用户名: 密码: 验证码:
氮氧化物低温选择性催化还原锰基催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物(NOx)污染所引起的酸雨、光化学烟雾等环境问题日益受到人们的重视。静态污染源尾气处理主要采用氨选择性催化还原技术(NH3-SCR),其使用的主要催化剂为V2O5-WO3(MO3)/TiO2。但现行SCR法还存在系列问题,包括催化剂活性温度范围高而窄(300~400℃),易受飞灰、水及SO2的影响,易生成N2O、催化剂寿命较短、容易堵塞失活等。低温SCR法(80~200℃)是近年来发展起来的新技术,其脱氮装置可置于脱硫装置之后,从而避免灰飞对催化剂的污染、磨损、堵塞,减轻SO2引起的毒化、失活,具有易与现有的烟道设备匹配、延长催化剂使用寿命、经济高效能耗低等优点。因此,低温SCR催化剂的设计与开发成为其重点研究方向。本论文发展并详细考察了三类Mn基催化剂的低温SCR性能及其抗水耐硫性能。同时,利用BET、XRD、TPR/TPD、FT-IR、XPS、SEM/TEM等对催化剂物性及结构进行了表征,对催化剂构效关系和反应动力学进行了深入探讨。
     研究了系列Mn-Zr复合氧化物催化剂低温SCR性能,比较了柠檬酸法,共沉淀法,固相合成法对Mn-Zr复合氧化物催化剂性能结构的影响。结果表明,采用柠檬酸法制备的催化剂活性最高,低温SCR性能优越,当Mn/(Mn+Zr)摩尔比为0.5,450oC焙烧下,催化剂具有最佳的低温活性,在30000h-1空速下,在100~200oC温度范围内可获得近100%的脱硝效率。水对催化剂活性表现为可逆抑制效应,说明催化剂具有较好的抗水性能。但是SO2对催化剂的毒化作用为不可逆。催化过程中,催化剂表面生成了难于分解的硫酸锰铵盐,因而无法实现400oC加热再生,但通过水洗溶解可除去硫酸锰铵盐,且使催化剂活性得到恢复。系统表征结果表明,采用柠檬酸法制备的催化剂在合适的Mn/(Mn+Zr)摩尔比时,具有较高的比表面积,MnOx部分嵌入ZrO2晶格形成固溶体,余下部分在催化剂表面高度分散,并具有良好的氧化还原性能。此外,催化剂对NH3具有良好的吸附性能,及高表面氧含量的对SCR反应也有促进作用。对Mn-Zr催化剂的动力学研究表明,其反应级数对于NO、O2、NH3分别为0.6、0.5及0级。
     采用溶剂热法制备了一系列Mn-TiO2催化剂,并与浸渍法进行比较,同时考察不同锰源的影响。采用溶剂热法,以乙酸锰为锰源,可以获得具有高脱硝性能的Mn-TiO2催化剂。当Mn/Ti摩尔比为0.2,经500oC焙烧后催化剂具有最佳活性,在空速为30,000h-1,反应温度为120oC时,催化剂可以获得近100%的脱硝效率。水对催化剂表现出可逆的抑制效应而硫对催化剂的作用表现为逐步毒化失活且活性不可恢复。系统结构表征表明,以乙酸锰为锰源,采用溶剂热法合成的催化剂具有较高的比表面,TiO2为高分散纳米级别,Mn活性组分以无定型状态分散在催化剂表面,从而具有较好的氧化还原性能。对催化剂的反应动力学的研究表明,其反应级数对于NO、O2、NH3分别为1、0.5及0级。反应的表观活化能为24.2kJ·mol-1,低于文献报道的同类催化剂。
     采用柠檬酸法制备了Fe-Co复合氧化物,发现当Fe/Co比为4时,催化剂具有较好的活性,在200~300oC范围内NOx转化率接近100%,通过添加Mn,制备成Mn-Fe-Co三组分复合氧化物后催化剂具有较高的低温活性。当Fe/Co摩尔比为4,Mn添加量为0.3(Mn/(Fe+Co)摩尔比)时,催化剂在80oC即可达到100%的NOx转化率,高于之前报道的Fe-Mn体系,表明三组分催化剂具有更好的催化活性。系统表征结果表明,制备的Fe4Co1Ox催化剂为Fe2O3晶相和CoFe2O4尖晶石结构复合氧化物晶相,添加适量Mn后Fe2O3晶相消失,除CoFe2O4晶相外,多余的Fe和添加的Mn均以高分散形式存在于催化剂中。Mn的加入同时也促进了催化剂的氧化还原性能。
Selective catalytic reduction (SCR) of NOx(x=1,2) by ammonia is one of the majortechnologies for reducing nitrogen oxides emitted from stationary sources such as powerstations, industrial heaters, and cogeneration and has been successfully commercialized.Vanadium-based catalysts such as V2O5/TiO2(anatase) mixed with WO3or MoO3are typicalcommercial catalysts for this process; however, they are only active within a narrowtemperature window of300~400oC, and are susceptible to deactivation by dust deposition orSO2poisoning. Thus, there has been a very strong incentive to develop highly efficientdenitration catalysts for low-temperature SCR processes in which these catalysts would beplaced downstream of the desulfurizer and electrostatic precipitator in the power generationsystem. In this dissertation, three kinds of Mn-based catalysts were investigated for thelow-temperature SCR and systematically characterized and the structure-activity relationshipwere discussed and the catalytic kinetics were also studied.
     Novel Mn-Zr mixed-oxide catalysts have been prepared by citric acid method for thelow-temperature SCR of NOxwith ammonia in the presence of excess oxygen compared tothe co-precipitation method and solid state reaction method. It was found that anMn(0.5)-ZrOx-450catalyst prepared by citric acid method showed the highest activity, givingalmost100%NOxconversion at100oC with a gas hourly space velocity of30,000h-1. Thecatalyst showed a certain level of sulfur tolerance and water resistance. The effect of H2Ocould be quickly eliminated after its removal, whereas deactivation by SO2proved to beirreversible. The formation of (NH4)2Mn2(SO4)3on the catalyst surface results in deactivationand the catalyst can be recovered by water washing but not thermal regeneration because(NH4)2Mn2(SO4)3is hard to decomposition but can dissolved in water. The characterizationresults suggested that an Mn-Zr solid solution was formed in the Mn(0.5)-ZrOx-450(CA)catalyst, with highly dispersed MnOx. An appropriate NH3adsorption ability was beneficialfor the low-temperature SCR. The kinetic study results show that the reaction order for NO,NH3and O2respectively is0.6,0and0.5.
