutrufello, P. F. High yield procedure for thiocyanogen and thocyanates[J].Journal of Organic Chemistry,1972,37(26):4478-4479.
    [92] Frost, D.; Kirby, C.; Lau, W.; MacDonald, C.; McDowell, C.; Westwood, N. Thiocyanogen(SCN)2preparation, ultraviolet photoelectron spectrum and structure[J]. Chemical Physics Letters,1980,69(1):1-6.
    [93] Jensen, N.; Wilbrandt, R.; Pagsberg, P.; Hester, R.; Ernstbrunner, E. Vibrational analysis of(SCN)2and the transient (SCN)2-[J]. The Journal of Chemical Physics,1979,71(8):3326-3329.
    [94] Northrup, F.; Sears, T. J. Laser-induced fluorescence spectroscopy of NCS in a free jetexpansion[J]. The Journal of chemical physics,1989,91(2):762-774.
    [95] Devore, T. The infrared spectra of the halogen isocyanate and thiocyanate vapor molecules[J].Journal of Molecular Structure,1987,162(3):287-304.
    [96] Nelson, M.; Pullin, A.124. The infrared spectrum of thiocyanogen and thiocyanogen halides[J].Journal of the Chemical Society (Resumed),1960:604-612.
    [97] Jensen, J. O. Vibrational frequencies and structural determination of thiocyanogen[J]. Journalof Molecular Structure: Theochem,2005,714(2):137-141.
    [98] Cataldo, F.; Keheyan, Y. About a new class of inorganic polymers: the polythiocyanogens
    [Sz(CN)2]x[J]. Polyhedron,2002,21(18):1825-1835.
    [99] Perera, V.; Jayaweera, P.; Pitigala, P.; Bandaranayake, P.; Hastings, G.; Perera, A.; Tennakone,K. Construction of a photovoltaic device by deposition of thin films of the conducting polymerpolythiocyanogen[J]. Synthetic metals,2004,143(3):283-287.
    [100] Toth, Z.; kr s, M.; Beck, M. Preparation of photoactive polythiocyanogens via oxidation ofthiocyanates by iodine in water[J]. Inorganica chimica acta,1988,143(1):9-11.
    [101] Cataldo, F. Possible structure of parathiocyanogen: An IR and UV study[J]. Polyhedron,1992,11(1):79-83.
    [102] Cataldo, F. New developments in the study of the structure of parathiocyanogen:(SCN)x, aninorganic polymer[J]. Journal of Inorganic and Organometallic Polymers,1997,7(1):35-50.
    [103] Kahani, S.; Sabeti, M. The Mechanochemical oxidation of thiocyanate to polythiocyanogen(SCN)n using peroxydisulphate[J]. Journal of Inorganic and Organometallic Polymers and Materials,2011,21(3):458-464.
    [104] Bowman, W. R.; Burchell, C. J.; Kilian, P.; Slawin, A. M.; Wormald, P.; Woollins, J. D.Investigations on organo-sulfur-nitrogen rings and the thiocyanogen polymer,(SCN)x[J].Chemistry-A European Journal,2006,12(24):6366-6381.
    [105] Allan, C. S.; Rzepa, H. S. A computational investigation of the structure ofpolythiocyanogen[J]. Dalton Transactions,2008,12(48):6925-6932.
    [106] Gowda, B. T.; Bhat, J. I. Mechanistic investigations with Bromamine-T: Kinetics of oxidationof thiocyanate ion[J]. Reaction Kinetics and Catalysis Letters,1986,31(2):461-468.
    [107] Epstein, I. R.; Kustin, K.; Simoyi, R. H. Systematic design of chemical oscillators.70.Kinetics and mechanism of the reaction of bromine with thiocyanate[J]. The Journal of PhysicalChemistry,1992,96(15):6326-6331.
    [108] Griffith, R. O.; McKeown, A. Kinetics of the reaction between potassium thiocyanate andiodine in aqueous solution[J]. Transactions of the Faraday Society1935,31(1):868-875.
    [109] Senise, P. Reactions in the system azide-iodine-thiocyanate[J]. The Journal of PhysicalChemistry,1951,55(7):1151-1170.
    [110] Gowda, B. T.; Bhat, J. I. Mechanistic studies with positive iodine: Kinetics of oxidation ofthiocyanate ion by iodine monochloride and aqueous iodine in perchloric acid medium[J].International Journal of Chemical Kinetics,1989,21(8):621-633.
    [111] Simoyi, R. H.; Epstein, I. R.; Kustin, K. Systematic design of chemical oscillators.49. Kineticsand mechanism of the autoinhibitory iodine-thiocyanate reaction[J]. The Journal of PhysicalChemistry,1989,93(7):2792-2795.
    [112] Nandibewoor, S. T.; Hiremath, G. A.; Timmanagoudar, P. L. Ruthenium (III)-catalysedoxidation of thiocyanate by periodate in aqueous alkaline medium; autocatalysis in catalysis[J].Transition metal chemistry,2000,25(4):394-399.
    [113] Sant, B. Kinetics of the oxidation of thiocyanate by hydrogen peroxide[J].Naturwissenschaften,1957,44(6):180-180.
    [114] Wilson, I.; Harris, G. The oxidation of thiocyanate ion by hydrogen peroxide. II. The acid-catalyzed reaction[J]. Journal of the American Chemical Society,1961,83(2):286-289.
