用户名: 密码: 验证码:
肠易激综合征脑—肠交互作用模型结肠5-羟色胺、酪氨酸羟化酶水平变化及蛋白指纹图谱初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:肠易激综合征(Irritable Bowel Syndrome,IBS)是一种常见的功能性肠病,其病因和发病机制并不清楚,目前公认IBS是多因素疾病。IBS病理生理学基础是肠道动力异常和内脏高敏感性。单胺类神经递质5-羟色胺(5-HT)、去甲肾上腺素(NE)是肠神经系统重要的神经递质,参与肠道感觉、动力、分泌的调控。
     本实验室前期在脑-肠交互作用理论基础上,建立了慢急性联合应激IBS大鼠模型,即动物在接受慢性不可预知轻度应激(CUMS)后接受一次急性束缚应激,已证实可从肠道动力、感觉和心理行为多方面模拟IBS表现,且具有稳定与重复性好的特点。本研究在前期对5-HT与NE在IBS动物模型研究的基础上,将应用慢急性联合应激动物模型完善对5-HT与NE系统的研究并进行新的探索研究,整个研究分为三部分。
     研究目的:
     1、通过测定各组大鼠感觉传导通路上脊髓背角、海马、额叶等脑—肠轴层面神经元c-fos水平,从分子水平评估慢急性联合应激动物模型。
     2、完善与深入探讨5-HT系统和NE系统在IBS的变化与可能的作用机制。
     3、利用蛋白质组学观察18S脑-肠交互作用动物模型结肠蛋白质全景,初步探讨IBS这一功能性肠病有无蛋白水平的变化。
     材料与方法:
     选用健康雄性成年Wistar大鼠,分为对照组、急性应激组(急性束缚1小时)、慢性应激组(CUMS,21天不可预知轻度应激)、慢急性联合应激组(联合应激组,CUMS的基础上给予急性束缚应激)。观察不同应激状态下的大鼠一定时间内糖水摄取量、排便颗粒、直肠扩张时腹肌收缩次数的变化,对模型进行再评价。采用免疫组织化学方法检测各组大鼠额叶、海马、脊髓背角、结肠c-fos水平;免疫组织化学方法检测各组大鼠结肠嗜铬细胞(EC),甲苯胺蓝染色检测大鼠结肠肥大细胞(MC)及活化肥大细胞百分比(活化MC%);免疫组织双染方法检测各组大鼠结肠酪氨酸羟化酶(TH)及其活化程度;Western Blot方法检测各组大鼠结肠TH蛋白水平;实时RT-PCR方法检测各组大鼠结肠和人类结肠粘膜TH-mRNA和c-fos-mRNA水平;MALDI-TOF-MS技术检测各组大鼠结肠蛋白指纹图谱。
     结果:
     1.联合应激大鼠额叶、海马、脊髓背角Fos蛋白明显高于对照组(P=0.026,0.002,0.013);结肠Fos蛋白略高于对照组(P=0.205);而与慢性应激大鼠相近(P=0.733)。急性应激大鼠中枢(额叶、海马、脊髓背角)与结肠c-fos-mRNA、Fos蛋白与对照组亦无显著差异(P>0.05)。
     2、联合应激可使大鼠结肠分泌5-HT的EC和MC增多,MC活化脱颗粒,5-HT合成增加(P<0.05),5-HT含量亦增多,但对结肠5-HT代谢的其他指标无显著影响。急性应激组结肠MC无明显变化,而脱颗粒MC%明显升高,EC较对照组增多(P>0.05);慢性应激组结肠EC、MC和脱颗粒MC%增多;结肠TPH1 mRNA明显增高,结肠5-HT阳性细胞数增多(P<0.05)。
     3、联合应激大鼠结肠NE含量显著增高,TH蛋白、TH-mRNA有升高趋势(P=0.590,0.363);急性应激组结肠NE无明显变化,TH蛋白、TH-mRNA有增高趋势(P>0.05);慢性应激大鼠结肠NE含量有减低趋势,TH蛋白、TH-mRNA无明显变化(P>0.05)。
     4、结肠5—HT系统和TH间相关系数无统计学意义(P>0.05)。
     5、腹泻型IBS患者结肠粘膜TH和c-fos mRNA表达高于对照组(P=0.466,0.110),便秘型IBS患者结肠粘膜TH—mRNA低于IBS-D,而与对照组无明显差异(P>0.05)。
     6、联合应激大鼠与对照组问有明显差异(P<0.05)的蛋白质/肽质量差异峰18个,与慢性应激大鼠间有10个,与急性应激大鼠间有1个,全部为联合应激组上调。各应激组之间的差异蛋白有一定重复性。
     结论:
     1、联合应激大鼠脑-肠轴各层面尤其是脊髓背角、海马Fos蛋白显著升高,而单纯急性应激模型Fos蛋白无明显升高,提示慢急性联合应激模型不同于单纯急性束缚应激模型,是可以部分模拟脑-肠交互作用的动物模型,为从分子水平研究IBS脑-肠交互作用提供平台。
     2、动物与人结肠标本研究显示:慢性应激调动机体5-HT系统和NE系统处于活跃状态,在此状态下,5-HT系统和NE系统对新的急性应激的反应较正常增强,5-HT和NE总量增多,前者通过抑制5-HT降解,后者则通过NE合成增加实现。在机体对慢急性联合应激的反应中,肠道局部以5-HT系统作用为主导,NE系统则起辅助作用。提示精神因素对其它刺激有一定放大作用。
     3、M/Z为4011.172、29150.9、15213.25Da的蛋白/肽峰,在各组间均存在差异。应激越强,蛋白表达量越高。这三个蛋白质/肽峰可能最有意义。
Background:
     Irritable bowel syndrome(IBS) is a common functional bowel disease.The etiology and pathogenesis are incompletely understood.Its pathophysiological basis is altered gastrointestinal motility and visceral hypersensitivity,usually accompanied with psychiatric disorder.Monoamine neurotransmitters in enteric nervous system,including 5-hydroxytrypatmine (5-HT) and norepinephrine(NE),play an important role in gastrointestinal sensation,motility and secretion.Abnormalities of serotonin system and sympathetic nervous system are related to the pathophysiology of IBS.