     Mn-TiO2catalysts have been prepared by the solvothermal method for the low-temperature SCR of NOxwith ammonia in the presence of excess oxygen with comparison to wetimpregnation method and the effect of Mn resource was also investigated. It was found thatthe Mn-TiO2catalyst prepared by solvothermal method using Mn(CHCOO)2as Mn precursorshowed the highest activity, giving almost100%NOxconversion at120oC with a gas hourlyspace velocity of30,000h1. The catalyst showed a certain level of sulfur tolerance and waterresistance. The effect of H2O could be quickly eliminated after its removal, whereasdeactivation by SO2proved to be irreversible. The characterization results showed that a highdispersity of Mn on nano TiO2particles and good reducibility and high surface area isbenefited for the low temperature SCR. The kinetic study results showed that the reactionorder for NO, NH3and O2respectively is1,0and0.5and the active energy is24.2kJ·mol-1which is lower than similar catalysts in the literatures.
     Fe-Co mixed oxides were prepared by citric acid method and investigated for lowtemperature SCR. The Fe4Co1Ox(mole ratio of Fe/Co for4) gave the best activity. Nearly100%NOxconversion was achieved between200~300oC with a gas hourly space velocity of30,000h-1. The activity at low temperature (<200oC) can be improved by added Mn intoFe4Co1Oxand high low temperature activity can be obtained on Mn(0.3)-Fe4Co1Oxcatalystwith mole ratio of Mn/(Fe+CO) for0.3as100%NOxconversion can be obtain at80oC,which is also higher than Fe-Mn catalyst previous reported. The catalysts were examined byvarious characterization techniques and it was found that mixed crystal phases of Fe2O3andCoFe2O4spinel existed in Fe4Co1Oxwhile only CoFe2O4spinel crystal existed inMn(0.3)-Fe4Co1Ox. Highly dispersed Mn and Fe on the catalyst surface and good reducibilitycan be accounted for the high activity of Mn(0.3)-Fe4Co1Oxcatalyst.
引文
[1] Parvulescu V I, Grange P, Delmon B. Catalytic removal of NO[J]. Catalysis Today,1998,46(4):233-316
    [2] Heck R M. Catalytic abatement of nitrogen oxides-stationary applications[J]. Catalysis Today,1999,53(4):519-523
    [3] Li X, Zhu P, Wang F, et al. Simultaneous catalytic reductions of NO and SO2by H2overnickel-tungsten catalysts[J]. Journal of Physical Chemistry C,2008,112(9):3376-3382
    [4] He H, Wang Y, Ma Q, et al. Mineral dust and NOxpromote the conversion of SO2to sulfate in heavypollution days[J]. Scientific Reports,2014, DOI:10.1038/srep04172
    [5] Seinfeld J H. Urban air pollution: state of the science[J]. Science,1989,243(4892):745-752
    [6] Taylor K C. Nitric oxide catalysis in automotive exhaust systems[J]. Catalysis Reviews-Science andEngineering,1993,35(4):457-481
    [7]2012年环境统计年报[M].中华人民共和国环境保护部.中国北京,2012.
    [8]中华人民共和国国家标准,火电厂大气污染物排放标准(GB13223-2011)[M].中国环境科学出版社:中国北京,2011.
    [9]《中华人民共和国环境保护法》和《排污费征收使用管理条例》
    [10]朱世勇.环境与工业气体净化技术[M].北京:化学工业出版社,2001
    [11]祝天熙.硝酸尾气治理方法讨论[J].陕西化工,1997,5:8-10
    [12]李晓东,杨卓如.国外氮氧化物气体治理的研究进展[J].环境工程,1996,14(6):34-39
    [13]张文祥,贾明君,吴通好等.金属离子交换分子筛的NO的吸附性能[J].高等化学学报,1997,18(12):1999-2003
    [14]魏恩宗,林赫,高翔等.燃煤锅炉烟气NOx污染等离子体治理技术[J].环境污染治理技术与设备,2003,4(1):58-62
    [15] Mok Y S, Nam I-S. Modeling of pulsed corona discharge process for the removal of nitric oxide andsulfur dioxide[J]. Chemical Engineering Journal,2002,85(1):87-97
    [16] Krawczyk K, M otek M. Combined plasma-catalytic processing of nitrous oxide[J]. Applied CatalysisB: Environmental,2001,30(3):233-245
    [17] Winter E R S. The catalytic decomposition of nitric oxide by metallic oxides[J]. Journal of Catalysis,1971,22(2):158-170
    [18] Amirnazmi A, Benson J E, Boudart M. Oxygen inhibition in the decomposition of NO on metal oxidesand platinum[J]. Journal of Catalysis,1973,30(1):55-65
    [19] Iwamoto M, Yokoo S, Sakai K, et al. Catalytic decomposition of nitric oxide overcopper(II)-exchanged, Y-type zeolites[J]. Journal of the Chemical Society, Faraday Transactions1:Physical Chemistry in Condensed Phases,1981,77(7):1629-1638
    [20] Iwamoto M, Furukawa H, Mine Y, et al. Copper(II) ion-exchanged ZSM-5zeolites as highly activecatalysts for direct and continuous decomposition of nitrogen monoxide[J]. Journal of the Chemical Society,Chemical Communications,1986,(16):1272-1273
    [21] Zhang X K, Walters A B, Vannice M A. NO Adsorption, decomposition, and reduction by methaneover rare earth oxides[J]. Journal of Catalysis,1995,155(2):290-302
    [22] Fritz A, Pitchon V. The current state of research on automotive lean NOxcatalysis[J]. AppliedCatalysis B: Environmental,1997,13(1):1-25
    [23]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].化学工业出版社环境科学与工程出版中心,2002
    [24] Rojevic M. Reduction of nitrogen oxides in flue gases. Environmental Pollution[J],1998,102(81):685-689
    [25] Nakatsuji T, Miyamoto A. Removal technology for nitorogen oxides and sulfur oxides from exhaustgases[J]. Catalysis Today,1991,10(1):21-31
    [26] Busca G, Lietti L, Ramis G, et al. Chemical and mechanistic aspects of the selective catalyticreduction of NOxby ammonia over oxide catalysts: A review[J]. Applied Catalysis B: Environmental,1998,18(1-2):1-36