    [115] Wilson, I.; Harris, G. The oxidation of thiocyanate ion by hydrogen peroxide. I. The pH-independent reaction[J]. Journal of the American Chemical Society,1960,82(17):4515-4517.
    [116] Christy, A. A.; Egeberg, P. K. Oxidation of thiocyanate by hydrogen peroxide-a reactionkinetic study by capillary electrophoresis[J]. Talanta,2000,51(6):1049-1058.
    [117] Gao, Q.; Xue, W.; Lin, J.; Zang, Y.; Zhao, X. New phenomena of H2O2-KSCN-CuSO4-NaOHnonlinear chemical reaction in a batch reactor[J]. Chinese science bulletin,1996,41(23):1959-1963.
    [118] Zhao, C.; Zheng, J.; Xie, J.; Liu, H.; Gao, Q. Investigations of different chemiluminescentpeaks in H2O2-SCN--Cu2+-OH--luminol flow system[J]. Luminescence,2011,26(2):130-135.
    [119] Prypsztejn, H. E.; Stratton, D. Chemiluminescent oscillating demonstrations: The chemicalbuoy, the lighting wave, and the ghostly cylinder[J]. Journal of chemical education,2005,82(1):53.
    [120] Samadi-Maybodi, A.; Ourad, S. Studies of visible oscillating chemiluminescence with aluminol-H2O2-KSCN-CuSO4-NaOH system in batch reactor[J]. Luminescence,2003,18(1):42-48.
    [121] Sattar, S.; Epstein, I. R. Interaction of luminol with the oscillating system hydrogen peroxide-potassium thiocyanate-copper sulfate-sodium hydroxide[J]. Journal of Physical Chemistry,1990,94(1):275-277.
    [122] Wi niewski, A.; Pekala, K.; Orlik, M. Kinetic model of the H2O2-SCN--OH--Cu2+oscillatorand its application to the interpretation of the potentiometric responses of various inert electrodesmonitoring the reaction course[J]. The journal of physical chemistry. A,2010,114(1):183-190.
    [123] Sorouraddin, M.; Iranifam, M. Oscillating chemiluminescence with thiosemicarbazide in abatch reactor[J]. Luminescence,2008,23(5):303-308.
    [124] Sorouraddin, M.; Iranifam, M.; Imani-Nabiyyi, A. Study of the enhancement of a newchemiluminescence reaction and its application to determination of β-lactam antibiotics[J].Luminescence,2009,24(2):102-107.
    [125] Xu, Y.; Pehrsson, P. E.; Chen, L.; Zhao, W. Controllable redox reaction of chemically purifiedDNA-single walled carbon nanotube hybrids with hydrogen peroxide[J]. Journal of the AmericanChemical Society,2008,130(31):10054-10055.
    [126] Tenovuo, J.; Pruitt, K. M.; Mansson-Rahemtulla, B.; Harrington, P.; Baldone, D. C. Productsof thiocyanate peroxidation: properties and reaction mechanisms[J]. Biochimica et Biophysica Acta(BBA)-Protein Structure and Molecular Enzymology,1986,870(3):377-384.
    [127] Thomas, E. L.; Aune, T. M. Lactoperoxidase, peroxide, thiocyanate antimicrobial system:correlation of sulfhydryl oxidation with antimicrobial action[J]. Infection and Immunity,1978,20(2):456-463.
    [128] Pollock, J. R.; Goff, H. M. Lactoperoxidase-catalyzed oxidation of thiocyanate ion: a carbon-13nuclear magnetic resonance study of the oxidation products[J]. Biochimica et Biophysica Acta(BBA)-Protein Structure and Molecular Enzymology,1992,1159(3):279-285.
    [129] Modi, S.; Deodhar, S. S.; Behere, D. V.; Mitra, S. Lactoperoxidase-catalyzed oxidation ofthiocyanate by hydrogen peroxide: nitrogen-15nuclear magnetic resonance and optical spectralstudies[J]. Biochemistry,1991,30(1):118-124.
    [130] Walker, J. V.; Butler, A. Vanadium bromoperoxidase-catalyzed oxidation of thiocyanate byhydrogen peroxide[J]. Inorganica chimica acta,1996,243(1):201-206.
    [131] Chatterjee, D.; Paul, B.; Mukherjee, R. Oxidation of thiocyanate with H2O2catalyzed by[RuIII(edta)(H2O)][J]. Dalton Transactions,2013,42(27):10056-10060.
    [132] Jago, G. The antibacterial action of lactoperidoxase. The nature of the bacterial inhibitor[J].Biochem. J,1970,117:779-790.
    [133] Thomas, E. L. Lactoperoxidase-catalyzed oxidation of thiocyanate: equilibriums betweenoxidized forms of thiocyanate[J]. Biochemistry,1981,20(11):3273-3280.
    [134] Ng, F. T.; Henry, P. M. Kinetics and mechanism of the oxidation of thiocyanate by Tris (1,10-phenanthroline) iron (III) and its Derivatives[J]. Canadian Journal of Chemistry,1975,53(22):3319-3326.
    [135] Sharma, V. K.; Burnett, C. R.; O'Connor, D. B.; Cabelli, D. Iron (VI) and iron (V) oxidationof thiocyanate[J]. Environmental science&technology,2002,36(19):4182-4186.
