用户名: 密码: 验证码:
基于TiN制备耐腐蚀电极材料及在能源领域的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会的不断进步和高速发展,当前能源供应和环境保护问题日益突出。以石油为代表的一次能源消耗急剧增高,一次能源的资源和供应紧张以及由此产生的环境影响压力日益严峻,石油和煤炭价格飞涨,在这样的背景下新能源的发展日益受到重视,一些可再生能源得到了迅速发展。电化学技术具有环境友好和高效的特点,恰恰能满足这一发展需求,因而电化学技术在能源领域的应用得到了广泛重视。电化学技术的核心是电化学装置,而装置的核心是电极材料。本文基于TiN材料的特殊功能,创造性地发明了新的纳米粉体制备方法,发明了一系列新型电极材料,并在质子交换膜(PEM)水电解、低温燃料电池和脱硫海水恢复系统中得到了成功的应用。通过扫描电镜(SEM)、透射电镜(TEM)、扫描隧道显微镜(STM)、χ射线衍射(XRD)和光电子能谱(XPS)分析了形态和结构,基于电化学测试评价了电极材料的电催化性能和稳定性能。主要研究结果有:
     基于TiN涂层的耐腐蚀性和导电性,制备了TiN基IrO_2+Ta2O5涂层,其具有多孔性结构,以及很高的析氢、析氧电催化活性。强化寿命实验发现该种涂层使用寿命高于传统的Ti基涂层,表明TiN作为此类催化电极的载体是可行的。
     基于TiN涂层的耐腐蚀性和导电性,开发了低温氧化钝化膜复合TiN的不锈钢双极板表面改性技术。表面改性处理后的不锈钢双极板,在30%硫酸溶液中耐阴极还原和阳极氧化性能,在从阴极电位-0.2Vvs.SCE到阳极电位+1.0 Vvs.SCE范围内,电流密度最大不超过10μA/cm~2,面接触电阻为10 m·cm~2。因此,从耐腐蚀性、导电性和长期稳定性上可以满足PEMFC的使用要求。
     基于纳米粉体TiN的高反应活性,发明了TiN浸渍-热分解法,制备IrO_x-TiO_2粉体催化剂,并应用于PEM水电解。TiN前体热氧化生成的新生态TiO_2具有很高的反应活性,易于发生固相化学反应。通过浸渍形成了特殊的氧化分解条件,使得TiN的热分解产物为金红石相结构,这种相结构易于同氯铱酸的热分解产物形成IrO_x-TiO_2固溶体。PEM水电解测试表明,在铱担载量为1.2mgcm-2,电解温度80℃,工作电流密度1Acm-2下,槽压为1.6V。说明TiN浸渍-热分解法是制备低载量、高催化性能的水电解催化剂的理想方法。
     基于TiN浸渍-热分解法,合成了RuO_2-TiO_2纳米粉体和IrO_x-TiO_2纳米粉体,并以其为载体制备Pt/RuO_2-TiO_2和Pt/IrO_x-TiO_2,并应用于PEMFC。在0.5 mol/L H2SO4溶液中的极化曲线和在0.5 mol/L H_2SO_4 + 0.5 mol/L CH3OH溶液中的循环伏安曲线测试发现担载Pt与RuO_2-TiO_2、IrO_x-TiO_2具有协同作用,因而具有优异的对析氢、析氧和甲醇氧化反应的电催化性能。质子交换膜燃料电池测试初步表明Pt/RuO_2-TiO_2具有高的氧阴极还原反应催化活性,进一步的反极实验证明其具有比Pt/C更好的稳定性。
     基于TiN浸渍-热分解法,制备含有IrO_x-TiO_2中间层的Ti/ IrO_x-TiO_2/IrO_2涂层电极,并应用于PEM水电解集流板。IrO_x-TiO_2中间层的加入没有改变传统的钛基氧化铱电极的形貌特征和组成,并使电极具有相同的电催化响应特性,同时大大提高了钛基氧化铱电极的使用寿命。制备该电极的最优条件:焙烧温度为450 oC,中间层Ir/Ti摩尔比为0.6/0.4。经过实际应用表明,以Ti/IrO_x-TiO_2/IrO_2为涂层的PEM水电解集流板面接触电阻只有3 m·cm~2,具有优异的综合性能。
     基于TiN浸渍-热分解法,制备了IrO_x-TiO_2为中间层的Ti/TiO_2-IrO_x/IrO_2-SnO_2电极,并应用于电解海水恢复系统。该电极具有较好的析氯选择特性,“氯氧差”为150±10 mV。使用该电极在电解条件为pH 3.5,NaCl 3.5%,电解液量265 ml,25℃,电流密度200 mA/cm~2的条件下,电催化氧化脱硫海水模拟液5 min后Na_2SO_3去除率为41.9%,COD去除率为32.7%;电催化氧化15 min后Na_2SO_3去除率可达90.9%,COD去除率为82.6%。由此表明电解海水恢复系统在短时间内可以起到对脱硫海水的辅助恢复能力。
     基于上述内容,本论文最终在创新成果上实现了新方法,新材料和新应用,获得了一系列的发明专利,发表了多篇被SCI收入的论文,形成了较为完善的自有知识产权。
With the high rate development of the society, the problems of energy shortage and environment protection become more serious. The consumption of primary energy increases rapidly, consequently, it is in short supply and brings on the soaring price of the petroleum and coal, giving high pressure on environment. Under the conditions of that, the development of new energy has been given attention increasingly, and some regenerative energy develops quickly. Electrochemical technology has the characteristic of environment-friendliness and high efficiency, thus it can satisfy this need, and has been given extensive attention in energy feilds. The electrochemical equipment is the core of the electrochemical technology; furthermore electrode material is the core of the former. Based on the special function of TiN, a new preparation method of nanoscale powder and a series of new electrode materials are invented. They are successfully applied to PEM-water electrolysis, low-temperature fuel cell and desulfurized-seawater recovery system later. Meanwhile, their morphology and structures are analyzed by SEM, TEM, STM, XRD and XPS methods, and electrocatalytic activity and stability are evaluated by electrochemical measurements. As a result, they include:
     Based on the anti-corrosion and high conductivity of TiN coating, TiN-based IrO_2+ Ta2O5 coating is prepared, which has porous structure, thus has high electrocatalytic activity for hydrogen and oxygen evolution. The service life of this coating has been found longer than traditional Ti-based coating by accelerated life test, which confirms the feasibility of using TiN as the base material of these electrocatalytic electrodes.
     Based on the anti-corrosion and high conductivity of TiN coating, a surface modification technology of stainless steel bipolar plate by low-temperature-oxidation passive film coated with TiN coating is developed. It has good performance of anti-reduction and anti-oxidation in 30% H2SO4 solution, the current density is less than 10μA·cm~2 , contact surface resistance is 10 m?.cm~2, within–0.2 - 1.0 Vvs.SCE. Therefore, it can fully satisfy the need of PEMFC in anti-corrosion, conductivity and long-time stability.