    [27]张强,许世森,王志强.选择性催化还原烟气脱硝技术进展及工程应用[J].技术经济综述,2004,4:1-6
    [28]李敏,仲兆平.氨选择性催化还原SCR脱除氮氧化物的研究[J].能源研究与利用,2004,2:24-27
    [29] Nikolopoulos A A, Stergioula E S, Efthimiadis E A, et al. Selective catalytic reduction of NO bypropene in excess oxygen on Pt-and Rh-supported alumina catalysts[J]. Catalysis Today,1999,54(4):439-450
    [30] Forzatti P. Present status and perspectives in de-NOxSCR catalysis[J]. Applied Catalysis A: General,2001,222(1-2):221-236
    [31] Giroir-Fendler A, Denton P, Boreave A, et al. The role of support acidity in the selective catalyticreduction of NO by C3H6under lean-burn conditions[J]. Topics in Catalysis,2001,16(1-4):237-241
    [32] Ren Y J, Harold M P. NOxStorage and reduction with H2on Pt/Rh/BaO/CeO2: Effects of Rh andCeO2in the absence and presence of CO2and H2O[J]. Acs Catalysis,2011,1(8):969-988
    [33] Liu X Y, Jiang Z, Chen M X, et al. Low-temperature performance of Pt/TiO2for selective catalyticreduction of low concentration NO by C3H6[J]. Industrial&Engineering Chemistry Research,2011,50(13):7866-7873
    [34] An W Z, Zhang Q L, Chuang K T, et al. A hydrophobic Pt/fluorinated carbon catalyst for reaction ofNO with NH3[J]. Industrial&Engineering Chemistry Research,2002,41(1):27-31
    [35] Seker E, Yasyerli N, Gulari E, et al. NOxreduction by urea under lean conditions over single stepsol–gel Pt/alumina catalyst[J]. Applied Catalysis B: Environmental,2002,37(1):27-35
    [36] Kang M, Kim D J, Park E D, et al. Two-stage catalyst system for selective catalytic reduction of NOxby NH3at low temperatures[J]. Applied Catalysis B: Environmental,2006,68(1):21-27
    [37] Wang Y, Zhu J, Ma R. Macrodynamic study and catalytic reduction of NO by ammonia under mildconditions over Pt-La-Ce-O/Al2O3catalysts[J]. Energy Conversion and Management,2007,48(7):1936-1942
    [38] Iwamoto M, Yahiro H, Tanda K, et al. Removal of nitrogen monoxide through a novel catalyticprocess.1. Decomposition on excessively copper-ion-exchanged ZSM-5zeolites[J]. The Journal ofPhysical Chemistry,1991,95(9):3727-3730
    [39] Chen H Y, Voskoboinikov T, Sachtler W M H. Reaction intermediates in the selective catalyticreduction of NOxover Fe/ZSM-5[J]. Journal of Catalysis,1999,186(1):91-99
    [40] Long R Q, Yang R T. Catalytic performance of Fe-ZSM-5catalysts for selective catalytic reduction ofnitric oxide by ammonia[J]. Journal of Catalysis,1999,188(2):332-339
    [41] Salker A V, Weisweiler W. Catalytic behaviour of metal based ZSM-5catalysts for NOxreductionwith NH3in dry and humid conditions[J]. Applied Catalysis A: General,2000,203(2):221-229
    [42] Li J H, Chang H Z, Ma L, et al. Low-temperature selective catalytic reduction of NOxwith NH3overmetal oxide and zeolite catalysts—A review[J]. Catalysis Today,2011,175(1):147-156
    [43] Roberge D, Raj A, Kaliaguine S, et al. Selective catalytic reduction of NO under ambient conditionsusing ammonia as reducing agent and MFI zeolites as catalysts[J]. Applied Catalysis B: Environmental,1996,10(4): L237-L243
    [44] Richter M, Eckelt R, Parlitz B, et al. Low-temperature conversion of NOxto N2by zeolite-fixedammonium ions[J]. Applied Catalysis B: Environmental,1998,15(1-2):129-146
    [45] Richter M, Trunschke A, Bentrup U, et al. Selective catalytic reduction of nitric oxide by ammoniaover egg-shell MnOx/NaY composite catalysts[J]. Journal of Catalysis,2002,206(1):98-113
    [46]梁斌,邱礼有, Calis H P A,等. Ce/β分子筛上NH3选择还原NO反应动力学研究[J].高校化学工程学报,1999,13(3):217-222
    [47]朱华青,王建国,关春梅. NH4-β分子筛上NO的低温催化还原[J].燃料化学学报,2001,29(S):63-65
    [48]伍斌,童志权,黄研. MnOx/NaY催化剂上NH3低温选择性催化还原NOx[J].石油化工,2006,35(2):178-182
    [49] Kwak J H, Tonkyn R G, Kim D H, et al. Excellent activity and selectivity of Cu-SSZ-13in theselective catalytic reduction of NOxwith NH3[J]. Journal of Catalysis,2010,275(2):187-190
    [50] Fu M, Li C, Lu P, et al. A review on selective catalytic reduction of NOxby supported catalysts at100-300oC catalysts, mechanism, kinetics[J]. Catalysis Science&Technology,2014,4(1):14-25
    [51] Chen J P, Yang R T. Selective catalytic reduction of nitric oxide by ammonia on pillared clay catalysts:Possible mechanism and promoters[J]. Chemical Engineering Communications,1996,153,161-171
    [52] Mou X, Zhang B, Li Y, et al. Rod-shaped Fe2O3as an efficient catalyst for the selective reduction ofnitrogen oxide by ammonia[J]. Angewandte Chemie International Edition,2012,51(12):2989-2993
    [53] Djerad S, Tifouti L, Crocoll M, et al. Effect of vanadia and tungsten loadings on the physical andchemical characteristics of V2O5-WO3/TiO2catalysts[J]. Journal of Molecular Catalysis A: Chemical,2004,208(1-2):257-265
    [54] Choo S T, Yim S D, Nam I-S, et al. Effect of promoters including WO3and BaO on the activity anddurability of V2O5/sulfated TiO2catalyst for NO reduction by NH3[J]. Applied Catalysis B: Environmental,2003,44(3):237-252
    [55] Broer S, Hammer T. Selective catalytic reduction of nitrogen oxides by combining a non-thermalplasma and a V2O5-WO3/TiO2catalyst[J]. Applied Catalysis B-Environmental,2000,28(2):101-111
    [56] Valdes-Solis T, Marban G, Fuertes A B. Kinetics and mechanism of low-temperature SCR of NOxwith NH3over vanadium oxide supported on carbon-ceramic cellular monoliths[J]. Industrial&Engineering Chemistry Research,2004,43(10):2349-2355