    [136] Sharma, V. Destruction of cyanide and thiocyanate by ferrate [Iron (VI)][J]. European Journalof Mineral Processing&Environmental Protection,2003,3(3):301-308.
    [137] Sharma, V. K.; O’Connor, D. B.; Cabelli, D. Oxidation of thiocyanate by iron (V) in alkalinemedium[J]. Inorganica chimica acta,2004,357(15):4587-4591.
    [138] Grace, M. R.; Swaddle, T. W. Kinetics of reactions of aqueous iron (III) ions with azide andthiocyanate at high pressures[J]. Inorganic Chemistry,1992,31(22):4674-4678.
    [139] Sharma, V. K.; Yngard, R. A.; Cabelli, D. E.; Clayton Baum, J. Ferrate (VI) and ferrate (V)oxidation of cyanide, thiocyanate, and copper (I) cyanide[J]. Radiation Physics and Chemistry,2008,77(6):761-767.
    [140] Nyasulu, F.; Barlag, R. Colorimetric determination of the iron (III)-thiocyanate reactionequilibrium constant with calibration and equilibrium solutions prepared in a cuvette by sequentialadditions of one reagent to the other[J]. Journal of Chemical Education,2011,88(3):313-314.
    [141] Takahama, U.; Hirota, S. Enhancement of iron (II)-dependent reduction of nitrite to nitricoxide by thiocyanate and accumulation of iron (II)/thiocyanate/nitric oxide complex underconditions simulating the mixture of saliva and gastric juice[J]. Chemical research in toxicology,2011,25(1):207-215.
    [142] Adegboyega Olatunji, M.; Adefikayo Ayoko, G. The kinetics of the oxidation of iodide andthiocyanate ions by12-tungstocobaltate (III)[J]. Polyhedron,1984,3(2):191-197.
    [143] Dksiimukh, G.; Joshi, M. lodine Monochloride end point in the oxidation of thiocyanate bypermanganate. Determination of cerinm[J]. Fresenius' Zeitschrift für analytische Chemie,1955,145:345.
    [144] Bhat, I. K.; Sherigara, B. S.; Pinto, I. Kinetics of oxidation of thiocyanate ion by manganese(III) in pyrophosphate medium[J]. Transition Metal Chemistry,1993,18(2):163-166.
    [145] Taimni, I. The reaction between thallic chloride and potassium thiocyanate[J]. Journal of theChemical Society,1931:2433-2435.
    [146] Treindl,.; Fico, M. Redox reactions of complexes of cations in higher oxidation states. III.Kinetic study of thallium (III) complexes with thiocyanates[J]. Collection of CzechoslovakChemical Communications,1969,34(10):2873-2879.
    [147] Gupta, Y. K.; Kumar, D.; Jain, S.; Gupta, K. S. Kinetics and mechanism of the reactionbetween thallium (III) and thiocyanate ion in aqueous perchloric acid solutions[J]. Journal of theChemical Society, Dalton Transactions,1990,(6):1915-1919.
    [148] Blixt, J.; Dubey, R. K.; Glaser, J. Oxidation of thiocyanate by thallium (III) in aqueous solutionstudied by multinuclear NMR spectroscopy. Evidence for a Tl (SCN)2+intermediate[J]. InorganicChemistry,1991,30(13):2824-2826.
    [149] Stanbury, D. M.; Wilmarth, W. K.; Khalaf, S.; Po, H. N.; Byrd, J. E. Oxidation of thiocyanateand iodide by iridium(IV).[J]. Inorganic Chemistry,1980,19(9):2715-2722.
    [150] Nord, G.; Pedersen, B.; Farver, O. Outer-sphere oxidation of iodide and thiocyanate by tris (2,2'-bipyridyl)-and tris (1,10-phenanthroline) osmium (III) in aqueous solutions[J]. InorganicChemistry,1978,17(8):2233-2238.
    [151] Hung, M.; Stanbury, D. M. Diffusive separation and associative electron transfer in theoxidation of thiocyanate by bis (1,4,7-triazacyclononane) nickel (III)[J]. Inorganic Chemistry,1994,33(18):4062-4069.
    [152] Ford-Smith, M.; Habeeb, J. Kinetics of oxidation-reduction reactions between elements ofGroups V and VII. Part I. Bismuth (V) with halide ions and other reductants[J]. Dalton Trans.,1973,12(4):461-464.
    [153] Jensen, J. N.; Tuan, Y. Chemical oxidation of thiocyanate ion by ozone[J]. Ozone Science andEngineering,1993,15(4):343-360.
    [154] Soto, H.; Nava, F.; Leal, J.; Jara, J. Regeneration of cyanide by ozone oxidation of thiocyanatein cyanidation tailings[J]. Minerals engineering,1995,8(3):273-281.
    [155] Udrea, I.; Avramescu, S. Catalytic oxidation of SCN-and CN-ions from aqueous solutions[J].Environmental technology,2004,25(10):1131-1141.
    [156] Sun, C.; Zhang, C.; Li, A.; Jiang, C.; Wang, X.; Huo, M. A micellar polyoxoperoxometalate
    [C16H33N(CH3)3]7[PW10Ti2O38(O2)2]: A highly efficient and stable catalyst for air oxidation ofthiocyanate under room conditions[J]. Catalysis Communications,2011,12(5):384-387.