     Based on the high reaction activity of TiN nano-powder, TiN impregnation-thermal decomposition method is invented, and then IrO_x-TiO_2 nano-powder catalyst is prepared, which can be applied to PEM-water electrolysis. Nascent TiO_2 by TiN-precursor thermal oxidation has super reaction activity. Therefore it is easy to undergo solid-phase chemical reaction. In fact, the reason lies in a formation of TiN thermal decomposition product with rutile crystal structure, produced by a specific oxidation-decomposition condition via impregnating, which can react with H_2IrCl_6 thermal decomposition product easily to form IrO_x-TiO_2 solid solution. PEM-water electrolysis test is carried on and it shows that the cell voltage was 1.6 V at 1A cm-2 and 80℃, with 1.2 mg cm~(-2) Ir loading. These indicate that it is probably an ideal method to prepare a water electrolysis catalyst with low-loading and high catalytic activity, by TiN impregnation-thermal decomposition method.
     Based on TiN impregnation-thermal decomposition method, RuO_2-TiO_2 nano-powder and IrO_x-TiO_2 nano-powder are synthesized, which can be used as supports to prepared Pt/RuO_2-TiO_2 and Pt/IrO_x-TiO_2. These electrocatalysts have been successfully applied to PEMFC later. In terms of polarization curves in 0.5 mol/L H2SO4 solution and cyclic voltammetry curves in 0.5 mol/L H2SO4 + 0.5 mol/L CH3OH solution, these curves show that the loaded Pt has synergetic effect with RuO_2-TiO_2 or IrO_x-TiO_2, which results in an excellent electrocatalytic performance for hydrogen evolution and oxygen evolution and methanol oxidation reaction. At the same time, a preliminary PEMFC test indicates that Pt/RuO_2-TiO_2 has good catalytic activity for oxygen reduction reaction, and it has been proved the better stability than Pt/C by anti-polarization experiment.
     Based on TiN impregnation-thermal decomposition method, a Ti/ IrO_x-TiO_2/IrO_2 coating electrode with IrO_x-TiO_2 interlayer is prepared and used as collector plate of PEM-water electrolysis. Instead of changing the morphology and composition of the traditional Ti-based IrO_2 electrode by adding IrO_x-TiO_2 interlayer, Ti/ IrO_x-TiO_2/IrO_2 electrode holds the good electrocatalytic performance and greatly improves its service life. The optimum conditions of preparing this electrode are as follows: temperature at 450 oC, Ir/Ti molar ratio in interlayer is 0.6/0.4. The contact surface resistance of collector plate with Ti/IrO_x-TiO_2/IrO_2 coating in PEM-water electrolysis is only 3 mΩ·cm~2, which indicates an excellent comprehensive performance.
     Based on TiN impregnation-thermal decomposition method, a Ti/IrO_x-TiO_2 /IrO_2-SnO_2 electrode with IrO_x-TiO_2 interlayer is prepared and applied to the recovery system of sea water flue gas desulfurization by electrolysis seawater. The electrode is of good chloride-evolution selectivity. Potential difference between chloride-evolution and oxygen-evolution is 150±10 mV. When it is used in desulfurized-seawater simulated solution (25℃,265 ml 3.5% NaCl electrolyte,pH 3.5) at 200 mA/cm~2 current density by electrocatalytic oxidation approach, the removal rate of Na_2SO_3 reaches 90.9% while the removal rate of COD is 82.6% 15 min later. All indicate that desulfurized-seawater recovery system by electrolysis seawater may have an assistant effect during a short time.
     As mentioned above, this treatise finally realizes innovation in new method, new material and new application. It achieves a series of invention patents, publishes many manuscripts indexed by SCI, and eventually forms a relatively perfect independent intellectual property.
引文
[1]石定环.可再生能源与可持续发展.中国科技产业, 2008, 1: 15-18
    [2]叶锋.新能源发电——实现人类的可持续发展.农业工程技术(新能源产业), 2008, 1: 18-22
    [3]毛宗强等编著.燃料电池.北京:化学工业出版社, 2005
    [4]张招贤编著.钛电极工学.北京:冶金工业出版社, 2000
    [5]陈延喜编著.电解工程.天津:天津科学技术出版社, 1993
    [6] Boessel U., Eliasson B., Taylor G.. The future of the hydrogen economy: bright or bleak? Available online at (http://www.efcf.com/reports/s), 2003
    [7] Pietrogrande P., Bezzeccheri M.. Fuel processing. In: Bloman LJMJ, Mugerwa MN, editors. Fuel cell systems. New York: Plenum press, 1993, 121–56
    [8] Kothari R., Buddhi D., Sawhney R. L.. Comparison of environmental and economic aspects of various hydrogen production methods. RENEW SUST. ENERG. REV., 2008, 12: 553-563
    [9] Millet P., Andolfatto F., Durand R.. Int. J. Hydrogen Energy, l996, 21: 87-93
    [10] Santa Ana. Highly efficient hydrogen generation via water electrolysis using nanometal electrodes. http://www.qsinano.com/white_papers/2006_09_15.pdf
    [11]张军,任丽彬,李勇辉,徐志彬,易炜.电源技术, 2008, 32: 261-265
    [12] Badwal S., Giddey S., Ciacchi F., Clarke R. and Kao P. Research and developments in hydrogen technologies. Adv. Appl. Ceram., 2007, 106: 40-44
    [13]唐金库,巴俊洲,蒋亚雄,李军.固体聚合物水电解技术综述.舰船防化,2006, 3: 20-25
    [14] Zhang Y., Wang Ch., Wan N., Mao Z. Q. Deposited RuO2–IrO2/Pt electrocatalyst for the regenerative fuel cell. Int. J. Hydrogen Energy, 2007, 32: 400-404
    [15] Yao W., Yang J., Wang J., Nuli Y.. Chemical deposition of platinum nanoparticles on iridium oxide for oxygen electrode of unitized regenerative fuel cell. Electrochem. Commun., 2007, 9(5): 1029-1034
    [16]任小孟,谈杰.潜艇中利用SPE电解水方法制氧的可行性分析.装备环境工程, 2008, 5: 74-77
    [17]周抗寒,尹永利,王飞.固体聚合物电解质水电解器的设计与实验.航天医学与医学工程, 2007, 20: 427-431
    [18] Marshall A., B?rresen B., Hagen G., et al. Preparation and characterisation of nanocrystalline IrxSn1?xO2 electrocatalytic powders. Materials Chemistry and Physics, 2005, 94(2-3): 226-232
    [19] Vork F. T. A., Janssen L. Oxidation of hydrogen at platinum-polypyrrole electrodes. Electrochim. Acta, 1986, 31(12): 1569-1575
    [20]Giz M. J. DE., Machado S. A. S., Avaca L. A., et al. High area Ni-Zn and Ni-Co-Zn codeposits as hydrogen electrodes in alkaline solutions. J. Appl. Electrochem., 1992, 22: 973-977
    [21]庞志成,罗震宁.碱性电解水制氢镍合金阴极材料的研究进展.能源技术, 2004, 25: 9-26
    [22] Minevski L. J. V., Adzic R. R. Oxidation of formic acid at a high surface area supported platinum modified by foreign metal adatoms. J. Appl. Electrochem., 1988, 18: 240-244
    [23]陈延禧.聚合物膜燃料电池用电催化剂研究进展.电源技术, 1996, 20: 21-27
    [24]程实,袁钧卢.甲醇在Pt—Sn/Pb电极上的氧化行为.燃料化学学报, 1991, 16: 174-179
    [25]胡玮,俞英. SPE析氢电极的研究状况.湖北大学学报, 2003, 25: 53-56
    [26] Borresen B., Hagen G., Tunold R. Hydrogen evolution on RuxTi1?xO2 in 0.5 M H2SO4. Electrochim. Acta, 2002, 47(11): 1819-1827
    [27]徐海波,姜俊峰,王廷勇,王佳,许立坤. TiN基IrO2-Ta2O5涂层析氢电极的催化性能.催化学报, 2006, 27: 952-956
    [28] Grigoriev S.A., Millet P., Fateev V.N. Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers. J. Power Sources, 2008, 177: 281-285
    [29] Beer H.B. US patent 549 194, 1966
    [30]王彬,候世忠,韩严等.海水电解防污用金属氧化物涂层阳极研究现状.材料开发与应用, 1998, 13: 41-45
    [31] Ardizzone S., Carugati A., Trasatti S. Properties of thermally prepared iridium dioxide electrodes. J. Electroanal. Chem., 1981, 126: 287-292
    [32] Alves V. A., Silva L. A. D., Oliveira E. D., et al. Investigation under conditions of accelerated anodic corrosion of the effect of TiO2 substitution by CeO2 on the stability of Ir-based ceramic coatings. Mat. Sci. Forum, 1998, 289: 655-666
    [33] Marshall A., B?rresen B., Hagen G., et al. Electrochemical characterisation of IrxSn1?xO2 powders as oxygen evolution electrocatalysts. Electrochim. Acta, 2006, 51: 3161-3167
    [34] Marshall A. Electrocatalysts for the oxygen evolution electrode in water electrolysers using proton exchange membranes: synthesis and characterisation. PhD thesis. Trondheim, Norway: NTNU, 2005
    [35] Marshall A., B?rresen B., Hagen G., Tsypkin M., Tunold R. Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers—Reduced energy consumption by improved electrocatalysis. Energy, 2007, 32: 431-436
    [36] Yamaguchi M, Okisawa K, Nakanori T. In: Proceedings of the 32nd intersociety energy conversion engineeringconference, 1997, 3: 1958-1965
    [37] Marshall A.T., Sunde S., Tsypkin M., Tunold R. Performance of a PEM water electrolysis cell using IrxRuyTazO2 electrocatalysts for the oxygen evolution electrode. Int. J. Hydrogen Energy, 2007, 32: 2320-2324
    [38] Chen G. Y., Bare S. R. , Mallouk T. E. Development of Supported Bifunctional Electrocatalysts for Unitized Regenerative Fuel Cells. J. Electrochem. Soc., 2002,149(8):1092-l099
    [39] Tunold R., Marshall Aa., Tsypkin M.. Electrocatalysts for Water Electrolysis using Polymer Electrolyte Membranes. Third national FUNMAT meeting Norway, Trondheim Thursday, January 5– Friday January 6, 2006
    [40]任学佑.质子交换膜燃料电池的研究进展.中国工程科学, 2005, 7(1): 86-94
    [41] Peled , Emanuel , Duvdevani , et al. Fuel cell with proton conducting membrane with a pore size less than 30 nm. US 6447943, 2002
    [42] Besmann, Theodore M., Burchell, et al. Bipolar plate/diffuser for a proton exchange embrane fuel cell. US 6171720, 2001
    [43]衣宝廉著.燃料电池——高效、环境友好的发电方式.北京:化学工业出版社, 2000
    [44]杨辉,卢文庆编著.应用电化学.北京:科学出版社, 2001
    [45] Borresen B., Hagen G., Tunold R.. Hydrogen evolution on RuxTi1?xO2 in 0.5 M H2SO4. Electrochimica Acta, 2002, 47(11): 1819-1827
    [46] Eugene J. M., Sullivan O., James R. White. Electro-Oxidation of formaldehyde on thermally prepared Ru02 and other noble metal oxides. J. Electrochem. Soc., 1989, 136(9): 2576-2583
    [47] Marshall A., B?rresen B., et al.. Electrochemical characterization of IrxSn1-xO2 powders as oxygen evolution electrocatalysts. Electrochimica Acta, 2006, 51(15): 3161-3167
    [48] Tunold R., Marshall A., Tsypkin M.. Electrocatalysts for water electrolysis using polymer electrolyte membranes. Third national FUNMAT meeting Norway, Trondheim Thursday, January 5– Friday January 6, 2006
    [49]李文震,孙公权,严玉山,辛勤.低温燃料电池担载型贵金属催化剂.化学进展,2005,17(5): 761-772
    [50] Wendt H., SpinacéE.V., et al.. Electrocatalysts and Electrocatalysts for Low Temperature Fuel Cells: Fundamentals, State of the Art, Research and Development. Quim. Nova, 2005,28(6): 1066-1075
    [51]周卫江.低温直接醇类燃料电池阳极催化剂研制.博士学位论文,大连:中国科学院大连化学物理研究所,2003
    [52] Thomas F. Fuller(Principal Investigator),FINAL REPORT, Workshop on Research Challenges for Low-temperature Fuel Cells. NSF Headquarters, Arlington, VA,June 20-21, 2005
    [53] Swider-Lyons K. E.,Baturina O., Garsany Y.. Low Platinum Catalysts for Oxygen Reduction at PEMFC Cathodes FC-15. 2006 DOE Hydrogen Program Annual Review, 2006
    [54]阎子峰编著.纳米催化技术.北京:化学工业出版社,2003
    [55]邵玉艳,尹鸽平,高云智,史鹏飞.不同直径碳纳米管的抗电化学氧化性.电化学,2006,12(3):288-301
    [56] Mei Cai, Martin S. Ruthkosky, eta1. Investigation of thermal and electrochemical degradation of fuel cell catalysts. Journal of Power Sources, 2006, 160 (2): 977-986
    [57] http://china5.nikkeibp.co.jp/china/news/news/200605/elec200605240109.html
    [58] http://www.hfkiln.com/newsinfo.htm?nId=110
    [59]侯中军,衣宝廉.质子交换膜燃料电池性能衰减研究进展.电源技术,2005,29(7):482-487
    [60] Chen G. Y., Bare S. R. , Mallouk T. E.. Development of Supported Bifunctional Electrocatalysts for Unitized Regenerative Fuel Cells. J. Electrochem. Soc., 2002,149(8):1092-l099
    [61] Xiong L.,Kannan A. M.,Manthiram A.. Synthesis and characterization of methanol tolerant Pt/TiOx/C nanocomposites for oxygen reduction in direct methanol fuel Cells. Electrochim Acta, 2004, 49 (24) : 4163-4170
    [62]刘吉平,廖莉玲编著.无机纳米材料.北京:科学出版社, 2003.