    [57] Valdes-Solis T, Marban G, Fuertes A B. Low-temperature SCR of NOxwith NH3over carbon-ceramiccellular monolith-supported manganese oxides[J]. Catalysis Today,2001,69(1-4):259-264
    [58] Parvulescu V I, Boghosian S, Parvulescu V, et al. Selective catalytic reduction of NO with NH3overmesoporous V2O5-TiO2-SiO2catalysts[J]. Journal of Catalysis,2003,217(1):172-185
    [59] Macleod N, Lambert R M. Selective NOxReduction During the H2+NO+O2reaction underoxygen-rich conditions over Pd/V2O5/Al2O3: evidence for in situ ammonia generation[J]. Catalysis Letters,2003,90(3):111-115
    [60] Kapteijn F, Singoredjo L, Andreini A, et al. Activity and selectivity of pure manganese oxides in theselective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B: Environmental,1994,3(2-3):173-189
    [61] Tang X L, Hao J M, Xu W G, et al. Novel MnOxcatalyst for low-temperature selective catalyticreduction of NOxwith NH3[J]. Chinese Journal of Catalysis,2006,27(10):843-848
    [62] Tang X L, Hao J M, Xu W G, et al. Low temperature selective catalytic reduction of NOxwith NH3over amorphous MnOxcatalysts prepared by three methods[J]. Catalysis Communications,2007,8(3):329-334
    [63] Kang M, Park E D, Kim J M, et al. Manganese oxide catalysts for NOxreduction with NH3at lowtemperatures[J]. Applied Catalysis A: General,2007,327(2):261-269
    [64] Wang C, Sun L A, Cao Q Q, et al. Surface structure sensitivity of manganese oxides forlow-temperature selective catalytic reduction of NO with NH3[J]. Applied Catalysis B: Environmental,2011,101(3-4):598-605
    [65] Dai Y, Li J H, Peng Y, et al. Effects of MnO2crystal structure and surface property on the NH3-SCRreaction at low temperature[J]. Acta Physico-Chimica Sinica,2012,28(7):1771-1776
    [66] Hu P P, Huang Z W, Hua W M, et al. Effect of H2O on catalytic performance of manganese oxides inNO reduction by NH3[J]. Applied Catalysis A: General,2012,437139-148
    [67] Qi G, Yang R T. A superior catalyst for low-temperature NO reduction with NH3[J]. ChemicalCommunications,2003,(7):848-849
    [68] Qi G S, Yang R T. Characterization and FTIR studies of MnOx-CeO2catalyst for low-temperatureselective catalytic reduction of NO with NH3[J]. Journal of Physical Chemistry: B,2004,108(40):15738-15747
    [69] Qi G S, Yang R T, Chang R. MnOx-CeO2mixed oxides prepared by co-precipitation for selectivecatalytic reduction of NO with NH3at low temperatures[J]. Applied Catalysis B: Environmental,2004,51(2):93-106
    [70] Casapu M, Kr cher O, Elsener M. Screening of doped MnOx-CeO2catalysts for low-temperatureNO-SCR[J]. Applied Catalysis B: Environmental,2009,88(3-4):413-419
    [71] Casapu M, Krocher O, Mehring M, et al. Characterization of Nb-containing MnOx-CeO2catalyst forlow-temperature selective catalytic reduction of NO with NH3[J]. Journal of Physical Chemistry C,2010,114(21):9791-9801
    [72] Chang H, Li J, Chen X, et al. Effect of Sn on MnOx-CeO2catalyst for SCR of NOxby ammonia:Enhancement of activity and remarkable resistance to SO2[J]. Catalysis Communications,2012,27:54-57
    [73] Chang H Z, Chen X Y, Li J H, et al. Improvement of activity and SO2tolerance of Sn-modifiedMnOx-CeO2catalysts for NH3-SCR at low temperatures[J]. Environmental Science&Technology,2013,47(10):5294-5301
    [74] Long R Q, Yang R T, Chang R. Low temperature selective catalytic reduction (SCR) of NO with NH3over Fe-Mn based catalysts[J]. Chemical Communications,2002,(5):452-453
    [75] Chen Z H, Li X H, Yang Q, et al. Removal of NOxusing novel Fe-Mn mixed-oxide catalysts at lowTemperature[J]. Acta Physico-Chimica Sinica,2009,25(4):601-605
    [76] Shen K, Zhang Y P, Wang X L, et al. Influence of chromium modification on the properties ofMnOx-FeOxcatalysts for the low-temperature selective catalytic reduction of NO by NH3[J]. Journal ofEnergy Chemistry,2013,22(4):617-623
    [77] Zhou C, Zhang Y, Wang X, et al. Influence of the addition of transition metals (Cr, Zr, Mo) on theproperties of MnOx-FeOxcatalysts for low-temperature selective catalytic reduction of NOxby Ammonia[J].Journal of Colloid and Interface Science,2012,392:319-324
    [78] Chen Z H, Yang Q, Li H, et al. Cr-MnOxmixed-oxide catalysts for selective catalytic reduction of NOxwith NH3at low temperature[J]. Journal of Catalysis,2010,276(1):56-65
    [79] Zamudio M A, Russo N, Fino D. Low temperature NH3selective catalytic reduction of NOxoverSubstituted MnCr2O4spinel-oxide catalysts[J]. Industrial&Engineering Chemistry Research,2011,50(11):6668-6672
    [80] Kang M, Park E D, Kim J M, et al. Cu-Mn mixed oxides for low temperature NO reduction with NH3[J]. Catalysis Today,2006,111(3-4):236-241
    [81] Zhang R, Luo N, Yang W, et al. Low-temperature selective catalytic reduction of NO with NH3usingperovskite-type oxides as the novel catalysts[J]. Journal of Molecular Catalysis A: Chemical,2013,371:86-93
    [82] Zhang R, Yang W, Luo N, et al. Low-temperature NH3-SCR of NO by lanthanum manganiteperovskites: Effect of A-/B-site substitution and TiO2/CeO2support[J]. Applied Catalysis B: Environmental,2014,146:94-104