    [157] Wei, M.; Chen, X.; Wang, H.; Li, H.; Wang, Y.; Wang, X.; Huo, M. Oxidation of SCN-withair and micellar polyoxoperoxometalates[J]. Chemosphere,2013,90(2):318-322.
    [158] Hung, C.-H.; Pavlostathis, S. G. Aerobic biodegradation of thiocyanate[J]. Water research,1997,31(11):2761-2770.
    [159] Jeong, Y.-S.; Chung, J. S. Biodegradation of thiocyanate in biofilm reactor using fluidized-carriers[J]. Process Biochemistry,2006,41(3):701-707.
    [160] Olson, G. J.; Brierley, C. L.; Briggs, A. P.; Calmet, E. Biooxidation of thiocyanate-containingrefractory gold tailings from Minacalpa, Peru[J]. Hydrometallurgy,2006,81(3):159-166.
    [161] Smith, R.; Wilson, I. The mechanism of the oxidation of thiocyanate ion byperoxomonosulphate in aqueous solution. II. Kinetics of the reaction[J]. Australian Journal ofChemistry,1966,19(8):1365-1375.
    [162] Smith, R.; Wilson, I. The mechanism of the oxidation of thiocyanate ion byperoxomonosulphate in aqueous solution. I. Stoicheiometry of the reaction[J]. Australian Journal ofChemistry,1966,19(8):1357-1363.
    [163] Smith, R.; Wilson, I. The mechanism of the oxidation of thiocyanate ion byperoxomonosulphate in aqueous solution. III. Interpretation of results[J]. Australian Journal ofChemistry,1967,20(7):1353-1366.
    [164] Kalmár, J. z.; Lente, G. b.; Fábián, I. Detailed kinetics and mechanism of the oxidation ofthiocyanate ion (SCN-) by peroxomonosulfate ion (HSO5-). Formation and subsequent oxidation ofhypothiocyanite ion (OSCN-)[J]. Inorganic chemistry,2013,52(4):2150-2156.
    [165] Garley, M.; Jones, E.; Stedman, G. Travelling reaction fronts in the nitric acid oxidation ofthiocyanate[J]. Philosophical Transactions of the Royal Society of London. Series A: Physical andEngineering Sciences,1991,337(1646):237-247.
    [166] Hughes, M.; Phillips, E.; Stedman, G.; Whincup, P. Oxidation of metal thiocyanates by nitricand nitrous acids. Part II. Kinetics[J]. J. Chem. Soc. A,1969:1148-1151.
    [167] Stedman, G.; Whincup, P. Oxidation of metal thiocyanates by nitric and nitrous acids. Part I.Products[J]. J. Chem. Soc. A,1969:1145-1148.
    [168] Bazsa, G.; Epstein, I. R. Autocatalysis and bistability in the reaction between nitric acid andthiocyanate[J]. International journal of chemical kinetics,1985,17(6):601-612.
    [169] Kocio ek-Balawejder, E. A macromolecular N-chlorosulfonamide as oxidant forthiocyanates[J]. Reactive and Functional Polymers,1999,41(1):227-233.
    [170] Guo, T.; Li, L.; Cammarata, V.; Illies, A. Electrochemical/electrospray mass spectrometricstudies of I-and SCN-at gold and platinum electrodes: Direct detection of (SCN)3[J]. The Journalof Physical Chemistry B,2005,109(16):7821-7825.
    [171] Krishnan, P. The effect of concentration in electrochemical oxidation of thiocyanate onplatinum electrode[J]. Journal of Solid State Electrochemistry,2007,11(9):1327-1334.
    [172] Krishnan, P.; Gurjar, V. Electrochemical oxidation of thiocyanate in a two-phase electrolyte[J].Journal of applied electrochemistry,1995,25(8):792-796.
    [173] Pe a, O. I. G.; López, R. A.; Vong, Y. M. Study of Adsorption and oxidation of thiocyanate inthe interface metal/solution by EQCM and EIS[J]. ECS Transactions,2007,3(17):9-17.
    [174] Gauguin, R. Oxydation électrochimique de l'ion thiocyanique. Application aux dosages etl'étude des réactions[J]. Analytica Chimica Acta,1951,5:200-214.
    [175] Nicholson, M. Voltammetry of thiocyanate ion at stationary platinum electrode[J]. AnalyticalChemistry,1959,31(1):128-132.
    [176] Zhou, Z.; Tian, N.; Sun, S. Kinetics of thiocyanate orientation conversion on Pt surface studiedby in situ step-scan time-resolved microscope FTIR spectroscopy[J]. Chinese Science Bulletin,2013,58(6):622-626.
    [177] Loucka, T.; Janos, P. Adsorption and oxidation of thiocyanate on a platinum electrode[J].Electrochimica acta,1996,41(3):405-410.
    [178] Holtzen, D. A.; Allen, A. S. Kinetic parameters for the anodic oxidation of thiocyanate at theglassy carbon electrode[J]. Analytica Chimica Acta,1974,69(1):153-160.
    [179] Jurczakowski, R.; Orlik, M. The oscillatory course of the electroreduction of thiocyanatecomplexes of nickel (II) at mercury electrodes-experiment and simulation[J]. Journal ofElectroanalytical Chemistry,2000,486(1):65-74.
    [180] Jurczakowski, R.; Orlik, M. Bistable/oscillatory system based on the electroreduction ofthiocyanate complexes of Nickel (II) at a streaming mercury electrode. Experiment andsimulation[J]. The Journal of Physical Chemistry B,2002,106(5):1058-1065.