     An gut-brain interaction animal model of IBS,also called Chronic & Acute stress model(CAS),has been proved well repetitive.Major characteristics of IBS,such as altered colon motility,visceral hypersensitivity,and psychiatric disorder are existed in this model.We used CAS model to study the following plans on the basis of the former study about 5-HT and NE in the IBS rat model.The whole study includes three parts:
     Aims:
     1.Detecting c-fos contents in the colon,cornu dorsale,hippocampus and frontal]obe of rats,to evaluate the CAS model further.
     2.Perfecting and further investigating the changes and possible role of 5-HT system and NE system in IBS.
     3.Observing the overall view of protein of colon of brain-gut interaction IBS model utilizing proteomics,so as to study whether there are abnormalities in protein levels in IBS.
     Materials and Methods:
     Health male adult Wistar rats were selected and divided into four groups: control,acute stress(AS),chronic stress(CS) and Chronic & Acute stress(CAS).The consumption of sucrose solutions,the fecal pellets, frequency of abdominal muscle contraction by colorectal balloon distention (CRD) of rats after different stresses were observed to reevaluate colon motility,visceral sensation and behavior changes of model.
     Immunohistochemical method was used to determine enterochromaffin cells and toludine blue staining was used to measure mast cells in colon of rats. Double immunohistochemical method was used to detect TH and the degree of its activation.The change of TH protein level in the colon of rats was examed by Western Blot.The changes of TH mRNA and c-fos mRNA expression in the distal colon of rats and the colon mucosa of human were detected by Real time RT-PCR. MALDI-TOF-MS was used to measure the protein fingerprint in colon of rats.
     Results:
     1.Compared with the control,the levels of Fos protein in frontal lobe, hippocampus and cornu dorsale of CAS rat were significantly elevated (P=0.026,0.002,0.013),but its level in colon was slightly increased(P=0.205); and similar results were seen in those of CS rats.Fos protein contents in frontal lobe,hippocampus,cornu dorsale and colon of AS were no different compared with the control(P>0.05).
     2.CAS led to increased amount of EC,MC and percentage of activated MC (activated MC%)(P<0.05).The amount of MC and EC in the colon of AS was no different from that of control group(P>0.05),but AS resulted in increased activated MC%(P>0.05).The amount of EC,MC and activated MC%increased significantly in the colon of CS(P<0.05).
     3.The content of NE in the colon of CAS rats was higher than that of the control(P>0.05),and TH protein and TH mRNA increased without statistical significance compared to those of the control(P=0.590,0.363).Compared to the control group,the content of NE in the colon of AS was no different,and TH protein and TH mRNA had the increased tendency(P>0.05).The NE level in the colon of CS rats had decreased tendency,and TH protein and TH mRNA were no different(P>0.05).
     4.The correlation coefficient between colon 5-HT systems and TH was no statistically significant(P>0.05).
     5.TH and c-fos mRNA levels in the colon mucosa of diarrhea-predominant IBS(IBS-D) patients were slightly higher than those of normal control (P=0.466,0.110).TH mRNA in the colon mucosa of constipation-predominant IBS(IBS-C) patients was lower than that of IBS-D patients,but no different from that of normal control(p>0.05).
     6.As far as protein/peptide quality different peak was concerned,CAS rats have 18 different peaks compared with the control rats,10 peaks compared with CS rats,and 1 peak compared with AS rats.The protein level in the colon of CAS rats was highest.The different proteins among CAS,CS,AS and the control groups were repeated.
     7.Compared with the control group,the number of fecal pellets and frequency of abdominal contraction induced by CRD increased,and the amount of weight gain and consumption of sucrose solutions decreased in CAS(P<0.05).