    [63]朱屯,王福明,王习东等编著.国外纳米材料技术进展与应用.北京:化学工业出版社, 2002.
    [64]王世敏,许祖勋,傅晶编著.纳米材料制备技术.北京:化学工业出版社, 2002.
    [65] Costamagna P., Srinivasan S.. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects. J. Power Sources, 2001, 102(1-2): 253-269
    [66] Wind J., Spah R., Kaiser W., Bohm G.. Metallic bipolar plates for PEM fuel cells. J. Power Sources, 2002, 105(2): 256-260
    [67] Hermann A., Chaudhuri T., Spagnol P.. Bipolar plates for PEM fuel cells: A review. Int. J. Hydrogen Energy, 2005, 30(12): 1297-1302
    [68] Davies D. P., Adcock P. L., Turpin M., Rowen S.. Bipolar plate materials for solid polymer fuel cells. J. Appl. Electrochem, 2000, 30(1): 101-105
    [69] Wang H., Sweikart M. A., Turner J. A.. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells. J. Power Sources, 2003, 115(2): 243-251
    [70] Wang H., J. Turner A.. Ferritic stainless steels as bipolar plate material for polymer electrolyte membrane fuel cells. J. Power Sources, 2004, 128(2): 193-200
    [71] Mehta V., Cooper J. S.. Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources, 2003, 144(1): 32-53
    [72] Borup R. L., Vanderborgh N. E.. Proceedings of Material Research Society Symposium. Mater. Res. Soc., 1995, 393: 151-155
    [73] Woodman A. S., Anderson E. B., Jayne K. D., Kimble M. C.. American Electroplaters and Surface Finishers Society 1999, AESF SUR/FIN’99 Proceedings, June 21-24, 1999
    [74] Hentall P. L., Lakeman J. B., Mepsted G. O., Adcock P. L., Moore J. M.. New materials for polymer electrolyte membrane fuel cell current collectors. J. Power Sources, 1999, 80(1-2): 235-241
    [75] Kimble M. C., Woodman A. S., Anderson E. B.. American Electroplaters and Surface Finishers Society 1999, AESF SUR/FIN’99 Proceedings, June 21-24, 1999
    [76] Li M., Luo S., Zeng C., Shen J., Lin H., Cao C.. Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environments. Corros. Sci., 2004, 46(6): 1369-1380
    [77] Cho E. A., Jeon U. S., Hong S. A., Oh I. H., Kang S. G.. Performance of a 1 kW-classPEMFC stack using TiN-coated 316 stainless steel bipolar plates. J. Power Sources, 2005, 142(1-2): 177-183
    [78] Brady M. P., Tortorelli P. F., More K. L., Meyer III H. M., Walker L. R., Wang H., Turner J. A., Yang B., Buchanan R. A.. Cost-effective surface modification for metallic bipolar plates, DOE FY 2004 Progress Report
    [79] Hung Y., El-Khatib K., Tawfik H.. ASME—The 2nd International Conference on Fuel Cell Science, Engineering and Technology, RIT, Rochester, New York, June 14-16, 2004
    [80] Hung Y., Tawfik H.. ASME—The 3rd International Conference on Fuel Cell Science, Engineering and Technology, Ypsilanti Marriott Hotel at Eagle Crest, Ypsilanti, MI, May 23-25, 2005
    [81] Lee S. J., Huang C. H., Lai J. J., Chen Y. P.. Corrosion-resistant component for PEM fuel cells . J. Power Sources, 2004, 131(1-2): 162-168
    [82] Taniguchi A., Yasuda K.. Highly water-proof coating of gas flow channels by plasma polymerization for PEM fuel cells. J. Power Sources, 2005, 14(1): 8-12
    [83] Natesan K., Johnson R. N. Corrosion resistance of chromium carbide coatings in oxygen-sulfur environments. Surf. Coat. Technol., 1987, 33: 341-351
    [84]陈康宁编著.金属阳极.上海:华东师范大学出版社, 1989
    [85]徐琉龙编著.氧化物与化合物半导体基础.西安:西安电子科技大学出版社, 1991
    [86] Trasatti S.. Electrodes of Conductive Metallic Oxides(part B), Elsevier, Amsterdam, 1981
    [87] Ardizzone S., Carugati A. and Trasatti S.. Properties of thermally prepared iridium dioxide electrodes. J. Electroanal. Chem., 1981, 126(1-3): 287-292
    [88] Comninellis Ch., Vercesi G. P.. Characterization of DSA?-type oxygen evolving electrodes: Choice of a coating. J. Appl. Electrochem., 1991, 21(4): 335-345
    [89] Krysa J., Kule L., Mraz R., Rousar I.. Effect of coating thickness and surface-treatment of titanium on the properties of IrO2-Ta2O5 anodes. J. Appl. Electrochem., 1996, 26(10): 999-1005
    [90] Yasushi Murakami, Shigeki Tsuchira.. Preparation of ultrafine IrO2---Ta2O5 binary oxide particles by a sol-gel process. Electrochim. Acta, 1994, 39(5): 651-654
    [91]张帆,李海涛.二氧化铱与非晶态钽氧化物涂层电极材料的研究.广东有色金属学报,2000, 10(1): 41-46
    [92] Beer H. B.. The inventiopn and industrial development of metal anodes. J. Electrochem. Soc.,1980, 127(8): 304C-307C
    [93] Vercesi G. P., Rolewicz J. and Comninellis Ch.. Characterization of dsa-type oxygen evolving electrodes and Choice of base metal. Thermochimica Acta, 1991, 176: 31 -47
    [94] Cardarelli F., Taxil P., Savall A., Comniellis C., Manoli G., Leciere O.. Preparation of oxygen evolving electrodes with long service life under extreme conditions. J. Appl. Electrochem., 1998, 28(3): 245-250
    [95] Kaskel S., Schlichte K., Chaplais G., Khanma M.. Synthesis and characterisation of titanium nitride based nanoparticles. Journal of Materials Chemistry, 2003, 13: 1496-1499
    [96] Spinolo G., Ardizzone S., Trasatti S.. Surface characterization of Co3O4 electrodes prepared by the sol-gel method. J. Electroanal.Chem., 1997, 423(1-2): 49-57
    [97]陈光华,邓金祥编著.纳米薄膜技术与应用.北京:化学工业出版社,2004
    [98]侯志强.中国海洋大学硕士学位论文, 2003
    [99]胡吉明,张鉴清,曹楚南. Ti基IrO2+Ta2O5阳极的电化学特性.材料研究学报, 2002,16(4): 365-370
    [100]李军,蒋亚雄.浅谈SPE电解水制氢(氧)技术.工厂动力, 2003, 1: 8-14
    [101]胡杰珍,徐海波,芦永红,孔祥峰,王佳. PEM水电解用钛集流板表面涂层研制. 2008年氢气生产技术交流研讨会论文集, 2008, p.70-77.