    [181] Batoeva, A.; Tsybikova, B. Galvanochemical oxidation of thiocyanates[J]. Russian Journal ofApplied Chemistry,2010,83(11):1948-1951.
    [182] Kenova, T.; Kormienko, V.; Drozdov, S. On electrochemical oxidation of thiocyanates insolutions for cyanidation of gold-containing ores and concentrates[J]. Russian Journal of AppliedChemistry,2010,83(9):1589-1592.
    [183] Krastev, I.; Zielonka, A.; Nakabayashi, S.; Inokuma, K. A cyclic voltammetric study offerrocyanide-thiocyanate silver electrodeposition electrolyte[J]. Journal of applied electrochemistry,2001,31(9):1041-1047.
    [184] Ozoemena, K. I.; Nyokong, T. Surface electrochemistry of iron phthalocyanine axially ligatedto4-mercaptopyridine self-assembled monolayers at gold electrode: Applications to electrocatalyticoxidation and detection of thiocyanate[J]. Journal of Electroanalytical Chemistry,2005,579(2):283-289.
    [185] Sehlotho, N.; Nyokong, T. Electrocatalytic oxidation of thiocyanate, l-cysteine and2-mercaptoethanol by self-assembled monolayer of cobalt tetraethoxy thiophene phthalocyanine[J].Electrochimica acta,2006,51(21):4463-4470.
    [186] Sancy, M.; Pavez, J.; Gulppi, M. A.; De Mattos, I. L.; Arratia-Perez, R.; Linares-Flores, C.;Paez, M.; Nyokong, T.; Zagal, J. H. Optimizing the electrocatalytic activity of surface confined Comacrocyclics for the electrooxidation of thiocyanate at pH4[J]. Electroanalysis,2011,23(3):711-718.
    [187] Linares-Flores, C.; Mac-Leod Carey, D.; Mu oz-Castro, A.; Zagal, J.; Pavez, J.; Pino-Riffo,D.; Arratia-Pérez, R. Reinterpreting the role of the catalyst formal potential. The case of thiocyanateelectrooxidation catalyzed by CoN4-Macrocyclic complexes[J]. The Journal of Physical ChemistryC,2012,116(12):7091-7098.
    [188] Pelc, H.; Elvers, B.; Hawkins, S., Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH&Co. KGaA:2005.
    [189] Arifoglu, M.; Marmer, W. N.; Dudley, R. L. Reaction of thiourea with hydrogen peroxide:13C NMR studies of an oxidative/reductive bleaching process[J]. Textile research journal,1992,62(2):94-100.
    [190] Ubaldini, S.; Fornari, P.; Massidda, R.; Abbruzzese, C. An innovative thiourea gold leachingprocess[J]. Hydrometallurgy,1998,48(1):113-124.
    [191] Almeida, M.; Amarante, M. Leaching of a silver bearing sulphide by-product with cyanide,thiourea and chloride solutions[J]. Minerals engineering,1995,8(3):257-271.
    [192] Zhou, W.; Peng, K.; Wang, M. Theoretical study on the oxidation mechanism of thiourea byhydrogen peroxide with water and hydroxyl assistance[J]. Journal of Molecular Structure:Theochem,2008,850(1):121-126.
    [193] Peng, K.; Yang, W.; Zhou, W. Theoretical study on interactions between thiourea S-monoxideand water[J]. International Journal of Quantum Chemistry,2009,109(4):811-818.
    [194] Czajkowski, W.; Misztal, J. The use of thiourea dioxide as reducing agent in the applicationof sulphur dyes[J]. Dyes and pigments,1994,26(2):77-81.
    [195] Gacen, J.; Cegarra, J.; Caro, M. Wool bleaching with reducing agent in the presence of sodiumlauryl sulphate. Part3-bleaching with thiourea dioxide[J]. Journal of the Society of Dyers andColourists,1991,107(4):138-141.
    [196] B. Ferreira, J. T.; De Oliveira, A. R.; Comasseto, J. V. A Convenient method of synthesis ofdialkyltellurides and dialkylditellurides[J]. Synthetic Communications,1989,19(1-2):239-244.
    [197] Robertson, J. G.; Sparvero, L. J.; Villafranca, J. J. Inactivation and covalent modification ofCTP synthetase by thiourea dioxide[J]. Protein Science,1992,1(10):1298-1307.
    [198] Jones, J. B.; Chinake, C. R.; Simoyi, R. H. Oxyhalogen-sulfur chemistry: Oligooscillations inthe formamidinesulfinic acid-chlorite reaction[J]. The Journal of Physical Chemistry,1995,99(5):1523-1529.
    [199] Marshall, H. In The dissociation of the compound of iodine and thiourea, Proc R SocEdinburgh,1902; pp233-237.
    [200] Gherrou, A.; Kerdjoudj, H. Cyanide as a copper leaching agent for the remediation of foulingof a supported liquid membrane by formamidine disulphide in thiourea medium[J]. Desalination,2003,158(1):195-200.
    [201] Hector, D. Einwirkung von oxydationsmitteln auf aliphatische thioharnstoffe[J]. Journal fürPraktische Chemie,1891,44(1):492-506.
    [202] Boeseken, J. Oxidation products of thiourea, the dioxide as a derivative of sulfoxylic acid[J].Proc. Acud. Sci. Amsrerdam39.717-72I,1936.
    [203] Werner, E. A. The action of nitrous acid on thiocarbamide and on formamidine disulphide. Anew structural formula for thiocarbamide[J]. Journal of the Chemical Society, Transactions,1912,101:2180-2191.
    [204] Preisler, P. W.; Berger, L. Oxidation-reduction potentials of thiol-dithio systems: thiourea-formamidine disulfide[J]. Journal of the american chemical society,1947,69(2):322-325.
    [205] Hoffmann, M.; Edwards, J. O. Kinetics and mechanism of the oxidation of thiourea and N,N'-dialkylthioureas by hydrogen peroxide[J]. Inorganic Chemistry,1977,16(12):3333-3338.
    [206] Gao, Q.; Wang, G.; Sun, Y.; Epstein, I. R. Simultaneous tracking of sulfur species in theoxidation of thiourea by hydrogen peroxide[J]. The Journal of Physical Chemistry A,2008,112(26):5771-5773.
    [207] Wang, W.-f.; Schuchmann, M. N.; Schuchmann, H.-P.; Knolle, W.; von Sonntag, J.; vonSonntag, C. Radical cations in the OH-radical-induced oxidation of thiourea and tetramethylthioureain aqueous solution[J]. Journal of the American Chemical Society,1999,121(1):238-245.
    [208] Sharma, V. K.; Rivera, W.; Joshi, V. N.; Millero, F. J.; O'Connor, D. Ferrate (VI) oxidation ofthiourea[J]. Environmental science&technology,1999,33(15):2645-2650.
    [209] Sharma, V. K.; O'Connor, D. B. Ferrate (V) oxidation of thiourea: a premix pulse radiolysisstudy[J]. Inorganica Chimica Acta,2000,311(1):40-44.
    [210] Khan, S. A.; Kumar, P.; Saleem, K.; Khan, Z. A kinetic study of water-soluble colloidal MnO2formed by the reduction of permanganate by thiourea[J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,2007,302(1):102-106.
    [211] Po, H. N.; Eran, H.; Kim, Y.; Byrd, J. E. Oxidation of thiourea and N, N'-dialkylthioureas byhexachloroiridate (IV) ion[J]. Inorganic Chemistry,1979,18(1):197-201.
    [212] Olatunji, M. A.; McAuley, A. Metal-ion oxidations in solution. Part XII. Oxidation of thioureaand NN’-ethylenethiourea by chromium (VI) in perchlorate media[J]. J. Chem. Soc., Dalton Trans.,1975,(8):682-688.
    [213] Rao, V. Oxidation of thiourea by potassium dichromate[J]. Fresenius' Journal of AnalyticalChemistry,1970,249(3):189-189.
    [214] Maxcy, T. A.; Willhite, G. P.; Green, D. W.; Bowman-James, K. A kinetic study of thereduction of chromium (VI) to chromium (III) by thiourea[J]. Journal of Petroleum Science andEngineering,1998,19(3):253-263.
    [215] Amjad, Z.; McAuley, A. Kinetics of the oxidation of thiourea by vanadium (V) in perchloratemedia[J]. Inorganica Chimica Acta,1977,25:127-130.
    [216] Sauerbrunn, R.; Sandell, E. The reaction of osmium tetroxide with thiourea[J]. Journal of theAmerican Chemical Society,1953,75(14):3554-3556.
    [217] De Kepper, P.; Epstein, I. R.; Kustin, K. A systematically designed homogeneous oscillatingreaction: the arsenite-iodate-chlorite system[J]. Journal of the American Chemical Society,1981,103(8):2133-2134.
    [218] Orban, M.; Dateo, C.; De Kepper, P.; Epstein, I. R. Systematic design of chemical oscillators.11. Chlorite oscillators: new experimental examples, tristability, and preliminary classification[J].Journal of the American Chemical Society,1982,104(22):5911-5918.
    [219] Epstein, I. R.; Kustin, K.; Simoyi, R. H. Systematic design of chemical oscillators.78.Kinetics and mechanism of the chlorite-thiourea reaction in acidic medium[J]. The Journal ofPhysical Chemistry,1992,96(14):5852-5856.
    [220] Chinake, C. R.; Simoyi, R. H. Nonlinear dynamics in chemistry derived from sulfur chemistry.Part2. New experimental data on the chlorite-thiourea reaction[J]. The Journal of PhysicalChemistry,1993,97(44):11569-11570.
    [221] Chinake, C. R.; Simoyi, R. H. Fingering patterns and other interesting dynamics in thechemical waves generated by the chlorite-thiourea reaction[J]. The Journal of Physical Chemistry,1994,98(15):4012-4019.
    [222]高庆宇;李保民;孙康;蔡遵生;赵学庄.亚氯酸盐-硫脲反应体系的非线性动力学[J].物理化学学报,2001,17(3):257-260.
    [223]王新红;高庆宇.亚氯酸盐氧化硫脲非缓冲体系的复杂动力学行为[J].化学通报,2006,69(8):601-605.
    [224] Rábai, G.; Wang, R. T.; Kustin, K. Kinetics and mechanism of the oxidation of thiourea bychlorine dioxide[J]. International Journal of Chemical Kinetics,1993,25(1):53-62.