    [83] Smirniotis P G, Pena D A, Uphade B S. Low-temperature selective catalytic reduction (SCR) of NOwith NH3by Using Mn, Cr, and Cu Oxides Supported on Hombikat TiO2[J]. Angewandte ChemieInternational Edition,2001,40(13):2479-2482
    [84] Li J H, Chen J J, Ke R, et al. Effects of precursors on the surface Mn species and the activities for NOreduction over MnOx/TiO2catalysts[J]. Catalysis Communications,2007,8(12):1896-1900
    [85] Wu Z B, Jiang B Q, Liu Y, et al. DRIFT study of manganese/titania-based catalysts forlow-temperature selective catalytic reduction of NO with NH3[J]. Environmental Science&Technology,2007,41(16):5812-5817
    [86] Wu Z B, Jiang B Q, Liu Y, et al. Experimental study on a low-temperature SCR catalyst based onMnOx/TiO2prepared by sol-gel method[J]. Journal of Hazardous Materials,2007,145(3):488-494
    [87] Singoredjo L, Korver R, Kapteijn F, et al. Alumina supported manganese oxides for thelow-temperature selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B:Environmental,1992,1(4):297-316
    [88] Kijlstra W S, Daamen J C M L, van de Graaf J M, et al. Inhibiting and deactivating effects of water onthe selective catalytic reduction of nitric oxide with ammonia over MnOx/Al2O3[J]. Applied Catalysis B:Environmental,1996,7(3-4):337-357
    [89] Sjoerd Kijlstra W, Biervliet M, Poels E K, et al. Deactivation by SO2of MnOx/Al2O3catalysts used forthe selective catalytic reduction of NO with NH3at low temperatures[J]. Applied Catalysis B:Environmental,1998,16(4):327-337
    [90] Qi G S, Yang R T, Chang R. Low-temperature SCR of NO with NH3over USY-supported manganeseoxide-based catalysts[J]. Catalysis Letters,2003,87(1-2):67-71
    [91] Pe a D A, Uphade B S, Smirniotis P G. TiO2-supported metal oxide catalysts for low-temperatureselective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transitionmetals[J]. Journal of Catalysis,2004,221(2):421-431
    [92] Qi G, Yang R T. Low-temperature selective catalytic reduction of NO with NH3over iron andmanganese oxides supported on titania[J]. Applied Catalysis B: Environmental,2003,44(3):217-225
    [93] Wu Z, Jiang B Q, Liu Y. Effect of transition metals addition on the catalyst of manganese/titania forlow-temperature selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B:Environmental,2008,79(4):347-355
    [94] Huang J, Tong Z, Huang Y, et al. Selective catalytic reduction of NO with NH3at low temperaturesover iron and manganese oxides supported on mesoporous silica [J]. Applied Catalysis B: Environmental,2008,78(3-4):309-314
    [95] Wu Z B, Jin R B, Liu Y, et al. Ceria modified MnOx/TiO2as a superior catalyst for NO reduction withNH3at low-temperature[J]. Catalysis Communications,2008,9(13):2217-2220
    [96] Carja G, Kameshima Y, Okada K, et al. Mn-Ce/ZSM-5as a new superior catalyst for NO reductionwith NH3[J]. Applied Catalysis B: Environmental,2007,73(1-2):60-64
    [97] Blanco J, Avila P, Suarez S, et al. CuO/NiO monolithic catalysts for NOxremoval from nitric acidplant flue gas [J]. Chemical Engineering Journal,2004,97(1):1-9
    [98] Centi G, Perathoner S, Biglino D, et al. Adsorption and reactivity of NO on copper-on-aluminacatalysts: I. Formation of nitrate species and their influence on reactivity in NO and NH3conversion[J].Journal of Catalysis,1995,152(1):75-92
    [99] Ramis G, Yi L, Busca G, et al. Adsorption, activation, and oxidation of ammonia over SCRcatalysts[J]. Journal of Catalysis,1995,157(2):523-535
    [100] Liu F D, He H, Zhang C B. Novel iron titanate catalyst for the selective catalytic reduction of NOwith NH3in the medium temperature range[J]. Chemical Communications,2008,(17):2043-2045
    [101] Liu F D, He H, Zhang C B, et al. Selective catalytic reduction of NO with NH3over iron titanatecatalyst: Catalytic performance and characterization[J]. Applied Catalysis B: Environmental,2010,96(3-4):408-420
    [102] Liu F D, Asakura K, He H, et al. Influence of calcination temperature on iron titanate catalyst for theselective catalytic reduction of NOxwith NH3[J]. Catalysis Today,2011,164(1):520-527
    [103] Chmielarz L, Ku trowski P, Rafalska-asocha A, et al. Catalytic activity of Co-Mg-Al, Cu-Mg-Aland Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia[J]. AppliedCatalysis B: Environmental,2002,35(3):195-210
    [104] Pasel J, K ner P, Montanari B, et al. Transition metal oxides supported on active carbons as lowtemperature catalysts for the selective catalytic reduction (SCR) of NO with NH3[J]. Applied Catalysis B:Environmental,1998,18(3-4):199-213
    [105] Zhu Z, Liu Z, Liu S, et al. A novel carbon-supported vanadium oxide catalyst for NO reduction withNH3at low temperatures[J]. Applied Catalysis B: Environmental,1999,23(4): L229-L233
    [106] Zhu Z, Liu Z, Niu H, et al. Promoting effect of SO2on activated carbon-supported vanadia catalystfor NO reduction by NH3at low temperatures[J]. Journal of Catalysis,1999,187(1):245-248
    [107] Yoshikawa M, Yasutake A, Mochida I. Low-temperature selective catalytic reduction of NOxbymetal oxides supported on active carbon fibers[J]. Applied Catalysis A: General,1998,173(2):239-245
    [108] Valdés S, amp, x, et al. Low-temperature SCR of NOxwith NH3over carbon-ceramic supportedcatalysts[J]. Applied Catalysis B: Environmental,2003,46(2):261-271
    [109] Tang X L, Hao J M, Yi H H, et al. Low-temperature SCR of NO with NH3over AC/C supportedmanganese-based monolithic catalysts[J]. Catalysis Today,2007,126(3-4):406-411
    [110] Pourkhalil M, Moghaddam A Z, Rashidi A, et al. Synthesis of MnOx/Oxidized-MWNTs forabatement of nitrogen oxides[J]. Catalysis Letters,2013,143(2):184-192
    [111] Pourkhalil M, Moghaddam A Z, Rashidi A, et al. Preparation of highly active manganese oxidessupported on functionalized MWNTs for low temperature NOxreduction with NH3[J]. Applied SurfaceScience,2013,279:250-259
    [112] Zhang D S, Zhang L, Shi L Y, et al. In situ supported MnOx-CeOxon carbon nanotubes for thelow-temperature selective catalytic reduction of NO with NH3[J]. Nanoscale,2013,5(3):1127-1136
    [113] Kijlstra W S, Brands D S, Smit H I, et al. Mechanism of the selective catalytic reduction of NO byNH3over MnOx/Al2O3.2. Reactivity of adsorbed NH3and NO complexes[J]. Journal of Catalysis,1997,171(1):219-230
    [114] Kijlstra W S, Brands D S, Poels E K, et al. Mechanism of the selective catalytic reduction of NO byNH3over MnOx/Al2O3[J]. Journal of Catalysis,1997,171(1):208-218
    [115] Kapteijn F, Singoredjo L, Vandriel M, et al. Alumina-supported manganese oxide catalysts: II.Surface characterization and adsorption of ammonia and nitric oxide[J]. Journal of Catalysis,1994,150(1):105-116
    [116] Stevenson S A, Vartuli J C, Brooks C F. Kinetics of the selective catalytic reduction of NO overHZSM-5[J]. Journal of Catalysis,2000,190(2):228-239
    [117] Kantcheva M. Identification, stability, and reactivity of NOxspecies adsorbed on titania-supportedmanganese catalysts[J]. Journal of Catalysis,2001,204(2):479-494
    [118] Marban G, Fuertes A B. Kinetics of the low-temperature selective catalytic reduction of NO withNH3over activated carbon fiber composite-supported iron oxides[J]. Catalysis Letters,2002,84(1-2):13-19
    [119] Tian W, Yang H S, Fan X Y, et al. Catalytic reduction of NOxwith NH3over different-shaped MnO2at low temperature[J]. Journal of Hazardous Materials,2011,188(1-3):105-109
    [120] Ettireddy P R, Ettireddy N, Mamedov S, et al. Surface characterization studies of TiO2supportedmanganese oxide catalysts for low temperature SCR of NO with NH3[J]. Applied Catalysis B:Environmental,2007,76(1):123-134
    [121] Park E, Kim M, Jung H, et al. Effect of sulfur on Mn/Ti catalysts prepared using chemical vaporcondensation (CVC) for low-temperature NO reduction[J]. Acs Catalysis,2013,3(7):1518-1525
    [122] Wang X, Zheng Y Y, Xu Z, et al. Amorphous MnO2supported on carbon nanotubes as a superiorcatalyst for low temperature NO reduction with NH3[J]. Rsc Advances,2013,3(29):11539-11542
    [123] Fang C, Zhang D S, Cai S X, et al. Low-temperature selective catalytic reduction of NO with NH3over nanoflaky MnOxon carbon nanotubes in situ prepared via a chemical bath deposition route[J].Nanoscale,2013,5(19):9199-9207
    [124] Kapteijn F, Vanlangeveld A D, Moulijn J A, et al. Alumina-supported manganese oxide catalysts: I.Characterization: effect of precursor and loading[J]. Journal of Catalysis,1994,150(1):94-104
    [125] Chen Z H, Wang F R, Li H, et al. Low-temperature selective catalytic reduction of NOxwith NH3over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8phase[J]. Industrial&Engineering ChemistryResearch,2012,51(1):202-212
    [126] Jiang D, Zhang M, Li G, et al. Preparation and evaluation of MnOx-CeO2nanospheres via a greenroute[J]. Catalysis Communications,2012,17:59-63
    [127] Liu F D, Shan W P, Lian Z H, et al. Novel MnWOxcatalyst with remarkable performance for lowtemperature NH3-SCR of NOx[J]. Catalysis Science&Technology,2013,3(10):2699-2707
    [128] Lopez E F, Escribano V S, Resini C, et al. A study of coprecipitated Mn-Zr oxides and theirbehaviour as oxidation catalysts[J]. Applied Catalysis B: Environmental,2001,29(4):251-261
    [129] Choudhary V R, Uphade B S, Pataskar S G. Low temperature complete combustion of dilute methaneover Mn-doped ZrO2catalysts: factors influencing the reactivity of lattice oxygen and methane combustionactivity of the catalyst[J]. Applied Catalysis A: General,2002,227(1-2):29-41
    [130] Choudhary V R, Deshmukh G M, Pataskar S G. Low temperature complete combustion of dilutetoluene and methyl ethyl ketone over Mn-doped ZrO2(cubic) catalysts[J]. Journal of Chemical Technologyand Biotechnology,2005,80(8):934-938
    [131] Zhao Q, Shih W Y, Chang H L, et al. Redox activity and NO storage capacity of MnOx-ZrO2withenhanced thermal stability at elevated temperatures[J]. Industrial&Engineering Chemistry Research,2010,49(4):1725-1731
    [132] Li W B, Yang X F, Chen L F, et al. Adsorption/desorption of NOxon MnO2/ZrO2oxides prepared inreverse microemulsions[J]. Catalysis Today,2009,148(1-2):75-80
    [133] Eguchi K, Hayashi T. Reversible sorption-desorption of NOxby mixed oxides under variousatmospheres[J]. Catalysis Today,1998,45(1-4):109-115