    [102]白贤祥.海水脱硫系统及其与传统脱硫工艺的对比.华中电力, 2002,15(4): 56-58
    [103]胡将军,胡基才.海水烟气脱硫工艺原理及其目前在火电厂的应用.污染防治技术, 1996, 9(3): 161-163
    [104]姚彤.深圳西部电厂海水烟气脱硫工程及示范作用.电力环境保护, 2000, 16(1): 1-4
    [105] ABB.脱硫技术ND-2新型一体化脱硫系统Flakt-Hydro海水脱硫工艺.中国环保产业, 1996, 12: 38-39
    [106]黄宗汉.烟气海水脱硫工艺的实践经验及其改进的探讨.环境保护, 2005,3: 33-35
    [107] Vidalb F., Ollero P.. A kinetic study of the oxidation of S(IV) in seawater. Environ.Sci. Technol., 2001, 35(13): 2792-2796
    [108] Abdul H. Abdulsattar, Srinivasan Sridhar, Leroy A. Bromley. Thermodynamics of the sulfur dioxide-seawater system. AIChE J., 1977, 23(1): 62-68
    [109]陈秋则,顾印玉,张大年.海水烟气脱硫初探.上海环境科学, 1994, 13(8): 11-14
    [110]顾印玉,陈秋则,张大年.海水烟气脱硫技术.上海环境科学, 1995, 14(7): 22-24
    [111]董学德,李绍箕.燃煤电厂海水烟气脱硫工艺原理初探.环境工程, 1997, 15(4): 20-24
    [112]赵毅,张琼,陈颖敏等.海水烟气脱硫实验研究.华北电力大学学报, 1999, 16(2): 80-84
    [113]杨飏编著.二氧化硫减排技术与烟气脱硫工程.北京:冶金工业出版社, 2004
    [114] Zhao Yi, Ma Shuang-chen, Wang Xiao-ming et al. Experimental and mechanism studies on seawater flue gas desulfurization. J. Environ. Sci., 2003, 16(1): 123-128
    [115] Kenjiro Yanagase, Tetsutaro Yoshinaga. The production of hypochlorite by direct electrolysis of seawater-influence of electrode gap. Denki Kagaku, 1981, 49(5): 274-280
    [116]梁成浩,顾谦农. RuO2/TiO2电极在海水防污中的电化学行为.腐蚀科学与防护技术, 1996, 8(2): 125-129
    [1] Han J., Kim I. S., Choi K. S.. High purity hydrogen generator for on-site hydrogen production. Int. J. Hydrogen Energy, 2002, 27(10): 1043-1047
    [2] Watanabe M., Inomata H., Arai K.. Catalytic hydrogen generation from biomass (glucose and cellulose) with ZrO2 in supercritical water. Biomass Bioenergy, 2002, 22(5): 405-410
    [3] Shangguan W. F., Zhang M., Yuan J., Gu M. Y.. Synthesis and interlayer modification of RbLaTa2O7. Solar Energy Mater. Solar Cells, 2003, 76(2): 201-204
    [4] Kojima Y., Suzuki K., Fukumoto K., Sasaki M., Yamamoto T., Kawai Y., Hayashi H.. Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. Int. J. Hydrogen Energy, 2002, 27(10): 1029-1034
    [5] Millet P.,Alleau T., Durand R.. Characterization of membrane-electrode assemblies for solid polymer electrolyte water electrolysis. J. Appl. Electrochem., 1993, 23(4): 322-331
    [6] Vork F. T. A., Janssen L. J. J., Barendrecht E.. Oxidation of hydrogen at platinum-polypyrroleelectrodes. Electrochim. Acta., 1986, 31(12): 1569-1575
    [7] Chabanier C., Guay D.. Activation and hydrogen absorption in thermally prepared RuO2 and IrO2. J. Electroanal. Chem., 2004, 570(1): 13-27
    [8] Chen L. L., Guay D., Lasia A.. Kinetics of the hydrogen evolution reaction on RuO2 and IrO2 oxide electrodes in H2SO4 Solution: an AC impedance study. J. Electrochem. Soc., 1996, 143(11): 3576-3584
    [9] Baruffaldi C., Cattarin S., Musiani M.. Deposition of non-stoichiometric tungsten oxides+MO2 composites (M=Ru or Ir) and study of their catalytic properties in hydrogen or oxygen evolution reactions. Electrochim. Acta, 2003, 48(25-26): 3921-3927
    [10] Blouin M., Guay D.. Activation of ruthenium oxide, iridium oxide, and mixed RuxIr1–x oxide electrodes during cathodic polarization and hydrogen evolution. J. Electrochem. Soc., 1997, 144(2): 573
    [11]Pauporte T., Andolfatto F., Durand R.. Some electrocatalytic properties of anodic iridium oxide nanoparticles in acidic solution. Electrochim. Acta, 1999, 45(3): 431-439
    [12] B?rresen B., Hagen G., Tunold R.. Hydrogen evolution on RuxTi1?xO2 in 0.5 M H2SO4. Electrochim. Acta, 2002, 47(11): 1819-1827
    [13] Vercesi G. P., Salamin J. Y., Comninellis C.. Morphological and microstructural the Ti/IrO2---Ta2O5 electrode: effect of the preparation temperature. Electrochim. Acta, 1991, 36(5-6): 991-998
    [14] Comninellis C., Vercesi G. P.. Characterization of DSA?-type oxygen evolving electrodes: Choice of a coating. J. Appl. Electrochem., 1991, 21(4): 335-345
    [15] Rudenja S., Pan I., Wallinder I. O., Leygraf C., Kulu P.. Passivation and anodic oxidation of duplex TiN coating on stainless steel. J. Electrochem. Soc., 1999, 146(11): 4082-4086
    [16] Kaskel S., Schlichte K., Chaplais G., Khanna M.. Synthesis and characterisation of titanium nitride based nanoparticles. J. Mater. Chem., 2003, 13(6): 1496-1499
    [17] Centeno M. A., Carrizosa I., Odriozola J. A.. Deposition–precipitation method to obtain supported gold catalysts: dependence of the acid–base properties of the support exemplified in the system TiO2–TiOxNy–TiN. Appl. Catal. A, 2003, 246(2): 365-372
    [18] Kulandaisamy S., Prabhakar Rethinaraj J., Chockalingam S.C. et al. Performance of catalytically activated anodes in the electrowinning of metals. J. Appl. Electrochem, 1997,27(5):579~583
    [19] LI Y. J., CHANG C.C., WEN T.C.. A mixture design approach to thermally prepared Ir–Pt–Au ternary electrodes for oxygen reduction in alkaline solution. J. Appl. Electrochem.., 1997, 27: 227~234
    [20]Da Silva,L.A., Alves V.A., Trasatti, S. et al. Surface and electrocatalytic properties of ternary oxides Ir0.3Ti(0.7-x)PtxO2: oxygen evolution from acidic solution. J.Electroanal. Chem., 1997, 427: 97~104
    [21]Da Silva, L.A., Alves V.A., Da Silva M.A.P., et al. Electrochemical impedance, SEM, EDX and voltammetric study of oxygen evolution on Ir + Ti + Pt ternary-oxide electrodes in alkaline solution. Electrochimica Acta, 1996, 41: 1 279
    [22]王廷勇,许立坤,陈光章.混合金属氧化物阳极在海水中的电化学性能.电化学, 2002, 8(2): 172~176
    [23]胡吉明,孟惠民,张鉴清等. Ti基IrO2+Ta2O5涂层阳极的析氧电催化活性.金属学报, 2001, 37(6): 628~632
    [24] Trasatti S. Physical electrochemistry of ceramic oxides. Electrochim. Acta, 1991, 2(36): 225
    [25]Marco M. Musiani, Ferdinando Furlanetto, and Paolo Guerriero. Electrodeposited Tl2O3-Matrix composites II. electrocatalysis of oxygen evolution reaction on Tl2O3/Co3O4 composites. J. Electrochem. Soc., 1998, 145: 555~560
    [26]许立坤,宋诗哲,王廷勇.金属氧化物阳极失效过程的电化学监测.电化学, 2003, 9(2): 177~183
    [27] Da Silva L.A., Alves V.A., Silva M.A.. Oxygen evolution in acid solution on IrO2+TiO2 ceramic films. A study by impedance, voltammetry and SEM. Electrochim. Acta, 1997, 42(2): 271~281
    [28] Lassali T. A. F., Boodts J. F. C., Bulhoes L. O. S.. Charging processes and electrocatalytic properties of IrO2/TiO2/SnO2 oxide films investigated by in situ AC impedance measurements. Electrochim. Acta, 1999, 44: 4 203~4 216
    [29]胡吉明,孟惠民,张鉴清等. Ti基IrO2+Ta2O5阳极在H2SO4溶液中的电解时效行为.物理化学学报, 2002, 18(1): 14~20
    [1]衣宝廉著.燃料电池——高效、环境友好的发电方式.北京:化学工业出版社, 2000
    [2] Borup R. L., Vanderborgh N. E.. Proceedings of Material Research Society Symposium. Mater. Res. Soc., 1995, 393: 151-155
    [3] Woodman A. S., Anderson E. B., Jayne K. D., Kimble M. C.. American Electroplaters and Surface Finishers Society 1999, AESF SUR/FIN’99 Proceedings, June 21-24, 1999
    [4] Hentall P. L., Lakeman J. B., Mepsted G. O., Adcock P. L., Moore J. M.. New materials for polymer electrolyte membrane fuel cell current collectors. J. Power Sources, 1999, 80(1-2): 235-241
    [5] Kimble M. C., Woodman A. S., Anderson E. B.. American Electroplaters and Surface Finishers Society 1999, AESF SUR/FIN’99 Proceedings, June 21-24, 1999
    [6] Li M., Luo S., Zeng C., Shen J., Lin H., Cao C.. Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environments. Corros. Sci., 2004, 46(6): 1369-1380
    [7] Cho E. A., Jeon U. S., Hong S. A., Oh I. H., Kang S. G.. Performance of a 1 kW-class PEMFC stack using TiN-coated 316 stainless steel bipolar plates. J. Power Sources, 2005, 142(1-2): 177-183
    [8] Brady M. P., Tortorelli P. F., More K. L., Meyer III H. M., Walker L. R., Wang H., Turner J. A., Yang B., Buchanan R. A.. Cost-effective surface modification for metallic bipolar plates, DOE FY 2004 Progress Report
    [9] Hung Y., El-Khatib K., Tawfik H.. ASME—The 2nd International Conference on Fuel Cell Science, Engineering and Technology, RIT, Rochester, New York, June 14-16, 2004
    [10] Hung Y., Tawfik H.. ASME—The 3rd International Conference on Fuel Cell Science, Engineering and Technology, Ypsilanti Marriott Hotel at Eagle Crest, Ypsilanti, MI, May 23-25, 2005
    [11] Lee S. J., Huang C. H., Lai J. J., Chen Y. P.. Corrosion-resistant component for PEM fuel cells . J. Power Sources, 2004, 131(1-2): 162-168
    [12] Taniguchi A., Yasuda K.. Highly water-proof coating of gas flow channels by plasma polymerization for PEM fuel cells. J. Power Sources, 2005, 14(1): 8-12
    [13] Natesan K., Johnson R. N. Corrosion resistance of chromium carbide coatings in oxygen-sulfur environments. Surf. Coat. Technol., 1987, 33: 341-351
    [14] Mehta V., Cooper J. S.. Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources, 2003, 144(1): 32-53
    [15]曹铁梁等译.腐蚀与耐腐蚀合金.北京:化学工业出版社, 1982
    [16]胡融刚,林昌健.电化学改性不锈钢钝化膜的研究.中国腐蚀与防护学报, 1992,12(3):205-212
    [17]左禹.金属亚稳态孔蚀行为的电化学研究.腐蚀科学与防护技术, 1999, 11(1): 44-52
    [18]杨文治.缓蚀剂.北京:化学工业出版社, 1989
    [19]肖纪美.不锈钢的金属学问题.北京:冶金工业出版社, 1982
    [20]杜天保.不锈钢钝化膜的性能研究,硕士论文.中国科学院金属腐蚀与防护研究所, 1996
    [1] Beer H.B. US patent 549, 194(1966)and 710,551(1968)and US patent 3,632, 498(1972)and 3,711, 38(1973)
    [2] Alves V.A., Silva, L.A. D., Oliveira E. D., et al.. Investigation under conditions of accelerated anodic corrosion of the effect of TiO2 substitution by CeO2 on the stability of Ir-based ceramic coatings. Mater. Sci. Forum ., 1998, 289(2): 655-666
    [3] Hutchings R., Muller K., Kotz F., et al.. J. Mater. Sci., 1984, 19: 3987
    [4] Kazuki Endo, Yasushi Katayama, Takashi Miura, et al.. J. Appl. Electrochem., 2002, 32: 173-178
    [5] Balko E. N., Nguyen P. H.. Iridium-tin mixed oxide anode coatings. J. Appl. Electrochem., 1991, 21: 678-682
    [6] Chen X. M., Chen G. H., Po Lock Yue.. Electrochemical behavior of novel Ti/IrOx?Sb2O5?SnO2 anodes. J. Phys. Chem. B, 2001, 105: 4623- 4628