    [225] Simoyi, R. H. New bromate oscillator: the bromate-thiourea reaction in a CSTR[J]. TheJournal of Physical Chemistry,1986,90(13):2802-2804.
    [226] Simoyi, R. H.; Epstein, I. R. Systematic design of chemical oscillators.40. Oxidation ofthiourea by aqueous bromine: autocatalysis by bromide[J]. The Journal of Physical Chemistry,1987,91(19):5124-5128.
    [227] Simoyi, R. H.; Epstein, I. R.; Kustin, K. Kinetics and mechanism of the oxidation of thioureaby bromate in acidic solution[J]. The Journal of Physical Chemistry,1994,98(2):551-557.
    [228] Rábai, G.; Beck, M. T. Oxidation of thiourea by iodate: a new type of oligo-oscillatoryreaction[J]. Dalton Trans.,1985,12(8):1669-1672.
    [229] Beck, M. T.; Rabai, G. Oscillations and oligoscillations in hydrogen ion concentration[J]. TheJournal of Physical Chemistry,1985,89(18):3907-3910.
    [230] Rábai, G.; Nagy, Z. V.; Beck, M. T. Quantitative description of the oscillatory behavior of theiodate-sulfite-thiourea system in CSTR[J]. Reaction Kinetics and Catalysis Letters,1987,33(1):23-29.
    [231] Wang, S.; Lin, J.; Chen, F.; Hu, M.; Hu, X.; Han, Y.; Gao, Q. Kinetics and mechanism of thereaction between thiourea and iodate in unbuffered medium[J]. Science in China Series B:Chemistry,2004,47(6):480-487.
    [232]王舜;林娟娟;陈帆;胡茂林;胡新根;韩益苹;高庆宇.碘酸盐-硫脲非缓冲体系的动力学行为与机理[J].中国科学: B辑,2004,34(4):315-321.
    [233]王舜;林娟娟;黄振炎.高碘酸盐-硫脲-硫酸反应体系的非线性动力学[J].物理化学学报,2002,18(3):264-267.
    [234] Horváth, J.; Szalai, I.; De Kepper, P. An experimental design method leading to chemicalTuring patterns[J]. Science,2009,324(5928):772-775.
    [235] Horváth, J.; Szalai, I.; De Kepper, P. Pattern formation in the thiourea–iodate–sulfite system:Spatial bistability, waves, and stationary patterns[J]. Physica D: Nonlinear Phenomena,2010,239(11):776-784.
    [236] EmilyáCoade, M.; AlphonseáWerner, E. The estimation of nitrites by means of thiocarbamide,and the interaction of nitrous acid and thiocarbamide in the presence of acids of different strength[J].Journal of the Chemical Society, Transactions,1913,103:1221-1228.
    [237] Bordwell, F.; Andersen, H. M. The reaction of epoxides with thiourea1[J]. Journal of theAmerican Chemical Society,1953,75(20):4959-4962.
    [238] Fell, R. T.; Meunier, B. Oxidation of thioureas with potassium monopersulfate: an efficientmethod for their environmentally safe degradation[J]. Comptes Rendus de l'Académie des Sciences-Series IIC-Chemistry,2000,3(4):285-288.
    [239] Bolzán, A.; Haseeb, A.; Schilardi, P.; Piatti, R.; Salvarezza, R.; Arvia, A. Anodisation ofcopper in thiourea-and formamidine disulphide-containing acid solution.: Part I. Identification ofproducts and reaction pathway[J]. Journal of Electroanalytical Chemistry,2001,500(1):533-542.
    [240] Kies, H. Eine mercurimetrische bestimmungsmethode von thioharnstoff[J]. Fresenius' Journalof Analytical Chemistry,1955,145(1):5-9.
    [241] Sohr, H.; Wienhold, K. Eine neue spurenanalytische methode zur bestimmung vonthioharnstoff[J]. Analytica Chimica Acta,1976,83:415-419.
    [242] Mairesse-Ducarmois, C.; Vanderbalck, J.; Patriarche, G. Polarographies directe, alternative etimpulsionnelle différentielle de la monophenyl-et de la diphénylthiouree[J]. Electrochimica acta,1978,23(2):95-102.
    [243] Astruc, A.; Astruc, M.; Gonbeau, D.; Pfister-Guillouzo, G. Oxydation electrochimique dethiourees aliphatiques[J]. Collection of Czechoslovak Chemical Communications,1976,41(9):2737-2743.
    [244] Santhanam, K.; Krishman, V. Coulometric Oxidation of Thiourea[J]. Z. Phys. Chem,1962,34:312-315.
    [245] Kirchnerová, J.; Purdy, W. C. The mechanism of the electrochemical oxidation of thiourea[J].Analytica Chimica Acta,1981,123:83-95.
    [246] Yan, M.; Liu, K.; Jiang, Z. Electrochemical oxidation of thiourea studied by use of in situFTIR spectroscopy[J]. Journal of Electroanalytical Chemistry,1996,408(1):225-229.
    [247] Bolzán, A.; Wakenge, I.; Salvarezza, R.; Arvia, A. Electrochemical response of thiourea andformamidine disulphide on polycrystalline platinum in aqueous0.5M sulphuric acid[J]. Journal ofElectroanalytical Chemistry,1999,475(2):181-189.
    [248] Bolzán, A.; Piatti, R.; Salvarezza, R.; Arvia, A. Electrochemical study of thiourea andsubstituted thiourea adsorbates on polycrystalline platinum electrodes in aqueous sulfuric acid[J].Journal of applied electrochemistry,2002,32(6):611-620.
    [249] Bolzán, A.; Piatti, R.; Arvia, A. Electrochemical processes at gold thiourea-containingaqueous acid solution interfaces[J]. Journal of electroanalytical chemistry,2003,552:19-34.
    [250] Bolzán, A.; Iwasita, T.; Arvia, A. In situ FTIRRAS study of the electro-oxidation reactions ofthiourea and gold in aqueous acid solutions[J]. Journal of Electroanalytical Chemistry,2003,554:49-60.
    [251] Bolzán, A.; Schilardi, P.; Piatti, R.; Iwasita, T.; Cuesta, A.; Gutiérrez, C.; Arvia, A.Comparative voltammetric and FTIRRAS study on the electro-oxidation of thiourea and methyl-thioureas on platinum in aqueous acid solutions[J]. Journal of Electroanalytical Chemistry,2004,571(1):59-72.
    [252] Xu, L.; Gao, Q.; Feng, J.; Wang, J. Oscillations and period-doubling bifurcations in theelectrochemical oxidation of thiourea[J]. Chemical physics letters,2004,397(1):265-270.
    [253] Feng, J.; Gao, Q.; Lv, X.; Epstein, I. R. Dynamic complexity in the electrochemical oxidationof thiourea[J]. The Journal of Physical Chemistry A,2008,112(29):6578-6585.
    [254] Kies, H. The conductometric titration of thiourea by mercury (II) chloride[J]. AnalyticaChimica Acta,1978,96(1):183-184.
    [255] Pillai, C.; Indrasenan, P. Iodamine-T as an oxidemetric titrant in aqueous medium[J]. Talanta,1980,27(9):751-753.
    [256] Srivastava, A. Determination of sulphur functions with N-iodosuccinimide[J]. Talanta,1979,26(10):917-920.
    [257] Amin, D. Determination of thiourea, phenylthiourea and allythiourea with iodine[J]. Analyst,1985,110(2):215-216.
    [258] Wang, S.; Gao, Q.; Wang, J. Thermodynamic analysis of decomposition of thiourea andthiourea oxides[J]. The Journal of Physical Chemistry B,2005,109(36):17281-17289.
    [259] Pérez-Ruiz, T.; Martínez-Lozano, C.; Tomás, V.; Casajús, R. Flow injection fluorimetricdetermination of thiourea[J]. Talanta,1995,42(3):391-394.
    [260] Kargosha, K.; Khanmohammadi, M.; Ghadiri, M. Fourier transform infrared spectrometricdetermination of thiourea in the presence of sulphur dioxide in aqueous solution[J]. Analyticachimica acta,2001,437(1):139-143.
    [261] Rethmeier, J.; Neumann, G.; Stumpf, C.; Rabenstein, A.; Vogt, C. Determination of lowthiourea concentrations in industrial process water and natural samples using reversed-phase high-performance liquid chromatography[J]. Journal of Chromatography A,2001,934(1):129-134.
    [262] Bowley, H. J.; Crathorne, E. A.; Gerrard, D. L. Quantitative determination of thiourea inaqueous solution in the presence of sulphur dioxide by Raman spectroscopy[J]. Analyst,1986,111(5):539-542.
    [263] de Oliveira, A. N.; de Santana, H.; Zaia, C. T.; Zaia, D. A. A study of reaction betweenquinones and thiourea: determination of thiourea in orange juice[J]. Journal of Food Compositionand Analysis,2004,17(2):165-177.
    [264] Gao, Q.; Liu, B.; Li, L.; Wang, J. Oxidation and decomposition kinetics of thiourea oxides[J].The Journal of Physical Chemistry A,2007,111(5):872-877.
    [265] Makarov, S. V.; Mundoma, C.; Penn, J. H.; Petersen, J. L.; Svarovsky, S. A.; Simoyi, R. H.Structure and stability of aminoiminomethanesulfonic acid[J]. Inorganica chimica acta,1999,286(2):149-154.
    [266] Makarov, S.; Kudrik, E. Tautomerization of thiourea dioxide in aqueous solution[J]. RussianChemical Bulletin,2001,50(2):203-205.
    [267] Svarovsky, S. A.; Simoyi, R. H.; Makarov, S. V. A possible mechanism for thiourea-basedtoxicities: Kinetics and mechanism of decomposition of thiourea dioxides in alkaline solutions1[J].The Journal of Physical Chemistry B,2001,105(50):12634-12643.
    [268] Kormányos, B.; Nagypál, I.; Peintler, G.; Horváth, A. K. Effect of chloride ion on the kineticsand mechanism of the reaction between chlorite ion and hypochlorous acid[J]. Inorganic chemistry,2008,47(17):7914-7920.
    [269] Winterbourn, C.; Brennan, S. Characterization of the oxidation products of the reactionbetween reduced glutathione and hypochlorous acid[J]. Biochem. J,1997,326:87-92.
    [270] Winterbourn, C. C. Comparative reactivities of various biological compounds withmyeloperoxidase-hydrogen peroxide-chloride, and similarity of oxidant to hypochlorite[J].Biochimica et Biophysica Acta (BBA)-General Subjects,1985,840(2):204-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700