     Conclusions:
     1.CAS led to significantly increased Fos protein in parts of brain-gut axis(especially cornu dorsale and hippocampus),while AS couldn't activate the express of c-fos.This demonstrates CAS model is different from single AS model and is a good one that can simulate brain-gut interaction partly.
     2.Stimulation such as chronic stress induced 5-HT system and NE system in active state.Under this active state,5-HT system and NE system show stronger reaction to new and acute stress than normal,and this resulted in increased 5-HT and NE contents because CAS can restrain degradation of 5-HT and increase synthesis of NE.In the response to CAS,5-HT system plays a predominant role and NE system plays an adjunctive role in the intestinal tract. It concluded that psychiatric stress can amplify the action other kinds of stimuli.
     3.The proteins/peptides whose M/Z are 4011.172、29150.9、15213.25Da were different among all groups.The stronger the stress is,the higher protein level is.The three proteins/peptides probably were the most significant.
引文
1. Pan G, Lu S, Ke M, et al. Epidemiologic study of the irritable bowel syndrome in Beijing, stratified randomized study by cluster sampling. Chin Med J (Eng 1). 2000 Jan, 113(1):35-39.
    2. Read NW. Gut sensitivity. In: Irritale bowel syndrome. Blackwell Scientific Publications, Oxford, 1991, 83-90.
    3. Mertz H: Review article: visceral hypersensitivity. Aliment Pharmacol Ther 2003;17:623-633.
    4. Kellow JE, Phillips SF. Altered small bowel motility in irritable bowel syndrome is correlated with symptoms. Gastroenterology 1987;92:1885-1893.
    5. Walker EA, Roy-Byrne PP and Katon WJ. Irritable bowel syndrome and psychiatric illness. Am J Psychiatry, 1990, 147: 565—572.
    6. Bueno L, Fioramonti J, Delvaux M, et al. Mediators and pharmacology of visceral sensitivity: from basic to clinical investigations. Gastroenterology, 1997,112: 1714-1743.
    7. Aziz Q, Thompson WG. Brain-gut axis in health and disease. Gastroenterology, 1998,114(3):559-578.
    8. Drossman DA, Review article: an integrated approach to the irritable bowel syndrome. Aliment Pharmacol Ther, 1999,13(Suppl 2 ): 3-14.
    9. Thompson WG, Longstreth GF, Drossman DA, et al. Functional bowel disorders and Functional abdominal pain. In: Drossman DA, eds. Rome II The Functional Gastrointestinal Disorders. 2nd ed. USA: Allen Press, 2000.351-432.
    10. Ringel Y, Drossman DA, Turkington TG, et al. Regional brain activation in response to rectal distension in patients with irritable bowel syndrome and the effect of a history of abuse. Dig Dis Sci, 2003,48:1774.
    11.Mertz H,Morgan V,Tanner G,et aI.Regional cerebral activation in irritable bowel syndrome and control subjects with painful and nonpainful rectal distension,gastroenterology,2000,118(5):842.
    12.Kern MK,Jaradeh S,Arndorfer RC,et al.gender differences in cortical representation of rectal distension in healthy humans.Am J Physiol Gastrointest Liver Physiol,2001,281:G1512.
    13.Bonaz B,Baciu M,Papillon E,et al.Central processing of rectal pain in patients with irritable bowel syndrome:a fMRI study.Am J Gastroenterol,2002,97(3):654.
    14.王巍峰,杨云生,孙刚等。肠易激综合征大鼠P物质能神经通路的改变。世界华人消化杂志,2005,13:214-218。
    15.Sun YN,Luo JY.Efects of tegaserod on Fos,substance P and calcitonin gene-related peptide expression induced by colon inflammation in lumbarsacral spinal cord.World J Gastroenterol,2004,10:1830-1833.
    16.You JS,Hu SY.Polymorphisms of serotonin transporter and angiotensin converting enzyme gene in dysthymic disorder[J].China Journal of Modem Medicine,2003,13(18):43-45.
    17.Cai YY,Shi SX,Xu SR.Research for psychiatrics for man with irritable bowel syndrome[J].Chinese Journal of Internal Medicine,2004,43(10):793-795.
    18.Mertz H,Naliboff B,Munakata J,et al.Altered rectal perception is a biological marker of patients with irritable bowel syndrome.Gastroenterology,1995;109:40-52.
    19.王利华,方秀才,潘国宗:肠易激综合征患者肠粘膜肥大细胞与神经纤维的关联.中华消化杂志 2003;23:332-335.
    20.Miwa J,Echizen H,Matsueda K,et al.Patients with constipation-predominant irritable bowel syndrome(IBS) may have elevated serotonin concentrations in colonic mucosa as compared with diarrhea-predominant patients and subjects with normal bowel habits. Digestion, 2001;63: 188-194.
    21. Silverman DH, Munakata JA, Ennes H, et al. Regional cerebral activity in normal and pathological perception of visceral pain. Gastroenterology 1997;112: 64-72.
    22. Ringel Y, Drossman DA, Turkington TG, et al: Dysfunction of the motivational-affective pain system in patients with IBS: PET brain imaging in response to rectal balloon distension. Gastroenterology 2000; 119(4 suppl): A-474.
    23. Houghton LA, Atkinson W, Whitaker RP, et al. Increased platelet depleted plasma 5-hydroxytryptamine concentration following meal ingestion in symptomatic female subjects with diarrhea predominant irritable bowel syndrome. Gut, 2003,52: 663-670.
    24. Smith MI, Banner SE, Sanger GJ. 5-HT_4 receptor antagonism potentiates inhibition of intestinal allodynia by 5-HT_3 receptor antagonism in conscious rats. Neurosci Lett, 1999, 271: 61-64.
    25. Liu L, Conlon JM, Joss JM, et al. Purification, characterization, and biological activity of a substance P-related peptide from the gut of the Australian lungfish, Neoceratodus forsteri. Gen Comp Endocrinol. 2002 Jan;125(1):104-112.
    26. Furuichi A, Makimoto N, Ogishima M, et al. In vivo assessment of the regulatory mechanism of cholinergic neuronal activity associated with motility in dog small intestine. Jpn J Pharmacol. 2001 May;86(1):73-78.
    27. Levine BS, Jarret M, Cain KC, et al. Psychophysiological response to a laboratory challenge in women with and without diagnosed irritable bowel syndrome. Res Nurs Health 1997;20:431-441.
    28. Aggarwal A, Cutts TF, Abell TL, et al. Predominant symptoms in irritable bowel syndrome correlate with specific autonomic nervous system abnormalities. Gastroenterology 1994;106:945-50.
    29. Brarucha AE, Camilleri M, Zinsmeister AR, et al. Adrenergic modulation of human colonic motor and sensory function. Am J Physiol 1997;273:G997-1006.
    30. Iovino P, Azpiroz F, Domingo E, et al. The sympathetic nervous system moduates perception and reflex responses to gut distention in humans. Gastroenterology 1995;108:680-686.
    31. Tougas G, Spaziani R, Hollerbach S, et al. Cardiac autonomic function and oesopahgeal acid sensitivity in patients with non-cardiac chest pain. Gut 2001;49:706-712.
    32. Elsenbruch S, Holtmann G, Oezcan D, et al. Are there alterations of neuroendocrine and cellular immune responses to nutrients in women with irritable bowel syndrome? Am J Gastroenterol. 2004 Apr;99(4):703-10.
    33. Posserud I, Agerforz P, Ekman R, et al. Altered visceral perceptual and neuroendocrine response in patients with irritable bowel syndrome during mental stress. Gut. 2004 Aug;53(8):1102-1108.
    34. Heitkemper M, Jarrett M, Cain K, et al. Increased urine catecholamines and cortisol in women with irritable bowel syndrome. Am J Gastroenterol. 1996 May;91(5):906-13.
    35. Abbott A. And now for the proteome. Nature, 2001, 409:747.
    36. Bisgaard CF, JayatissaMN, Enghild JJ, et al. Proteomic investigation of the ventral rat hippocampus links DRP-2 to escitalopram treatment resistance and SNAP to stress resilience in the chronic mild stress model of depression. J Mol Neurosci. 2007;32(2):132-44.
    37. Kim HG, Kim KL. Decreased hippocampal cholinergic neurostimulating peptide precursor protein associated with stress exposure in rat brain by proteomic analysis. J Neurosci Res. 2007 Oct;85(13):2898-2908.
    38. Traub RJ, Pechman P, Iadarola MJ, et al. Fos-like proteins in the lumbosacral spinal cord following noxious and non-noxious colorectal distention in the rat. Pain, 1992, 49: 393-403.
    38.Bullitt E.Expression of c-fos-like protein as maker for neuronal activity following noxious stimulation in the rat.J Comp Neurol,1990,296(4):517-530.
    40.Nakagawa T,Katsuya A,Tanimoto S,et al.Differential patterns of c-fos mRNA expression in the amygdaloid nuclei induced by chemical somatic and visceral noxious stimuli in rats.Neurosci Lett,2003,344(3):197-200.
    41.Sheng M,Greenberg ME.The regulation and function of c-fos and other immediate early genes in the nervous system.Neuron,1990,4:477-485.
    42.Smith MA,Banetiec S,Gold PW,et al.Induction of c-fos mRNA in rat brain by conditioned and unconditioned stressors.Brain Res,1992,S78:135-141.
    43.Castex N,Fioramonti J,Ducos de Lahitte J,et al.Brain Fos expression and intestinal motor alterations during nematode-induced inflammation in the rat.Am J Physiol,1998;274:G210-216.
    44.许爽,蒋星红,许试瑜等。水浸束缚应激及电击足底应激诱导的大鼠脑内Fos 蛋白表达。中国应用生理学杂志,1999,15(4):311-315。
    45.Imbe H,Iwata K,Zhou QQ,et al.Orofacial deep and cutaneous tissue inflammation and trigeminal neuronal activation.Cells Tissues Organs,2001,169:238-247.
    46.Zimmermann M,Herdegen T.Plasticity of the nervous system at the systematic,cellular and molecular levels:a mechanism of chronic pain and hyperalgesia.Prog Brain Res,1996,110:233-259.
    47.Monnikes H,Ruter J,Konig M,et al.Differential induction of c-fos expression in brain nuclei by noxious and non-noxious colonic distension:role of afferent C-fibers and 5-HT3 receptors.Brain Res,2003,966:253-264.
    48.孙怡宁,罗金燕。大鼠结肠慢性炎性刺激诱导腰骶髓和延髓Fos的表达及其意义。中华消化杂志,2004.7,24(7):403-406。
    49.Sarkar S,Hobson AR,Fudong PL,et al.Central neural mechanisms mediating human visceral hypersensitivity.J Am Physiol Gastrointest Liver Physiol, 2001, 281(5): GI196-G1202.
    50. Robertson B, Grant G. A comparison between wheat germ agglutinin and choleragenoid-horseradish peroxidase as anterogradely transported markers in central branches of primary sensory neurons in the rat with some observations in the cat. Neuroscience, 1985, 14(3): 895-905.
    51. Besson JM , Chaouch A . Peripheral and spinal mechanism of nociception. Physiol Rev, 1987, 67(1): 67-188.
    52. Williams CL, Villar RG, Peterson JM, et al. Stress induced changes in intestinal transit in the rat: a model for irritable bowel syndrome. Gastroenterology 1988;94(3):611-62.
    53. Foxx-Orenstein AE, Kuemmerle JF, Grider JR. Distinct 5-HT receptors mediate the peristaltic reflex induced by mucosal stimuli in human and guinea pig intestine. Gastroenterology, 1996; 111:1281-1290.
    54. Appel S, Kumle A, Meier R. Clinical pharmacodynamics of SDZ HTF919: a new 5-HT_4 receptor agonist, in a model of slow colonic transit. Clin Pharmacol Ther,1997; 62:546-555.
    55. Sidhu M, Cooke HJ. Role of 5-HT and ACh in submucosal reflexes mediating colonic secretion. Am J Physiol, 1995;269(3Ptl): G346-G351.
    56. Gershon MD. Review article: roles played by 5-hydroxytryptamine in the physiology of the bowel. Aliment Pharmacol Ther, 1999. 13(suppl 2): 15-30.
    57. Furness JB, Costa M. Neurons with 5-hydroxytryptamine-like immunoreactivity in the enteric nervous system: their proiection in the guinea-pig small intestine. Neuroscience, 1982; 7: 341-349.
    58. Crowell MD. The role of serotonin in the pathophysiology of irritable bowel syndrome. Am J Manag Care, 2001; 7(8 Suppl):S252-260.
    59. Grider JR, Kuemmerle JF, Jin JG. 5-HT released by mucosal stimuli initiates peristalsis by actiating 5-HT_4/5-HT_(1p) receptors on sensory CGRP neurons. Am J Physiol, 1996; 270(5 Pt 1):G778-G782.
    60.Spiller RC,Jenkins D,Thomley JP,et al.Increased rectal mucosal enteroendocrine cells T lymphocytes and increased gut permeability folowing acute Camplobacter enteritis and in post-dysenteric irritable bowel syndrome.Gut,2000,47(6):804.
    61.Crowell MD,Shetzline MA,Moses PL,et al.Enterochromaffin cells and 5-HT signaling in the pathophysiology of disorders of gastrointestinal function.Curr Opin Investig Drugs,2004,5:55-60.
    62.Bearcroft CP,Perrett D,Farthing MJ.Postprandial plasma 5-hydroxytryptamine in diarrhea predominant imtable bowel syndrome:a pilot study[J].Gut,1998,42(1):42.
    63.Gui XY.Mast cells:a possible link between psychological stress,enteric infection,food allergy and gut hypersensitivity in the irritable bowel syndrome.J Gastfoenterol Hepatol,1998;13:980-989.
    64.Wittmann T,Crenner F,Angel F,Hanusz L,Ringwald C,Grenier JF.Long-duration stress.Immediate and late effects on small and large bowel motility in rat.Dig Dis Sci.1990 Apr;35(4):495-500.
    65.迟雁,刘新光,王素霞,等。替加色罗对应激大鼠回盲部黏膜5-羟色胺含量的影响。中华内科杂志,2005.9,44(9):687-689。
    66.Kirby LG,Chou-Green JM,Davis K,et al.The effects of different stressors on extracellular 5-hydroxy-tryptarnine and 5-hydroxyindoleacetic acid[J].Brain Res,1997,760:218.
    67.Miura M,Lawson DC,Clary EM,et al.Central modulation of rectal distension-induced blood pressure changes by alosetron,a 5-HT_3 receptor antagonist[J].Dig Dis Sci,1999,44(1):20.
    68.Wheatcroft J,Wakelin D,Smith A,et al.Enterochromaffin cell hyperplasia and decreased serotonin transporter in a mouse model of postinfectious bowel dysfunction.Neurogastroenterol Motil.2005Dec;17(6):863-70.
    69. Kumer SC, Vrana KE. Intricate regulation of tyrosine hydroxylase activity and gene expression [J]. Neurochem, 1996, 67: 443-462.
    70. Lundgren O. Sympathetic input into the enteric nervous system. Gut, 2000, 47 (Suppl4):iv33 — iv35.
    71. Smulevich AB,Rappoport SL, Syrkin AL,et al. Visceral neurones: clinical approaches to the problem. Zh Nevrol Psikhiatr Im S S Korsakova, 2002, 102 (1): 15-21.
    72. Lucassen PJ, Muller MB, Holsboer F, et al. Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure. Am J Pathol 2001;158(2):453-468.
    73. Coates MD, Mahoney CR, Linden DR. et al. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology, 2004,126: 1657-1664.
    74. Galligan JJ. 5-hydroxytryptamine, ulcerative colitis, and irritable bowel syndrome: molecular connections. Gastroenterology, 2004 ,126: 1897-1899.
    75. Jin GL, Zhou DF, SU J. The effect of electro-acupuncture on chronic stress-induced depression rat brain's monoamine neurotransmitters [J]. Chin J Psychiatry, 1999,32(4): 220-222.
    76. Shafer AB. Meta-analysis of the factor structures of four depression questionnaires: Beck, CES-D, Hamilton, and Zung. Journal of Clinic Psychol 2006; 62:123-146.
    77. Blier P, de Montigny C. Current advances and trends in the treatment of depression. Trends Pharmacol Sci. 1994 Jul;15(7):220-6.
    78. Banmann B, Danos P, Krell D, et al. Impact of suicide and diagnosis on tyrosine hydroxylase expressing neurons in the locus coeruleus of patients with mood disorder . European Archives of Psychiatry and Clinical Neuroscience, 1999, 249: 303.
    79.Duncko P,Kiss A,Skultetyova I,et al.Corticotropin-releasing hormone mRNA levels in response to chronic mild stress rise in male but not in female rats while tyrosine hydroxylase mRNA level decrease in both sexes.Psychoneuroendocrinology,2001,26:77-89.
    80.Guo J,Gao Y,Zhu LQ,et al.Effecl of Xinpikaiyu Formula on central monoamine neurotransmitters in rat model of depression[J].J Beijing Univ Traditiona Chinese Med.2005,28(3):55-57.
    81.Drossman DA,McKee DC,Sandler RS,et al.Psychosocial factors in the irritable bowel syndrome.A multivariate study of patients and non-patients with irritable bowel syndrome.Gastroenterology,1998,95:701-708.
    82.Xie Y.Changes and clinical significance of anus and colon in irritable bowel syndrome[J].Zhongguo Shiyong Neike Zazhi(Chin J Pract Inter Med),1997,17(12):746-748.
    83.张军,罗金燕,于祥之等。正常人与溃疡性结肠炎及肠易激综合征肛门直肠测压对比研究。中国肛肠杂志,1992;(3):3。
    84.刘谦民,郭荣斌,郑文尧等。肠易激综合征患者直肠肛管测压的研究。解放军医学杂志,2001,26(3):232-234。
    85.唐毅,包勇,陈拥军等。便秘型肠易激综合征直肠感觉功能和肛门动力学研究,中国现代医学杂志,2006,169(4):585-586。
    86.谢勇,黄缘,王崇文等。肠易激综合征患者直肠肛门压力变化及临床意义。中国实用内科杂志,1997,17(12):746-747。
    87.Whitehead WE,Palason OS,Is rectal pain sensitivity a biological marker for irritable bowel syndrome:psychological influence on pain perception.Gastroenterology,1998,115:1263-1271.
    88.Ford MJ,Gamllen M,Zinsneister AR,et al.Psychosensory modulation of colonic sensation in the human transverse and signoid colon.Gastroenterology,1995,109:1772-1780.
    89.Richie J.Pain from distention of the pelvic colon by inflating a ballon in the irritable syndrome. Gut,1973,14: 125-132.
    90. Szafarezyk A, Malaval F, Lab rent A, et al. Further evidence for a central stimulatory action of catecholamines on adrenocorticotropin release in the rat. Endocrinology, 1987, 121(3): 883.
    91. Enggaard TP, Klitgaard NA, Gram LF. Specific effect of venlafaxine on single and repetitive experimental painful stimuli in humans. Clin Pharmacol Ther 2001; 69:245-251.
    92. Pernia A, Mico JA, Calderon E. Venlafaxine for the treatment of neuropathic pain. J Pain Symptom Manage 2000.19:408-410.
    93. Goldstein DJ, Lu Y, Detke MJ, et al. Duloxetine vs. placebo in patients with painful diabetic neuropathy. Pain, 2005 Jul; 116(1-2):109-118.
    94. Gorman JM, Sultivan G.. Noradrenergic approaches to antidepressant therapy. J Clin Psychiatry, 2000, 61 (suppl 1):13.
    95. White J, N Zhang Let. Detection of prostate cancer using serum proteomics pattern in a histologically confirmed pophhtion. J Urol, 2004;171(5):1782-1787.
    96. Caprioli RM, Farmer TB, Gile J, et al. Molecular imaging of Biological sample: localization of peptides and proteins using MALDI-TOF-MS. Anal Chem, 1997,69(23):4751-4760.
    97. Stoeckli M, Chaurand P, Hallahan DE, et al. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med, 2001,7: 493-496.
    1.中华医学会消化病学分会。肠易激综合征的共识意见。中华内科杂志,2003,42:669-670。
    2.Drossman DA,Whitehead W,Camilleri M.Irritable bowel syndrome:A technical review for practice guideline development.Gastroenterology,1997,112:2120-2137.
    3.Hungin APS.The medical and societal impact of irritable bowel syndrome:the truth in IBS(T-IBS)survey.Poster presented at WCOG,2002.
    4.Camileri M.Economic burden of irritable bowel syndrome:proposed strategies to control expenditures.Pharmacoeconomics,2000,4:331-338.
    5.Jackson JL,Malley PG,Tomkins,et al.Treatment of functional gastrointestinal disorders with antidepressant medications:a meta-analysis.Am J Med,2000,108(1):65-72.
    6.Walker EA,Roy-Byrne PP and Katon WJ.Irritable bowel syndrome and psychiatric illness.Am J Psychiatry,1990,147:565-572.
    7.Arakani A,Win T,Virk S,et al.Comorbidity of irritable bowel syndrome in psychiatric patients.Am J Ther,2003,10(1):61-67.
    8.Pinto C,Lele MV,Joglekar AS,et al.Stressful life-events,anxiety,depression and coping in patients of irritable bowel syndrome.J Assoc Physicians India.2000,48(6):589-593.
    9.Sykes MA,Blanchard EB,Lackner J,et al.Psychopathology in irritable bowel syndrome:support for a psychophysiological moedel.J Behav Med,2003.26(4):362-372.
    10.Solmaz M,Kavuk I,Sayar K.Psychological factors in the irritable bowel syndrome.Eur J Med Res,2003,8(12):549-556.
    11.Guthrie E,Creed F,Dawson D,et al.A controlled trial of psychological treatment for the irritable bowel syndrome.Gastroenterology, 1991, 100: 450-457.
    12. Pinto C, Lele MV, Joglekar AS, et al. Stressful life-events, anxiety, depression and coping in patients of irritable bowel syndrome. J Assoc Physicians India. 2000, 48(6): 589-593.
    13. Smulevich AB, Rappoport SL, Syrkin AL, et al. Visceral neuroses: clinical approaches to the problem. Zh Nevrol Psikhiatr Im S S Korsakova, 2002, 102(1): 15-21.
    14. Olks D. The interface of psychiatry and irritable bowel syndrome. Curr Psychiatry Rep, 2004, 6(3):210-215.
    15. Fishbain D. Evidence-based data on pain relief with antidepressants. Ann Med, 2000, 32: 305-316.
    16.0 Sullivan MA. Patient knowledge and educational needs in irritable bowel ayndrome. Eur J Gastroenterol Hepatol, 2000, 12(1): 39-43.
    17. Craig WB, Barry DW. The locus coerujeus-noradrenergic system: modulation of behavioral state and state-dependent cognitive process. Brain Research Reviews, 2003, 42: 33-84.
    18. Gery AJ, Rajkowski J, Cohen J. Role of locus coeruleus in attention and behavioral flexibility. Biological Psychiatry; 1999, 46: 1309-1320.
    19. Neophytou, Savvas I, Aspley, et al. Efects of lesioning noradrenergic neurones in the locus coeruleus on conditioned and unconditioned aversive behaviour in the rat. Progress in Neuro-Psychopharmacology and Biological Psychiatry; 2001, 25: 1307-1321.
    20. Siever LJ, Davis KL. Overview toward a dysregulation hypothesis of depression. Am J Psychiatry, 1985, 148:1017.
    21.Maggi A, Perez J. Role of female gonadal hormones in the CNS: clinical and experimental aspects. Lefe Sci,1985, 37:893.
    22. Katz MM, Maas JW, Frazer A, et al. Drug-induced actions on brain neurotransmitter systems and changes in the behaviors and emotions of depression patient[J].Neuropsychopharmacology,1994,11(2):89-100.
    23.Vijayakumar M,Meti BL.Alterations in the levels of monoamine in discrete brain regions of clonmipramine-induced animal model of endogenous depression.Neurochem Res.1999,24:345.
    24.Heeringen K.The neurobiology of suicide and suicidality.Can J Psychiatry,2003,48:292-300.
    25.Anand A,Charney DS.Norepinephrine dysfunction in depression.J Clin Psychiatry,2000,61[Suppl 10]:16-24.
    26.谢健,高力舒。焦虑症艾森克个性问卷与血浆去甲肾上腺素、总皮质醇及白介素-2测定及相关分析。江西医药,2006,41(5):266-268。
    27.Gorman JM,Sullivan G.Noradrenergic approaches to antidepressant therapy.J Clin Psychiatry,2000,61[Suppl 1]:13-16.
    28.Gumniedk JF,Nemeroff CB.Problems with currently available antidepressants.J Clin Psychiatry,2000;61[Suppl 10]:5-15.
    29.Enggaard TP,Klitgaard NA,Gram LF.Specific effect of venlafaxine on single and repetitive experimental painful stimuli in humans.Clin Pharmacol Ther 2001;69:245-251.
    30.Pernia A,Mico JA,Calderon E.Venlafaxine for the treatment of neuropathic pain.J Pain Symptom Manage 2000.19:408-410.
    31.Goldstein DJ,Lu Y,Detke MJ,et al.Duloxetine vs.placebo in patients with painful diabetic neuropathy.Pain,2005 Jul;116(1-2):109-118.
    32.Brarucha AE,Camilleri M,Zinsmeister AR,et al.Adrenergic modulation of human colonic motor and sensory function.Am J Physiol 1997;273:G997-1006.
    33.Iovino P,Azpiroz F,Domingo E,et al.The sympathetic nervous system moduates perception and reflex responses to gut distention in humans.Gastroenterology 1995;108:680-686.
    34.Berlioz F,Maoret JJ,Paris H,et al.a2-Adrenergic receptors stimulate oligopeptide transport in a human intestinal cell line.J Pharmacol Exp Ther 2000:294:466-472.
    35. Viramontes BE, Malcolm A, Camilleri M, et al. Effects of alpha2-adrenergic agonist on gastrointestinal transit, clolnic motility and sensation in humans. Am J Physiol gastrointest Liver Physiol 2001:281:468-476.
    36. Camilleri M, Kim DY, McKinzie S, et al. A randomized, controlled exploratory study of clonidine in diarrhea-predominant irritable bowel syndrome. Clin Gastroenterol Hepatol 2003:1:111-121.
    37. Coates MD, Mahoney CR, Linden DR. et al. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology, 2004,126:1657-1664.
    38. Schafermeyer A, Gratzl M, Rad R, et al. Isolation and receptor profiling of ileal enterochromaffin cells. Acta Physiol Scand 2004:182:53-62.
    39. Gorman JM, Sultivan G. Noradrenergic approaches to antidepressant therapy. J Clin Psychiatry, 2000, 61 (suppl 1): 13.
    40. Galligan JJ. 5-hydroxytryptamine, ulcerative colitis, and irritable bowel syndrome: molecular connections. Gastroenterology, 2004 ,126 :1897-1899.
    41. Levine BS, Jarret M, Cain KC, et al. Psychophysiological response to a laboratory challenge in women with and without diagnosed irritable bowel syndrome. Res Nurs Health 1997:20:431-441.
    42. Aggarwal A, Cutts TF, Abell TL, et al. Predominant symptoms in irritable bowel syndrome correlate with specific autonomic nervous system abnormalities. Gastroenterology 1994; 106:945-50.
    43. Tougas G, Spaziani R, Hollerbach S, et al. Cardiac autonomic function and oesopahgeal acid sensitivity in patients with non-cardiac chest pain. Gut 2001; 49:706-712.
    44. Posserud I, Agerforz P, Ekman R, et al. Altered visceral perceptual and neuroendocrine response in patients with irritable bowel syndrome during mental stress. Gut. 2004 Aug;53(8):1102-1108.
    45. Heitkemper M, Jarrett M, Cain K, et al. Increased urine catecholamines and cortisol in women with irritable bowel syndrome. Am J Gastroenterol. 1996 May; 91 (5):906-13.
    46. Elsenbruch S, Holtmann G, Oezcan D, et al. Are there alterations of neuroendocrine and cellular immune responses to nutrients in women with irritable bowel syndrome? Am J Gastroenterol. 2004 Apr;99(4):703-10.
    47.Gershon MD, Sherman DL. Identification of and interactions between noradrenergic and serotonergic neurites in the myenteric plexus. J Comp Neurol. 1982 Feb 1;204(4):407-21.
    48. Gershon MD, Sherman DL. Noradrenergic innervation of serotoninergic neurons in the myenteric plexus. J Comp Neurol. 1987 May 8;259(2):193-210.
    49. Kumer SC, Vrana KE. Intricate regulation of tyrosine hydroxylase activity and gene expression[J]. Neurochem, 1996, 67:443-462.)
    50. Anderson KK, Cox DD, Que LJ, et al. Resonance raman studies on the blue-colored bovine adrenal tyrosine 3-monoxygenase(tyrosine hydroxylase) evidence that the feedback inhibitors adrenaline and noradrenaline are coordinated to iron [J]. Biol Chem, 1998,263:18621-18626.
    51. Banmann B , Peter D, