用户名: 密码: 验证码:
去铁敏减轻大鼠短暂性局灶性脑缺血后出血性转换的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:出血性转换(Hemorrhagic transformation,HT)是急性缺血性卒中(Acute ischemia stroke, AIS)后缺血区内出现自发性出血转变,是AIS常见并发症之一。溶栓治疗是目前唯一获得FDA批准的对AIS有效的治疗方法,但是HT是限制溶栓药物应用的主要原因之一,目前尚无有效的防止HT发生的药物。本研究用去铁敏作用于大鼠短暂性局灶性脑缺血模型,探讨其对HT的作用,为探索减少HT的药物治疗提供依据。方法:SD大鼠腹腔注射50%葡萄糖(6ml/kg),注射后15分钟大脑中动脉线栓(MCAO)。MCAO后立即肌注去铁敏(100mg/kg)或等量生理盐水。两小时后拔出线栓,恢复再灌注。分别于4、8、24小时后杀掉大鼠测量脑梗死体积、脑水肿、出血体积、血红蛋白量、血脑屏障通透性,同时评估其死亡率和出血性转换率。结果:去铁敏治疗显著减少MCAO后24小时动物的脑梗死体积、脑水肿程度和死亡率(p<0.05)。MCAO后8小时去铁敏治疗组患侧半球出血量明显少于对照组(p<0.05)。但是去铁敏组与对照组患侧半球之间Evans-blue漏出量无差别。结论:去铁敏治疗减少短暂性局灶性脑缺血伴高血糖大鼠模型动物的死亡率、出血性转换发生率和程度、脑梗死体积、脑肿胀程度,说明对于接受tPA治疗的卒中患者,去铁敏是减少急性缺血性卒中后出血性转换的有潜力的治疗药物。
Hemorrhagic transformation (HT) in ischemic stroke is common and represents almost a natural event in the process of cerebral infarction. There is currently no effective treatment to limit the occurrence or effect of damage of HT after a stroke. Moreover, an increasing rate (10-fold) of intracranial bleeding is reported after the treatment of tissue plasminogen activator (tPA) in stroke patients, which is a major factor limiting the use of tPA to reduce ischemic brain damage in patients.
     Deferoxamine (DFX), a high affinity chelator of Fe3+, is used clinically for treatment of primary or secondary hemochromatosis, and experimental studies suggest that DFX may have neuroprotective properties in association with brain ischemia and cerebral vasospasm caused by SAH. In our previous study, we found that DFX reduces hemoglobin-induced brain edema and neurological deficits of intracerebral hemorrhage. However, it is not clear whether DFX can reduce HT after cerebral ischemia.
     Objective:
     The present study investigated the effects of DFX on mortality rate, HT formation, brain infarct volume, brain edema formation, BBB permeability and neurologic deficit after focal cerebral ischemia with reperfusion in a hyperglycemic rat model.
     Methods:
     Rats had an injection of 50% glucose (6 mL/kg) intraperitoneally to induce acute hyperglycemia 15minutues before middle cerebral artery occlusion (MCAO). The suture was removed after 2 hours of occlusion. Rats were treated with DFX (100mg/ kg) or vehicle (equivalent volume of normal saline) after MCAO. First, rats were killed at 8 or 24 hours after MCAO. Rat brains were used for histological examination, including the measurements of infarct volume, brain swelling and hemorrhage volume. Second, rat brains were sampled for hemoglobin content determination 24 hours after MCAO. Third, rats were killed 4 hours after MCAO and brains were used for Evans blue content measurement. Fourth, brain water content was determined 8 hours after MCAO. Fifth, the neurological score were determined at days1, 3, 5, 7 and 14 after MCAO. Over all, the effect of rate of mortality and HT formation at 8 hours and 24hours after MCAO was also counted.
     Results:
     Twenty-four hours after MCAO, the infarct volume in the ipsilateral hemispheres of DFX treated animals was significantly smaller than that in rats treated with vehicles.
     Brain swelling occurred in the ipsilateral hemisphere 8 or 24 hours after MCAO. The volumes of ipsilateral hemisphere were larger than the contralateral hemisphere. The ratio of ipsilateral/contralateral basal ganglia was significantly smaller in DFX treated rats than that in vehicle treated rats, but the ratio of ipsilateral/contralateral hemisphere has no significantly different 24 hours after MCAO.
     DFX treatment attenuated the death rate 24 hours after MCAO. All the six rats had HT formation with vehicle treatment, but there only 4 out of 6 rats had HT formation with DFX treatment at 8 hours after MCAO. The HT formation happened in the rats treated with DFX is 67% compared to 86% in vehicle trated rats at 24 hours after MCAO.
     In all cases, the hemorrhage seen was either petechial or confluent petechial hemorrhage, occurring mostly in the basal ganglia (90.9%) and lateral cortex (59.1%), but occasionally in cingulated cortex (13.6%) and pre-optic area (4.5%). At 8 hours after MCAO, HT formation was more in vehicle group vs. that in DFX-treated rats and the total volume hemorrhage was significantly bigger in rats treated with vehicle vs. that in the rats treated with DFX.
     Evans blue content was significantly increased in the ipsilateral hemisphere as compared with the contralateral hemisphere in vehicle animals at 4 hours after MCAO. Although evans-blue content 4 hours after MCAO were higher in DFX-treated animals than that in vehicle animals but has no statistically significant.
     DFX did not improve the gross neurological score. By postoperative day 7, all animals had recovered to a similar extent, with the most common residual deficits consisting of gait abnormalities or minor ataxia.
     Discussion:
     We studied hyperglycemia-induced hemorrhagic conversion in this ischemic model for two main reasons. The first reason is that hyperglycemia is strongly associated with HT and tPA-associated intercerebral hemorrhage, an understanding of how hyperglycemia-induced bleeding might be prevent is clinically relevant. The second reason is the model produces a consistent HT after 2 hours of MCAO with reperfusion. The alternative embolic model with tPA-induced reperfusion is less consistent in both frequency and location of hemorrhage. Other models, such as the collagenase model, which requires intracerebral injections of a toxin that digests tissues, and occlusion of the middle cerebral artery with a thread, are less relevant clinically because they do not reproduce these components of hemorrhagic stroke. In addition, in our previous study we found this model of HT induced by acute heperglycemia is consistent and reliable.
     It has been reported by several groups that DFO therapy can decrease infarct volume and brain edema after ischemia/reperfusion. In current study DFX did reduced brain infarction in hyperglycemic animals. Consistent with small infarct size, DFX-treated rats had less basal ganglia swelling. Iron is essential for normal brain function. However, iron overload can cause brain injury after stroke. Ischemia/reperfusion leads to an overproduction of reactive oxygen/nitrogen species, some of them being converted, in the presence of iron, into highly reactive hydroxyl radical species (fenton reaction). DFX could therefore prevent the formation and/or reduce the toxicity of some radicals, thereby reducing cytotoxic and/or vasogenic edema. Although DFX is an iron chelator, it also have other effects. Firstly, DFX has also been described to scavenge directly the hydroxyl radical. Secondly, DFX can inhibits cell cycle transition. Proliferating cells have an essential requirement for iron, and iron chelators block DNA synthesis and halt the cell cycle before the G1/S boundary which is defined as the“safe point”in the cell cycle. Thus it suppress apoptotic death of cell caused by withdrawal of trophic support. Thirdly, DFX activates hypoxia-inducible factor-1 (HIF-1) gene express and induce up-regulation of a number of genes. In addition, DFX decreases the excitatory amino acid levels after hypoxia-ischemia. Which of these mechanisms is operative most likely depends on the nature, duration, and locate of injury-inducing stimulus.
     Another important finding is that DFX reduces mortality rate at 24 hours after MCAO in this hyperglycemic stroke model. The death rate in the vehicle group was approximately 24.1%, whereas it was 3.7% among the DFX-treated rats. This lower mortality may result from less hemorrhagic transformation, the smaller infarct and less edema in the DFX-treated group. DFX reduced late death in an animal model of cardiorespiratory arrest. The mechanism may be prevente free-radical-mediated reactions through iron chelation.
     The major aim of this study was to examine whether DFX therapy during ischemia would reduce HT after focal cerebral ischemia with reperfusion and indeed DFX did reduce such hemorrhage at 8 hours after MCAO.
     Conclusion:
     DFX reduces hemorrhagic transformation, infarct volumes, brain swelling ratio in the basal ganglia and mortality at 24 hours after MCAO in hemorrhagic transformation model suggesting early DFX treatment may be useful for patients with stroke.
引文
[1] Paciaroni M, Agnelli G, Corea F, Ageno W, Alberti A, Lanari A, Caso V, Micheli S, Bertolani L, Venti M, Palmerini F, Biagini S, Comi G, Previdi P, Silvestrelli G. Early hemorrhagic transformation of brain infarction: Rate, predictive factors, and influence on clinical outcome: Results of a prospective multicenter study. Stroke. 2008;39(8):2249-2256.
    [2] Wang X, Lo EH. Triggers and mediators of hemorrhagic transformation in cerebral ischemia. Mol Neurobiol. 2003;28(3):229-244.
    [3] Wardlaw JM, Warlow CP, Counsell C. Systematic review of evidence on thrombolytic therapy for acute ischaemic stroke. Lancet. 1997;350(9078):607- 614.
    [4] Jiang Q, Zhang RL, Zhang ZG, Knight RA, Ewing JR, Ding G, Lu M, Arniego P, Zhang L, Hu J, Li Q, Chopp M. Magnetic resonance imaging characterization of hemorrhagic transformation of embolic stroke in the rat. J Cereb Blood Flow Metab. 2002;22(5):559-568.
    [5] Rosenberg GA, Navratil M. Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology. 1997;48(4):921-926.
    [6] de Courten-Myers GM, Kleinholz M, Holm P, DeVoe G, Schmitt G, Wagner KR, Myers RE. Hemorrhagic infarct conversion in experimental stroke. Ann Emerg Med. 1992;21(2):120-126.
    [7] Kawai N, Keep RF, Betz AL. Hyperglycemia and the vascular effects of cerebral ischemia. Acta Neurochir Suppl. 1997;7027-29.
    [8] Venables GS, Miller SA, Gibson G, Hardy JA, Strong AJ. The effects of hyperglycaemia on changes during reperfusion following focal cerebralischaemia in the cat. J Neurol Neurosurg Psychiatry. 1985;48(7):663-669.
    [9] de Courten-Myers GM, Kleinholz M, Wagner KR, Myers RE. Fatal strokes in hyperglycemic cats. Stroke. 1989;20(12):1707-1715.
    [10] Garg R, Chaudhuri A, Munschauer F, Dandona P. Hyperglycemia, insulin, and acute ischemic stroke: A mechanistic justification for a trial of insulin infusion therapy. Stroke. 2006;37(1):267-273.
    [11] Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84-91.
    [12] Karabiyikoglu M, Hua Y, Keep RF, Ennis SR, Xi G. Intracerebral hirudin injection attenuates ischemic damage and neurologic deficits without altering local cerebral blood flow. J Cereb Blood Flow Metab. 2004;24(2):159-166.
    [13] Choudhri TF, Hoh BL, Solomon RA, Connolly ES, Jr., Pinsky DJ. Use of a spectrophotometric hemoglobin assay to objectively quantify intracerebral hemorrhage in mice. Stroke. 1997;28(11):2296-2302.
    [14] Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg. 1998;89(6):991-996.
    [15] Fuller JH, Shipley MJ, Rose G, Jarrett RJ, Keen H. Mortality from coronary heart disease and stroke in relation to degree of glycaemia: The whitehall study. Br Med J (Clin Res Ed). 1983;287(6396):867-870.
    [16] Kagan A, Popper JS, Rhoads GG. Factors related to stroke incidence in hawaii japanese men. The honolulu heart study. Stroke. 1980;11(1):14-21.
    [17] Capes SE, Hunt D, Malmberg K, Gerstein HC. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with andwithout diabetes: A systematic overview. Lancet. 2000;355(9206):773-778.
    [18] Topic E, Pavlicek I, Brinar V, Korsic M. Glycosylated haemoglobin in clarification of the origin of hyperglycaemia in acute cerebrovascular accident. Diabet Med. 1989;6(1):12-15.
    [19] Kiers L, Davis SM, Larkins R, Hopper J, Tress B, Rossiter SC, Carlin J, Ratnaike S. Stroke topography and outcome in relation to hyperglycaemia and diabetes. J Neurol Neurosurg Psychiatry. 1992;55(4):263-270.
    [20] Capes SE, Hunt D, Malmberg K, Pathak P, Gerstein HC. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: A systematic overview. Stroke. 2001;32(10):2426-2432.
    [21] Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Effect of blood pressure and diabetes on stroke in progression. Lancet. 1994;344(8916): 156-159.
    [22] Bruno A, Biller J, Adams HP, Jr., Clarke WR, Woolson RF, Williams LS, Hansen MD. Acute blood glucose level and outcome from ischemic stroke. Trial of org 10172 in acute stroke treatment (toast) investigators. Neurology. 1999;52(2):280-284.
    [23] Weir CJ, Murray GD, Dyker AG, Lees KR. Is hyperglycaemia an independent predictor of poor outcome after acute stroke? Results of a long-term follow up study. Bmj. 1997;314(7090):1303-1306.
    [24] Beghi E, Bogliun G, Cavaletti G, Sanguineti I, Tagliabue M, Agostoni F, Macchi I. Hemorrhagic infarction: Risk factors, clinical and tomographic features, and outcome. A case-control study. Acta Neurol Scand. 1989;80(3):226-231.
    [25] Broderick JP, Hagen T, Brott T, Tomsick T. Hyperglycemia andhemorrhagic transformation of cerebral infarcts. Stroke. 1995;26(3):484-487.
    [26] Demchuk AM, Morgenstern LB, Krieger DW, Linda Chi T, Hu W, Wein TH, Hardy RJ, Grotta JC, Buchan AM. Serum glucose level and diabetes predict tissue plasminogen activator-related intracerebral hemorrhage in acute ischemic stroke. Stroke. 1999;30(1):34-39.
    [27] Siesjo BK, Bendek G, Koide T, Westerberg E, Wieloch T. Influence of acidosis on lipid peroxidation in brain tissues in vitro. J Cereb Blood Flow Metab. 1985;5(2):253-258.
    [28] Hillered L, Ernster L, Siesjo BK. Influence of in vitro lactic acidosis and hypercapnia on respiratory activity of isolated rat brain mitochondria. J Cereb Blood Flow Metab. 1984;4(3):430-437.
    [29] Kalimo H, Rehncrona S, Soderfeldt B, Olsson Y, Siesjo BK. Brain lactic acidosis and ischemic cell damage: 2. Histopathology. J Cereb Blood Flow Metab. 1981;1(3):313-327.
    [30] OuYang YB, Mellergard P, Kristian T, Kristianova V, Siesjo BK. Influence of acid-base changes on the intracellular calcium concentration of neurons in primary culture. Exp Brain Res. 1994;101(2):265-271.
    [31] Kraig RP, Petito CK, Plum F, Pulsinelli WA. Hydrogen ions kill brain at concentrations reached in ischemia. J Cereb Blood Flow Metab. 1987;7(4):379-386.
    [32] Tayebjee MH, Lip GY, MacFadyen RJ. Matrix metalloproteinases in coronary artery disease: Clinical and therapeutic implications and pathological significance. Curr Med Chem. 2005;12(8):917-925.
    [33] Kamada H, Yu F, Nito C, Chan PH. Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebralischemia/reperfusion in rats: Relation to blood-brain barrier dysfunction. Stroke. 2007;38(3):1044-1049.
    [34] Lin B, Ginsberg MD, Busto R, Li L. Hyperglycemia triggers massive neutrophil deposition in brain following transient ischemia in rats. Neurosci Lett. 2000;278(1-2):1-4.
    [35] Martin A, Rojas S, Chamorro A, Falcon C, Bargallo N, Planas AM. Why does acute hyperglycemia worsen the outcome of transient focal cerebral ischemia? Role of corticosteroids, inflammation, and protein o-glycosylation. Stroke. 2006;37(5):1288-1295.
    [36] Hornig CR, Dorndorf W, Agnoli AL. Hemorrhagic cerebral infarction-a prospective study. Stroke. 1986;17(2):179-185.
    [37] Bozzao L, Angeloni U, Bastianello S, Fantozzi LM, Pierallini A, Fieschi C. Early angiographic and ct findings in patients with hemorrhagic infarction in the distribution of the middle cerebral artery. AJNR Am J Neuroradiol. 1991;12(6):1115-1121.
    [38] Moulin T, Crepin-Leblond T, Chopard JL, Bogousslavsky J. Hemorrhagic infarcts. Eur Neurol. 1994;34(2):64-77.
    [39] Palmer C, Roberts RL, Bero C. Deferoxamine posttreatment reduces ischemic brain injury in neonatal rats. Stroke. 1994;25(5):1039-1045.
    [40] Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT, Xi G. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. Neurosurg Focus. 2003;15(4):ECP4.
    [41] Huang FP, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT. Brain edema after experimental intracerebral hemorrhage: Role of hemoglobin degradation products. J Neurosurg. 2002;96(2):287-293.
    [42] Hishikawa T, Ono S, Ogawa T, Tokunaga K, Sugiu K, Date I. Effects of deferoxamine-activated hypoxia-inducible factor-1 on the brainstem after subarachnoid hemorrhage in rats. Neurosurgery. 2008;62(1):232-240; discussion 240-231.
    [43] Warner DS, Sheng H, Batinic-Haberle I. Oxidants, antioxidants and the ischemic brain. J Exp Biol. 2004;207(Pt 18):3221-3231.
    [44] Halliwell B. Protection against tissue damage in vivo by desferrioxamine: What is its mechanism of action? Free Radic Biol Med. 1989;7(6):645-651.
    [45] Oury TD, Piantadosi CA, Crapo JD. Cold-induced brain edema in mice. Involvement of extracellular superoxide dismutase and nitric oxide. J Biol Chem. 1993;268(21):15394-15398.
    [46] Liachenko S, Tang P, Xu Y. Deferoxamine improves early postresuscitation reperfusion after prolonged cardiac arrest in rats. J Cereb Blood Flow Metab. 2003;23(5):574-581.
    [47] Prass K, Ruscher K, Karsch M, Isaev N, Megow D, Priller J, Scharff A, Dirnagl U, Meisel A. Desferrioxamine induces delayed tolerance against cerebral ischemia in vivo and in vitro. J Cereb Blood Flow Metab. 2002;22(5):520-525.
    [48] Menzies SA, Hoff JT, Betz AL. Middle cerebral artery occlusion in rats: A neurological and pathological evaluation of a reproducible model. Neurosurgery. 1992;31(1):100-106; discussion 106-107.
    [49] Qin Z, Karabiyikoglu M, Hua Y, Silbergleit R, He Y, Keep RF, Xi G. Hyperbaric oxygen-induced attenuation of hemorrhagic transformation after experimental focal transient cerebral ischemia. Stroke. 2007;38(4):1362-1367.
    [50] Hurn PD, Koehler RC, Blizzard KK, Traystman RJ. Deferoxamine reduces early metabolic failure associated with severe cerebral ischemic acidosis in dogs. Stroke. 1995;26(4):688-694; discussion 694-685.
    [51] Farinelli SE, Greene LA. Cell cycle blockers mimosine, ciclopirox, and deferoxamine prevent the death of pc12 cells and postmitotic sympathetic neurons after removal of trophic support. J Neurosci. 1996;16(3):1150-1162.
    [52] Wang GL, Semenza GL. Purification and characterization of hypoxia- inducible factor 1. J Biol Chem. 1995;270(3):1230-1237.
    [53] Llesuy SF, Tomaro ML. Heme oxygenase and oxidative stress. Evidence of involvement of bilirubin as physiological protector against oxidative damage. Biochim Biophys Acta. 1994;1223(1):9-14.
    [54] Papazisis G, Pourzitaki C, Sardeli C, Lallas A, Amaniti E, Kouvelas D. Deferoxamine decreases the excitatory amino acid levels and improves the histological outcome in the hippocampus of neonatal rats after hypoxia-ischemia. Pharmacol Res. 2008;57(1):73-78.
    [55] Kompala SD, Babbs CF, Blaho KE. Effect of deferoxamine on late deaths following cpr in rats. Ann Emerg Med. 1986;15(4):405-407.
    [56] He Y, Hua Y, Liu W, Hu H, Keep RF, Xi G. Effects of cerebral ischemia on neuronal hemoglobin. J Cereb Blood Flow Metab. 2008.
    [57] Guy J, McGorray S, Qi X, Fitzsimmons J, Mancuso A, Rao N. Conjugated deferoxamine reduces blood-brain barrier disruption in experimental optic neuritis. Ophthalmic Res. 1994;26(5):310-323.
    [58] Chi OZ, Hunter C, Liu X, Weiss HR. Effects of deferoxamine on blood-brain barrier disruption and vegf in focal cerebral ischemia. Neurol Res. 2008;30(3):288-293.
    [59] Soloniuk DS, Perkins E, Wilson JR. Use of allopurinol and deferoxamine in cellular protection during ischemia. Surg Neurol. 1992;38(2):110-113.
    [60] Meinig G, Reulen HJ, Magawly C. Regional cerebral blood flow and cerebral perfusion pressure in global brain oedema induced by water intoxication. Acta Neurochir (Wien). 1973;29(1):1-13.
    [61] Crowley RW, Medel R, Dumont AS. Evolution of cerebral revascularization techniques. Neurosurg Focus. 2008;24(2):E3.
    [62] Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol. 2001;280(6): C1358-1366.
    [63] Compernolle V, Brusselmans K, Acker T, Hoet P, Tjwa M, Beck H, Plaisance S, Dor Y, Keshet E, Lupu F, Nemery B, Dewerchin M, Van Veldhoven P, Plate K, Moons L, Collen D, Carmeliet P. Loss of hif-2alpha and inhibition of vegf impair fetal lung maturation, whereas treatment with vegf prevents fatal respiratory distress in premature mice. Nat Med. 2002;8(7):702-710.
    [64] Hayashi T, Abe K, Itoyama Y. Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. J Cereb Blood Flow Metab. 1998;18(8):887-895.
    [65] Rosenstein JM, Mani N, Silverman WF, Krum JM. Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo. Proc Natl Acad Sci U S A. 1998;95(12):7086-7091.
    [66] Sondell M, Lundborg G, Kanje M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and schwann cell proliferation in the peripheral nervous system. JNeurosci. 1999;19(14):5731-5740.
    [67] Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359(6398):843-845.
    [68] Jin KL, Mao XO, Nagayama T, Goldsmith PC, Greenberg DA. Induction of vascular endothelial growth factor and hypoxia-inducible factor-1alpha by global ischemia in rat brain. Neuroscience. 2000;99(3):577-585.
    [69] Yang ZJ, Bao WL, Qiu MH, Zhang LM, Lu SD, Huang YL, Sun FY. Role of vascular endothelial growth factor in neuronal DNA damage and repair in rat brain following a transient cerebral ischemia. J Neurosci Res. 2002;70(2):140-149.
    [70] del Zoppo GJ, Mabuchi T. Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab. 2003;23(8):879-894.
    [71] Suzuki Y, Nagai N, Umemura K, Collen D, Lijnen HR. Stromelysin-1 (mmp-3) is critical for intracranial bleeding after t-pa treatment of stroke in mice. J Thromb Haemost. 2007;5(8):1732-1739.
    [72] Chu K, Jung KH, Kim SJ, Lee ST, Kim J, Park HK, Song EC, Kim SU, Kim M, Lee SK, Roh JK. Transplantation of human neural stem cells protect against ischemia in a preventive mode via hypoxia-inducible factor-1alpha stabilization in the host brain. Brain Res. 2008;1207182-192.
    [73] Ahn JK, Koh EM, Cha HS, Lee YS, Kim J, Bae EK, Ahn KS. Role of hypoxia-inducible factor-1alpha in hypoxia-induced expressions of il-8, mmp-1 and mmp-3 in rheumatoid fibroblast-like synoviocytes. Rheumatology (Oxford). 2008;47(6):834-839.
    [74] Sugo S, Minamino N, Kangawa K, Miyamoto K, Kitamura K, Sakata J, Eto T, Matsuo H. Endothelial cells actively synthesize and secrete adrenomedullin. Biochem Biophys Res Commun. 1994;201(3):1160-1166.
    [75] Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW. Hypoxia-inducible factor (hif-1)alpha: Its protein stability and biological functions. Exp Mol Med. 2004;36(1):1-12.
    [76] Kis B, Abraham CS, Deli MA, Kobayashi H, Niwa M, Yamashita H, Busija DW, Ueta Y. Adrenomedullin, an autocrine mediator of blood-brain barrier function. Hypertens Res. 2003;26 SupplS61-70.
    [77] Kis B, Deli MA, Kobayashi H, Abraham CS, Yanagita T, Kaiya H, Isse T, Nishi R, Gotoh S, Kangawa K, Wada A, Greenwood J, Niwa M, Yamashita H, Ueta Y. Adrenomedullin regulates blood-brain barrier functions in vitro. Neuroreport. 2001;12(18):4139-4142.
    [78] Sharp FR, Bernaudin M. Hif1 and oxygen sensing in the brain. Nat Rev Neurosci. 2004;5(6):437-448.
    [79] Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify hif. Science. 2001;294(5545):1337-1340.
    [80] Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ. C. Elegans egl-9 and mammalian homologs define a family of dioxygenases that regulate hif by prolyl hydroxylation. Cell. 2001;107(1): 43-54.
    [81] Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG, Jr. Hifalpha targeted for vhl-mediated destruction byproline hydroxylation: Implications for o2 sensing. Science. 2001;292(5516): 464-468.
    [82] Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ. Targeting of hif-alpha to the von hippel-lindau ubiquitylation complex by o2-regulated prolyl hydroxylation. Science. 2001;292 (5516):468-472.
    [83] Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ. The tumour suppressor protein vhl targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271-275.
    [84] Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von hippel-lindau protein. Nat Cell Biol. 2000;2(7):423-427.
    [85] Tanimoto K, Makino Y, Pereira T, Poellinger L. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von hippel-lindau tumor suppressor protein. Embo J. 2000;19(16):4298-4309.
    [86] Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH. Hypoxia inducible factor-alpha binding and ubiquitylation by the von hippel-lindau tumor suppressor protein. J Biol Chem. 2000;275(33):25733-25741.
    [87] Kamura T, Sato S, Iwai K, Czyzyk-Krzeska M, Conaway RC, Conaway JW. Activation of hif1alpha ubiquitination by a reconstituted von hippel-lindau (vhl) tumor suppressor complex. Proc Natl Acad Sci U S A.2000;97(19): 10430-10435.
    [88] Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK, Holsboer F, Arzt E. Rsume, a small rwd-containing protein, enhances sumo conjugation and stabilizes hif-1alpha during hypoxia. Cell. 2007;131(2):309-323.
    [89] Bhattacharya S, Michels CL, Leung MK, Arany ZP, Kung AL, Livingston DM. Functional role of p35srj, a novel p300/cbp binding protein, during transactivation by hif-1. Genes Dev. 1999;13(1):64-75.
    [90] Blagosklonny MV, An WG, Romanova LY, Trepel J, Fojo T, Neckers L. P53 inhibits hypoxia-inducible factor-stimulated transcription. J Biol Chem. 1998;273(20):11995-11998.
    [91] Carrero P, Okamoto K, Coumailleau P, O'Brien S, Tanaka H, Poellinger L. Redox-regulated recruitment of the transcriptional coactivators creb-binding protein and src-1 to hypoxia-inducible factor 1alpha. Mol Cell Biol. 2000;20(1):402-415.
    [92] Conrad PW, Freeman TL, Beitner-Johnson D, Millhorn DE. Epas1 trans-activation during hypoxia requires p42/p44 mapk. J Biol Chem. 1999;274(47):33709-33713.
    [93] Akeno N, Robins J, Zhang M, Czyzyk-Krzeska MF, Clemens TL. Induction of vascular endothelial growth factor by igf-i in osteoblast-like cells is mediated by the pi3k signaling pathway through the hypoxia-inducible factor-2alpha. Endocrinology. 2002;143(2):420-425.
    [94] Jones A, Fujiyama C, Blanche C, Moore JW, Fuggle S, Cranston D, Bicknell R, Harris AL. Relation of vascular endothelial growth factor production to expression and regulation of hypoxia-inducible factor-1 alpha andhypoxia-inducible factor-2 alpha in human bladder tumors and cell lines. Clin Cancer Res. 2001;7(5):1263-1272.
    [95] Rosenberger C, Mandriota S, Jurgensen JS, Wiesener MS, Horstrup JH, Frei U, Ratcliffe PJ, Maxwell PH, Bachmann S, Eckardt KU. Expression of hypoxia-inducible factor-1alpha and-2alpha in hypoxic and ischemic rat kidneys. J Am Soc Nephrol. 2002;13(7):1721-1732.
    [96] Sowter HM, Raval RR, Moore JW, Ratcliffe PJ, Harris AL. Predominant role of hypoxia-inducible transcription factor (hif)-1alpha versus hif-2alpha in regulation of the transcriptional response to hypoxia. Cancer Res. 2003;63(19):6130-6134.
    [97] Percy MJ, Furlow PW, Lucas GS, Li X, Lappin TR, McMullin MF, Lee FS. A gain-of-function mutation in the hif2a gene in familial erythrocytosis. N Engl J Med. 2008;358(2):162-168.
    [98] Hara S, Hamada J, Kobayashi C, Kondo Y, Imura N. Expression and characterization of hypoxia-inducible factor (hif) -3alpha in human kidney: Suppression of hif-mediated gene expression by hif-3alpha. Biochem Biophys Res Commun. 2001;287(4):808-813.
    [99] Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H, Cao Y, Berkenstam A, Poellinger L. Inhibitory pas domain protein is a negative regulator of hypoxia-inducible gene expression. Nature. 2001;414(6863):550- 554.
    [100] Cormier-Regard S, Nguyen SV, Claycomb WC. Adrenomedullin gene expression is developmentally regulated and induced by hypoxia in rat ventricular cardiac myocytes. J Biol Chem. 1998;273(28):17787-17792.
    [101] Palmer LA, Semenza GL, Stoler MH, Johns RA. Hypoxia inducestype ii nos gene expression in pulmonary artery endothelial cells via hif-1. Am J Physiol. 1998;274(2 Pt 1):L212-219.
    [102] Eckhart AD, Yang N, Xin X, Faber JE. Characterization of the alpha1b-adrenergic receptor gene promoter region and hypoxia regulatory elements in vascular smooth muscle. Proc Natl Acad Sci U S A. 1997;94(17):9487-9492.
    [103] Hu J, Discher DJ, Bishopric NH, Webster KA. Hypoxia regulates expression of the endothelin-1 gene through a proximal hypoxia-inducible factor-1 binding site on the antisense strand. Biochem Biophys Res Commun. 1998;245(3):894-899.
    [104] Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16(9):4604-4613.
    [105] Gerber HP, Condorelli F, Park J, Ferrara N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not flk-1/kdr, is up-regulated by hypoxia. J Biol Chem. 1997;272(38):23659-23667.
    [106] Wang GL, Semenza GL. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem. 1993;268(29):21513-21518.
    [107] Rolfs A, Kvietikova I, Gassmann M, Wenger RH. Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1. J Biol Chem. 1997;272(32):20055-20062.
    [108] Lok CN, Ponka P. Identification of a hypoxia response element in the transferrin receptor gene. J Biol Chem. 1999;274(34):24147-24152.
    [109] Mukhopadhyay CK, Mazumder B, Fox PL. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J Biol Chem. 2000;275(28):21048-21054.
    [110] Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshert E. Role of hif-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998;394(6692): 485-490.
    [111] Feldser D, Agani F, Iyer NV, Pak B, Ferreira G, Semenza GL. Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res. 1999;59(16):3915-3918.
    [112] Tazuke SI, Mazure NM, Sugawara J, Carland G, Faessen GH, Suen LF, Irwin JC, Powell DR, Giaccia AJ, Giudice LC. Hypoxia stimulates insulin-like growth factor binding protein 1 (igfbp-1) gene expression in hepg2 cells: A possible model for igfbp-1 expression in fetal hypoxia. Proc Natl Acad Sci U S A. 1998;95(17):10188-10193.
    [113] Bruick RK. Expression of the gene encoding the proapoptotic nip3 protein is induced by hypoxia. Proc Natl Acad Sci U S A. 2000;97(16):9082-9087.
    [114] Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL. Hif-1-dependent regulation of hypoxic induction of the cell death factors bnip3 and nix in human tumors. Cancer Res. 2001;61(18):6669-6673.
    [115] Ebert BL, Firth JD, Ratcliffe PJ. Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct cis-acting sequences. J Biol Chem. 1995;270(49):29083-29089.
    [116] Takahashi Y, Takahashi S, Shiga Y, Yoshimi T, Miura T. Hypoxic induction of prolyl 4-hydroxylase alpha (i) in cultured cells. J Biol Chem. 2000;275(19): 14139-14146.
    [117] Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994;269(38):23757-23763.
    [118] Firth JD, Ebert BL, Ratcliffe PJ. Hypoxic regulation of lactate dehydrogenase a. Interaction between hypoxia-inducible factor 1 and camp response elements. J Biol Chem. 1995;270(36):21021-21027.
    [119] Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL. Cellular and developmental control of o2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998;12(2):149-162.
    [120] Graven KK, Yu Q, Pan D, Roncarati JS, Farber HW. Identification of an oxygen responsive enhancer element in the glyceraldehyde-3-phosphate dehydrogenase gene. Biochim Biophys Acta. 1999;1447(2-3):208-218.
    [121] Miyazaki K, Kawamoto T, Tanimoto K, Nishiyama M, Honda H, Kato Y. Identification of functional hypoxia response elements in the promoter region of the dec1 and dec2 genes. J Biol Chem. 2002;277(49):47014-47021.
    [122] Oikawa M, Abe M, Kurosawa H, Hida W, Shirato K, Sato Y. Hypoxia induces transcription factor ets-1 via the activity of hypoxia-inducible factor-1. Biochem Biophys Res Commun. 2001;289(1):39-43.
    [123] Lofstedt T, Jogi A, Sigvardsson M, Gradin K, Poellinger L, Pahlman S, Axelson H. Induction of id2 expression by hypoxia-inducible factor-1: A role in dedifferentiation of hypoxic neuroblastoma cells. J Biol Chem.2004;279(38):39223-39231.
    [124] Kothari S, Cizeau J, McMillan-Ward E, Israels SJ, Bailes M, Ens K, Kirshenbaum LA, Gibson SB. Bnip3 plays a role in hypoxic cell death in human epithelial cells that is inhibited by growth factors egf and igf. Oncogene. 2003;22(30):4734-4744.
    [125] Kim JY, Ahn HJ, Ryu JH, Suk K, Park JH. Bh3-only protein noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1alpha. J Exp Med. 2004;199(1):113-124.
    [126] Piret JP, Minet E, Cosse JP, Ninane N, Debacq C, Raes M, Michiels C. Hypoxia-inducible factor-1-dependent overexpression of myeloid cell factor-1 protects hypoxic cells against tert-butyl hydroperoxide-induced apoptosis. J Biol Chem. 2005;280(10):9336-9344.
    [127] Fink T, Kazlauskas A, Poellinger L, Ebbesen P, Zachar V. Identification of a tightly regulated hypoxia-response element in the promoter of human plasminogen activator inhibitor-1. Blood. 2002;99(6):2077-2083.
    [128] Schaffer L, Scheid A, Spielmann P, Breymann C, Zimmermann R, Meuli M, Gassmann M, Marti HH, Wenger RH. Oxygen-regulated expression of tgf-beta 3, a growth factor involved in trophoblast differentiation. Placenta. 2003;24(10):941-950.
    [129] Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam J, Semenza GL, Choi AM. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem. 1997;272(9): 5375-5381.
    [130] O’Rourke JF, Pugh CW, Bartlett SM, Ratcliffe PJ. Identification of hypoxically inducible mrnas in hela cells using differential-display pcr. Role ofhypoxia-inducible factor-1. Eur J Biochem. 1996;241(2):403-410.
    [131] Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A, Wilson GD, Turley H, Talks KL, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res. 2000;60(24):7075-7083.
    [132] Shoshani T, Faerman A, Mett I, Zelin E, Tenne T, Gorodin S, Moshel Y, Elbaz S, Budanov A, Chajut A, Kalinski H, Kamer I, Rozen A, Mor O, Keshet E, Leshkowitz D, Einat P, Skaliter R, Feinstein E. Identification of a novel hypoxia-inducible factor 1-responsive gene, rtp801, involved in apoptosis. Mol Cell Biol. 2002;22(7):2283-2293.
    [133] Metzen E, Stiehl DP, Doege K, Marxsen JH, Hellwig-Burgel T, Jelkmann W. Regulation of the prolyl hydroxylase domain protein 2 (phd2/egln-1) gene: Identification of a functional hypoxia-responsive element. Biochem J. 2005;387(Pt 3):711-717.
    [134] Pescador N, Cuevas Y, Naranjo S, Alcaide M, Villar D, Landazuri MO, Del Peso L. Identification of a functional hypoxia-responsive element that regulates the expression of the egl nine homologue 3 (egln3/phd3) gene. Biochem J. 2005;390(Pt 1):189-197.
    [135] Bergeron M, Gidday JM, Yu AY, Semenza GL, Ferriero DM, Sharp FR. Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol. 2000;48(3):285-296.
    [136] Sharp FR, Bergeron M, Bernaudin M. Hypoxia-inducible factor in brain. Adv Exp Med Biol. 2001;502273-291.
    [137] Chavez JC, LaManna JC. Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: Potential role ofinsulin-like growth factor-1. J Neurosci. 2002;22(20):8922-8931.
    [138] Pichiule P, Agani F, Chavez JC, Xu K, LaManna JC. Hif-1 alpha and vegf expression after transient global cerebral ischemia. Adv Exp Med Biol. 2003;530611-617.
    [139] Mu D, Jiang X, Sheldon RA, Fox CK, Hamrick SE, Vexler ZS, Ferriero DM. Regulation of hypoxia-inducible factor 1alpha and induction of vascular endothelial growth factor in a rat neonatal stroke model. Neurobiol Dis. 2003;14(3):524-534.
    [140] Tupitsyna TV, Slominskii PA, Shadrina MI, Shetova IM, Skvortsova VI, Limborskaia SA. [association of the ivs9-675c > a polymorphism of the hif-1alpha gene with acute ischemic stroke in the moscow population]. Genetika. 2006;42(6):858-861.
    [141] Chen W, Jadhav V, Tang J, Zhang JH. Hif-1alpha inhibition ameliorates neonatal brain injury in a rat pup hypoxic-ischemic model. Neurobiol Dis. 2008;31(3):433-441.
    [142] Helton R, Cui J, Scheel JR, Ellison JA, Ames C, Gibson C, Blouw B, Ouyang L, Dragatsis I, Zeitlin S, Johnson RS, Lipton SA, Barlow C. Brain-specific knock-out of hypoxia-inducible factor-1alpha reduces rather than increases hypoxic-ischemic damage. J Neurosci. 2005;25(16):4099-4107.
    [143] Bernaudin M, Tang Y, Reilly M, Petit E, Sharp FR. Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Identification of genes that might contribute to hypoxia-induced ischemic tolerance. J Biol Chem. 2002;277(42):39728-39738.
    [144] Zaman K, Ryu H, Hall D, O’Donovan K, Lin KI, Miller MP, Marquis JC, Baraban JM, Semenza GL, Ratan RR. Protection from oxidativestress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and atf-1/creb and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin. J Neurosci. 1999;19(22): 9821-9830.
    [145] Lee KR, Betz AL, Keep RF, Chenevert TL, Kim S, Hoff JT. Intracerebral infusion of thrombin as a cause of brain edema. J Neurosurg. 1995;83(6): 1045-1050.
    [146] Lee KR, Betz AL, Kim S, Keep RF, Hoff JT. The role of the coagulation cascade in brain edema formation after intracerebral hemorrhage. Acta Neurochir (Wien). 1996;138(4):396-400; discussion 400-391.
    [147] Xi G, Wagner KR, Keep RF, Hua Y, de Courten-Myers GM, Broderick JP, Brott TG, Hoff JT. Role of blood clot formation on early edema development after experimental intracerebral hemorrhage. Stroke. 1998;29(12):2580-2586.
    [148] Richard DE, Berra E, Pouyssegur J. Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem. 2000;275(35):26765-26771.
    [149] Jiang Y, Wu J, Keep RF, Hua Y, Hoff JT, Xi G. Hypoxia-inducible factor-1alpha accumulation in the brain after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab. 2002;22(6):689-696.
    [150] Jackowski A, Crockard A, Burnstock G, Russell RR, Kristek F. The time course of intracranial pathophysiological changes following experimental subarachnoid haemorrhage in the rat. J Cereb Blood Flow Metab. 1990;10(6):835-849.
    [151] Ostrowski RP, Colohan AR, Zhang JH. Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. JCereb Blood Flow Metab. 2005;25(5):554-571.
    [152] Takeshita S, Tsurumi Y, Couffinahl T, Asahara T, Bauters C, Symes J, Ferrara N, Isner JM. Gene transfer of naked DNA encoding for three isoforms of vascular endothelial growth factor stimulates collateral development in vivo. Lab Invest. 1996;75(4):487-501.
    [153] Tsurumi Y, Kearney M, Chen D, Silver M, Takeshita S, Yang J, Symes JF, Isner JM. Treatment of acute limb ischemia by intramuscular injection of vascular endothelial growth factor gene. Circulation. 1997;96(9 Suppl):II-382-388.
    [154] Tsurumi Y, Takeshita S, Chen D, Kearney M, Rossow ST, Passeri J, Horowitz JR, Symes JF, Isner JM. Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation. 1996;94(12):3281-3290.
    [155] Elson DA, Thurston G, Huang LE, Ginzinger DG, McDonald DM, Johnson RS, Arbeit JM. Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1alpha. Genes Dev. 2001;15(19):2520-2532.
    [156] Vincent KA, Shyu KG, Luo Y, Magner M, Tio RA, Jiang C, Goldberg MA, Akita GY, Gregory RJ, Isner JM. Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an hif-1alpha/vp16 hybrid transcription factor. Circulation. 2000;102(18):2255-2261.
    [157] Shyu KG, Wang MT, Wang BW, Chang CC, Leu JG, Kuan P, Chang H. Intramyocardial injection of naked DNA encoding hif-1alpha/vp16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc Res. 2002;54(3):576-583.
    [158] Siddiq A, Ayoub IA, Chavez JC, Aminova L, Shah S, LaManna JC, Patton SM, Connor JR, Cherny RA, Volitakis I, Bush AI, Langsetmo I, Seeley T, Gunzler V, Ratan RR. Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system. J Biol Chem. 2005;280(50):41732-41743.
    [159] Castellani RJ, Siedlak SL, Perry G, Smith MA. Sequestration of iron by lewy bodies in parkinson's disease. Acta Neuropathol. 2000;100(2):111-114.
    [160] Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD. Increased nigral iron content and alterations in other metal ions occurring in brain in parkinson's disease. J Neurochem. 1989;52(6):1830-1836.
    [161] Kienzl E, Jellinger K, Stachelberger H, Linert W. Iron as catalyst for oxidative stress in the pathogenesis of parkinson's disease? Life Sci. 1999;65(18-19):1973-1976.
    [162] Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MB. Increased iron (iii) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm. 1988;74(3):199-205.
    [163] Deibel MA, Ehmann WD, Markesbery WR. Copper, iron, and zinc imbalances in severely degenerated brain regions in alzheimer's disease: Possible relation to oxidative stress. J Neurol Sci. 1996;143(1-2):137-142.
    [164] Waldvogel D, van Gelderen P, Hallett M. Increased iron in the dentate nucleus of patients with friedrich's ataxia. Ann Neurol. 1999;46(1):123-125.
    [165] Bralet J, Schreiber L, Bouvier C. Effect of acidosis and anoxia on iron delocalization from brain homogenates. Biochem Pharmacol. 1992;43(5): 979-983.
    [166] Bowern N, Ramshaw IA, Clark IA, Doherty PC. Inhibition of autoimmune neuropathological process by treatment with an iron-chelating agent. J Exp Med. 1984;160(5):1532-1543.
    [167] Hofer T, Desbaillets I, Hopfl G, Gassmann M, Wenger RH. Dissecting hypoxia-dependent and hypoxia-independent steps in the hif-1alpha activation cascade: Implications for hif-1alpha gene therapy. Faseb J. 2001;15(14): 2715-2717.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700