    [134] Eguchi K, Watabe M, Ogata S, et al. Reversible sorption of nitrogen oxides in Mn-Zr oxide[J].Journal of Catalysis,1996,158(2):420-426
    [135] Gutierrez-Ortiz J I, de Rivas B, Lopez-Fonseca R, et al. Structure of Mn-Zr mixed oxides catalystsand their catalytic performance in the gas-phase oxidation of chlorocarbons[J]. Chemosphere,2007,68(6):1004-1012
    [136] Lajavardi M, Kenney D J, Lin S H. Time-resolved phase transitions of the nanocrystalline cubic tosubmicron monoclinic phase in zirconia[J]. Journal of the Chinese Chemical Society,2000,47(5):1043-1053
    [137] Azalim S, Franco M, Brahmi R, et al. Removal of oxygenated volatile organic compounds bycatalytic oxidation over Zr-Ce-Mn catalysts[J]. Journal of Hazardous Materials,2011,188(1-3):422-427
    [138] Koebel M, Elsener M, Madia G. Reaction pathways in the selective catalytic reduction process withNO and NO2at low temperatures[J]. Industrial&Engineering Chemistry Research,2001,40(1):52-59
    [139] Eguchi K, Kondo T, Hayashi T, et al. Sorption of nitrogen oxides on MnOy-ZrO2andPt-ZrO2-Al2O3[J]. Applied Catalysis B: Environmental,1998,16(1):69-77
    [140] Huang H Y, Yang R T. Removal of NO by reversible adsorption on Fe Mn based transition metaloxides[J]. Langmuir,2001,17(16):4997-5003
    [141] Shen B, Zhang X, Ma H, et al. A comparative study of Mn/CeO2, Mn/ZrO2and Mn/Ce-ZrO2for lowtemperature selective catalytic reduction of NO with NH3in the presence of SO2and H2O[J]. Journal ofEnvironmental Sciences,2013,25(4):791-800
    [142] Koebel M, Madia G, Elsener M. Selective catalytic reduction of NO and NO2at low temperatures[J].Catalysis Today,2002,73(3-4):239-247
    [143] Strohmeier B R, Hercules D M. Surface spectroscopic characterization of manganese/aluminumoxide catalysts[J]. The Journal of Physical Chemistry,1984,88(21):4922-4929
    [144] Nesbitt H W, Banerjee D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraintson the mechanism of MnO2precipitation[J]. American Mineralogist,1998,83(3-4):305-315
    [145] Ardizzone S, Bianchi C L. XPS characterization of sulphated zirconia catalysts: the role of iron[J].Surface and Interface Analysis,2000,30(1):77-80
    [146] Rao T, Shen M Q, Jia L W, et al. Oxidation of ethanol over Mn-Ce-O and Mn-Ce-Zr-O complexcompounds synthesized by sol-gel method[J]. Catalysis Communications,2007,8(11):1743-1747
    [147] Qi G S, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3overMnOx-CeO2catalyst[J]. Journal of Catalysis,2003,217(2):434-441
    [148] Wu B J, Xiao P, Liu X Q. Performance and kinetics studies on selective catalytic Reduction of NOxwith NH3over MnOx-WO3/TiO2Catalyst[J]. Chemical Research in Chinese Universities,2010,26(6):1002-1006
    [149] Sjoerd Kijlstra W, Brands D S, Poels E K, et al. Kinetics of the selective catalytic reduction of NOwith NH3over MnOx/Al2O3catalysts at low temperature[J]. Catalysis Today,1999,50(1):133-140
    [150] Shen B X, Liu T. Deactivation of MnOx-CeOx/ACF catalysts for low-temperature NH3-SCR in thepresence of SO2[J]. Acta Physico-Chimica Sinica,2010,26(11):3009-3016
    [151] Jiang B Q, Wu Z B, Liu Y, et al. DRIFT study of the SO2effect on low-temperature SCR reactionover Fe-Mn/TiO2[J]. Journal of Physical Chemistry C,2010,114(11):4961-4965
    [152] Pan S W, Luo H C, Li L, et al. H2O and SO2deactivation mechanism of MnOx/MWCNTs forlow-temperature SCR of NOxwith NH3[J]. Journal of Molecular Catalysis A: Chemical,2013,377,154-161
    [153] Jin R B, Liu Y, Wu Z B, et al. Relationship between SO2poisoning effects and reaction temperaturefor selective catalytic reduction of NO over Mn-Ce/TiO2catalyst[J]. Catalysis Today,2010,153(3-4):84-89
    [154] Kourieh R, Retailleau L, Bennici S, et al. Influence of the acidic properties of ZrO2based mixedoxides catalysts in the selective reduction of NOxwith n-Decane[J]. Catalysis Letters,2013,143(1):74-83
    [155] Nagaishi T, Ishiyama S, Matsumoto M, et al. Reactions between ammonium sulphate and metaloxides (metal=Cr, Mn and Fe) and thermal decomposition of the products[J]. Journal of Thermal Analysis,1984,29(1):121-129
    [156] Romano E J, Schulz K H. A XPS investigation of SO2adsorption on ceria-zirconia mixed-metaloxides[J]. Applied Surface Science,2005,246(1-3):262-270
    [157] Tauster S J, Fung S C, Garten R L. Strong metal-support interactions. Group8noble metalssupported on titanium dioxide[J]. Journal of the American Chemical Society,1978,100(1):170-175
    [158] Martra G. Lewis acid and base sites at the surface of microcrystalline TiO2anatase: relationshipsbetween surface morphology and chemical behaviour[J]. Applied Catalysis A: General,2000,200(1-2):275-285
    [159] Roy S, Viswanath B, Hegde M S, et al. Low-temperature selective catalytic reduction of NO withNH3over Ti0.9M0.1O2-δ(M=Cr, Mn, Fe, Co, Cu)[J]. The Journal of Physical Chemistry C,2008,112(15):6002-6012
    [160] Kim Y J, Kwon H J, Nam I S, et al. High deNOxperformance of Mn/TiO2catalyst by NH3[J].Catalysis Today,2010,151(3-4):244-250
    [161] Thirupathi B, Smirniotis P G. Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2catalyst and its effect on the selective reduction of NO with NH3at low-temperatures[J]. Applied CatalysisB: Environmental,2011,110:195-206
    [162] Xie J L, Fu Z B, He F, et al. Synthesis, characterization and catalytic activities of MnOx/TiO2in NOselective catalytic reduction with NH3[J]. Asian Journal of Chemistry,2013,25(8):4416-4418
    [163] Shi Y, Chen S, Sun H, et al. Low-temperature selective catalytic reduction of NOx with NH3overhierarchically macro-mesoporous Mn/TiO2[J]. Catalysis Communications,2013,42:10-13
    [164] Zhang Y P, Zhao X Y, Xu H T, et al. Novel ultrasonic-modified MnO2/TiO2for low-temperatureselective catalytic reduction (SCR) of NO with ammonia[J]. Journal of Colloid and Interface Science,2011,361(1):212-218
    [165] Sreekanth P M, Pe a D A, Smirniotis P G. Titania supported bimetallic transition metal oxides forlow-temperature SCR of NO with NH3[J]. Industrial&Engineering Chemistry Research,2006,45(19):6444-6449
    [166] Jin R B, Liu Y, Wu Z B, et al. Low-temperature selective catalytic reduction of NO with NH3overMn-Ce oxides supported on TiO2and Al2O3: A comparative study[J]. Chemosphere,2010,78(9):1160-1166
    [167] Lee S M, Park K H, Hong S C. MnOx/CeO2-TiO2mixed oxide catalysts for the selective catalyticreduction of NO with NH3at low temperature[J]. Chemical Engineering Journal,2012,195-196:323-331
    [168] Xu H D, Qiu C T, Zhang Q L, et al. Influence of tungsten oxide on selective catalytic reduction ofNOxwith NH3over MnOx-CeO2/ZrO2-TiO2monolith catalyst[J]. Acta Physico-Chimica Sinica,2010,26(9):2449-2454
    [169] Tang K B, Qian Y T, Zeng J H, et al. Solvothermal route to semiconductor nanowires[J]. AdvancedMaterials,2003,15(5):448-450
    [170] Demazeau G. Solvothermal reactions: an original route for the synthesis of novel materials[J].Journal of Materials Science,2008,43(7):2104-2114
    [171] Yu J H, Xu R R. Rational Approaches toward the design and synthesis of zeolitic inorganicopen-framework materials[J]. Accounts of Chemical Research,2010,43(9):1195-1204
    [172] Iwamoto S, Inoue M. Solvothermal synthesis of inorganic materials and their performance ascatalysts[J]. Journal of the Japan Petroleum Institute,2008,51(3):143-156
    [173] Zhu Y C, Qian Y T. Solvothermal synthesis of carbon nanomaterials[J]. Chinese Journal of InorganicChemistry,2008,24(4):499-504
    [174] Ong W J, Tan L L, Chai S P, et al. Highly reactive {001} facets of TiO2-based composites: synthesis,formation mechanism and characterization[J]. Nanoscale,2014,6(4):1946-2008
    [175] He F, Li J L, Li T, et al. Solvothermal synthesis of mesoporous TiO2: The effect of morphology, sizeand calcination progress on photocatalytic activity in the degradation of gaseous benzene[J]. ChemicalEngineering Journal,2014,237:312-321
    [176] Rui Y C, Li Y G, Zhang Q H, et al. Size-tunable TiO2nanorod microspheres synthesised via aone-pot solvothermal method and used as the scattering layer for dye-sensitized solar cells[J]. Nanoscale,2013,5(24):12574-12581
    [177] Arroyo R, Córdoba G, Padilla J, et al. Influence of manganese ions on the anatase-rutile phasetransition of TiO2prepared by the sol-gel process[J]. Materials Letters,2002,54(5-6):397-402
    [178] Bakardjieva S, Stengl V, Szatmary L, et al. Transformation of brookite-type TiO2nanocrystals torutile: correlation between microstructure and photoactivity[J]. Journal of Materials Chemistry,2006,16(18):1709-1716
    [179] Wang T Y, Sun K, Lu Z, et al. Low temperature NH3-SCR reaction over MnOxsupported onprotonated titanate[J]. Reaction Kinetics Mechanisms and Catalysis,2010,101(1):153-161
    [180] Huang H Y, Long R Q, Yang R T. Kinetics of selective catalytic reduction of NO with NH3onFe-ZSM-5catalyst[J]. Applied Catalysis a-General,2002,235(1-2):241-251
    [181] Eng J, Bartholomew C H. Kinetic and mechanistic study of NOxreduction by NH3over H-formzeolites.1. Kinetic and mechanistic insights into NO reduction over H-ZSM-5[J]. Journal of Catalysis,1997,171(1):14-26
    [182] Meng B, Zhao Z, Wang X, et al. Selective catalytic reduction of nitrogen oxides by ammonia overCo3O4nanocrystals with different shapes[J]. Applied Catalysis B: Environmental,2013,129(0):491-500
    [183] Ma Z, Yang H, Li B, et al. Temperature-dependent effects of SO2on selective catalytic reduction ofNO over Fe-Cu-Ox/CNTs-TiO2catalysts[J]. Industrial&Engineering Chemistry Research,2013,52(10):3708-3713
    [184] Li Q, Yang H, Ma Z, et al. Selective catalytic reduction of NO with NH3over CuOX-Carbonaceousmaterials [J]. Catalysis Communications,2012,17:8-12
    [185] Liu F D, He H. Structure-activity relationship of iron titanate catalysts in the selective catalyticreduction of NOxwith NH3[J]. Journal of Physical Chemistry C,2010,114(40):16929-16936
    [186] Sivakumar M, Kanagesan S, Chinnaraj K, et al. Synthesis, characterization and effects of citric acidand PVA on magnetic properties of CoFe2O4[J]. Journal of Inorganic and Organometallic Polymers andMaterials,2013,23(2):439-445
    [187] González-Cortés S, Rodulfo-Baechler S A, Oliveros A, et al. Synthesis of light alkenes on manganesepromoted iron and iron-cobalt Fischer-Tropsch catalysts[J]. Reaction Kinetics and Catalysis Letters,2002,75(1):3-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700