    [7] Marshall A., B?rresen B., Hagen G., et al.. Nanocrystalline IrxSn(1-x)O2 electrocatalysts for oxygen evolution in water electrolysis with polymer electrolyte– effect of heat treatment. J. New. Mat. Electrochem. Syst., 2004, 7:197-204
    [8] Marshall A., B?rresen B., Hagen G., et al.. Preparation and characterisation of nanocrystalline IrxSn1?xO2 electrocatalytic powders. Mater. Chem. Phys., 2005, 94(2-3): 226-232
    [9] Marshall A., B?rresen B., Hagen G., et al.. Electrochemical characterisation of IrxSn1?xO2 powders as oxygen evolution electrocatalysts. Electrochimica. Acta, 2006, 51(15): 3161-3167
    [10] Marshall A., B?rresen B., Hagen G., et al.. 208th Meeting of The Electrochemical Society - Meeting Abstracts. Los Angeles: CA, United States, 2005. p2159
    [11] Yasushi Murakami, Shigeki Tsuchiya, Kiyochika Yahikozawa, et al.. Electrochimica. Acta, 1994, 39(5): 651-654
    [12] Shin W. C., Soon-Gil Yoon. Characterization of RuO2 thin films prepared by hot-wall metallorganic chemical vapor deposition. J. Electrochem. Soc., 1997, 144(3): 1055-1060
    [13] Marco M. Musiani, Ferdinando Furlanetto, Paolo Guerriero. Electrodeposited Tl2O3-matrix composites. J. Electrochem. Soc., 1998, 145(2): 555-666
    [14] Pauport Th., Andolfatto F., Durand R.. Some electrocatalytic properties of anodic iridium oxide nanoparticles in acidic solution. Electrochimica. Acta, 1999, 45(3): 431-439
    [15] Adams R., Sshriner R.. Platinum Oxide as a Catalyst in the Reduction of Organic Compounds. iii. Preparation and Properties of the Oxide of Platinum Obtained by the Fusion of Chloroplatinic acid with Sodium Nitrate1. J. Am. Chem. Soc., 1923, 45(9): 2171-2179
    [16] Hine F., Yasudae M., Noda T. Electrochemical behavior of the oxide-coated metal anodes. J. Electrochem. Soc., 1979, 126(9): 1439-1445
    [17] Wilson M., Gottesfeld S. Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. J. Appl. Electrochem., 1992, 22: 1-7
    [18]姜俊峰,徐海波,王廷勇,王佳,许立坤,成光. TiN基IrO2+Ta2O5涂层电催化性能研究.稀有金属材料与工程, 2007, 36(2): 344-348
    [19] Masato Aizawa, Sungsik Lee, Scott L. Anderson. Deposition dynamics and chemical properties of size-selected Ir clusters on TiO2. Surface Science, 2003, 542(3): 253-275
    [20] M. Hara, K. Asami, K. Hashimoto, et al.. An X-ray photoelectron spectroscopic study of electrocatalytic activity of platinum group metals for chlorine evolution. Electrochimica. Acta, 1983, 28(8): 1073-1081
    [21]丰达明,李海涛,赖心等.钛基钛钌铱三元氧化物涂层pH电极的研究.广东有色金属学报, 1998, 8(1): 62-66
    [22] Lodi G., De Battisti A., Bordin G., et al.. Microstructure and electrical properties of IrO2 prepared by thermal decomposition of IrCl3·x H2O : Role played by the conditions of thermal treatment. Journal of electroanalytical chemistry and interfacial electrochemistry, 1990, 277(1-2): 139-150
    [23] Marshall A., B?rresen B., Hagen G., et al.. Development of oxygen evolution electrocatalysts for proton exchange membrane water electrolysis. 1st European Hydrogen Energy Conference. France: Grenoble, 2003. p45
    [1]李文震,孙公权,严玉山,辛勤.低温燃料电池担载型贵金属催化剂.化学进展, 2005, 17(5): 761-772
    [2] Liu D., Case S.. Durability study of proton exchange membrane fuel cells under dynamic testing conditions with cyclic current profile. J Power Sources, 2006, 162(1): 521-531
    [3]侯中军,衣宝廉.质子交换膜燃料电池性能衰减研究进展.电源技术, 2005, 29(7):482-487.
    [4] Borup R. L., Davey J. R., Garzon F. H., Wood D. L., Inbody M. A.. PEM fuel cell electrocatalyst durability measurements. J Power Sources, 2006, 163(1): 76-81
    [5] Chaparro A. M., Mueller N., Atienza C., Daza L.. Study of electrochemical instabilities of PEMFC electrodes in aqueous solution by means of membrane inlet mass spectrometry. J Electroanalytical Chemistry, 2006, 591(1): 69-73
    [6] Cai M., Ruthkosky M. S., Merzougui B., Swathirajan S., Balogh Mi. P., Oh Se. H.. Investigation of thermal and electrochemical degradation of fuel cell catalysts. J Power Sources, 2006, 160 (2): 977-986
    [7] Maass S., Finsterwalder F., Frank G., Hartmann R., Merten C.. Carbon support oxidation in PEM fuel cell cathodes J Power Sources, 2008, 176 (2): 444-451
    [8] Stevens D. A., Dahn J. R.. Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells. Carbon, 2005,43(1):179-188
    [9] Stevens D. A., Hicks M. T., Haugen G. M., Dahn J. R.. Ex situ and in situ stability studies of PEMFC catalysts: effect of carbon type and humidification on degradation of the carbon. J Electrochem Soc, 2005, 152(12): A2309-A2315
    [10]徐海波,姜俊峰,王廷勇,王佳,许立坤. TiN基IrO2+Ta2O5涂层析氢电极催化性能研究.催化学报, 2006, 27(11): 952-956
    [11] Wang X., Li W. Zh., Chen Zh. W., Waje M., Yan Y. Sh.. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J Power Sources, 2006, 158 (1): 154-159
    [12]尹诗斌,木士春,潘牧,袁润章.低温燃料电池用催化剂载体的研究.电池工业, 2007,12(4): 281-284
    [13] Chhina H., Campbell S., Kesler O.. An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells. J Power Sources, 2006, 161 (2): 893-900
    [14] Ioroi T., Siroma Z., Fujiwara N., Yamazaki S., Yasuda K.. Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochem Commun, 2005, 7(2): 183-188
    [15]Park K. W., Seol K. S.. Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells. Electrochem Commun, 2007, 9(9): 2256-2260
    [16] García B. L., Fuentes R., Weidner J. W.. Low-temperature synthesis of PtRu/Nb0.1Ti0.9O2 electrocatalyst for methanol oxidation. Electrochem Solid St, 2007, 10(7): B108-110
    [17]张招贤.钛电极工学.北京:冶金工业出版社, 2000, p. 144
    [18] Haas O. E., Briskeby S. T., Kongstein O. E., Tsypkin M., Tunold R., B?rresen B. T.. Synthesis and Characterisation of RuxTix-1O2 as a Catalyst Support for Polymer Electrolyte Fuel Cell. J New Mat Electr Sys, 2008, 11(1): 9-14
    [19] Yao W. L., Yang J., Wang J. L., Nuli Y.. Chemical deposition of platinum nanoparticles on iridium oxide for oxygen electrode of unitized regenerative fuel cell. Electrochem Commun, 2007,9 (5): 1029-1034
    [20]孙仁兴,徐海波,万年坊,王佳. TiN浸渍-热分解法制备IrOx-TiO2粉体催化剂及其表征.高等学校化学学报, 2007, 28 (5): 904-908
    [21]马国仙,唐亚文,杨辉,周益明,邢巍,陆天虹.固相反应制备的Pt/C催化剂对乙醇氧化的电催化活性.物理化学学报, 2003, 19(11): 1001-1004
    [22] Aromaa J., Forsén O.. Evaluation of the electrochemical activity of a Ti–RuO2–TiO2 permanent anode. Electrochim Acta, 2006, 51(27): 6104-6110
    [23] Krstajic N. V., Vracar L. M., Radmilovic V. R., Neophytides S. G., Labou M., Jaksic J. M., Tunold R., Falaras P., Jaksic M. M.. Advances in interactive supported electrocatalysts for hydrogen and oxygen electrode reactions. Surf Sci, 2007, 601 (9): 1949-1966
    [24] Eugene J. M., Sullivan O., White J. R.. Electro-oxidation of formaldehyde on thermally prepared RuO2 and other noble metal oxides. J Electrochem Soc, 1989, 136(9): 2576-2583
    [1]张招贤.钛电极工.北京:冶金工业出版社, 2000, p. 144
    [2]姚书典,沈嘉年,刘冬,吴志良,孙娟.涂层IrO2+Ta2O5钛阳极在析氧过程中的形貌和成分变化.贵金属, 2006, 27(4): 12-17
    [3]胡吉明.博士学位论文.北京:北京科技大学, 2000
    [4] Comninellis C., Vercesi G. P.. Characterization of DSA-type oxygen evolving electrodes: choice of Coating. J Appl Electrochem, 1991, 21(4): 335-340
    [5] Kumagai N., Jikihara S., Samata Y., Asami K., Hashimoto A. M.. The effect of sputter-deposited Ta intermediate layer on durability of IrO2-coated Ti electrodes for oxygen evolution. In: Proceeding of the 183rd Joint International Meeting of the Electrochemical Society, 93–30(Corrosion, Electrochemistry, and Catalysis of Metastable Metals and Intermetallics), Abstract 324-33, Honolulu, HI, May 16-21, 1993
    [6]陶自春,罗启富,潘建跃.铱系涂层钛阳极的研究进展.材料科学与工程学报, 2003, 21(1): 138-139
    [7]姜俊峰,徐海波,王廷勇,王佳,许立坤,成光. TiN基IrO2+Ta2O5涂层电催化性能研究.稀有金属材料与工程, 2007, 36(2): 344-348
    [8]徐海波,姜俊峰,王廷勇,王佳,许立坤. TiN基IrO2+Ta2O5涂层析氢电极催化性能研究.催化学报, 2006, 27(11): 952-956
    [9]张招贤,唐仁衡,张建华. IrO2·Ta2O5涂层钛阳极的研究和应用.广东有色金属学报, 2002, 12(2): 102-106
    [10]孙仁兴,徐海波,万年坊,王佳. TiN浸渍-热分解法制备IrOx-TiO2粉体催化剂及其表征.高等学校化学学报, 2007, 28(5): 904-908
    [11]李广忠,芦丽娜. IrO2对Ti基阳极电化学性能的影响.稀有金属快报, 2006, 25(6):31-34
    [12] Vercesi G. P., Rolewicz J., Comninellis C., Hinden J.. Characterization of dsa-type oxygen evolving electrodes. Choice of base metal. Thermochim Acta, 1991, 176(25): 31-47
    [13] Kim K. W., Lee E. H., Kim J. S., Shin K. H., Chung B. I.. A study on performance improvement of Ir oxide-coated titanium electrode for organic destruction. Electrochim Acta, 2002, 47(15): 2525-2531
    [14] Endo Kazuki, Katayama Yasushi, Miura Takashi, Kishi Tomiya. Composition dependence of the oxygen-evolution reaction rate on IrxTi1-xO2 mixed-oxide electrodes. J Appl Electrochem, 2002, 32(2): 173-178
    [15]潘会波,刘宏,焦文强. Ti/IrO2涂层阳极热氧化处理温度的选择.稀有金属材料与工程, 1999, 28(1): 50-52
    [16] Kulandaisamy S., Rethinaraju J., Prabhakar Chockalingam S. C., Visanathan S., Venkateswaran K. V., Ramachandran P., Nandakumar V.. Performance of catalytically activated anodes in the electrowinning of metals. J Appl Electrochem, 1997, 27(5): 579-583
    [17]胡吉明,孟惠民,张鉴清. Ti基IrO2+Ta2O5阳极在H2SO4溶液中的电解时效行为.物理化学学报, 2002, 18(1): 14-20
    [18]孙伟,宫秀敏,叶卫平,张覃轶,朱小清.基体材料硬度和化学成分对TiN涂层结合力的影响.金属热处理, 2000, 25(8): 13-14
    [19] Kim K. W., Lee E. H., Kim J. S., Shin K. H., Kim K. H.. Study on the electro-activity and non-stochiometry of a Ru-based mixed oxide electrode. Electrochim Acta, 2001, 46(6): 915-921
    [20]徐海波,芦永红.一种金属氧化物涂层电极及其制备方法.中国: 2008101391492,2008
    [1] Vidalb F., Ollero P.. A kinetic study of the oxidation of S(IV) in seawater. Environ. Sci. Technol. 2001, 35:2792-2796
    [2] Abdul H. Abdulsattar, Srinivasan Sridhar, Leroy A. Bromley. Thermodynamics of the sulfur dioxide-seawater system. AIChE J., 1977, 23:62-68
    [3]陈秋则,顾印玉,张大年.海水烟气脱硫初探.上海环境科学, 1994, 13(8):11-14
    [4]顾印玉,陈秋则,张大年.海水烟气脱硫技术.上海环境科学, 1995, 14(7):22-24
    [5]董学德,李绍箕.燃煤电厂海水烟气脱硫工艺原理初探.环境工程, 1997, 15(4):20-24
    [6]赵毅,张琼,陈颖敏等.海水烟气脱硫实验研究.华北电力大学学报, 1999, 16(2):80-84
    [7]李长彦,张桂芳,付洪田.电解海水防污技术的发展及应用.材料开发与应用,1996,11(2):38-43
    [8]付洪田.电解海水防污技术在工业水系统的应用.工业水处理,1997,17(6):33-35
    [9]陈延禧.电解工程.天津:天津科技出版社,1993, 191-252

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700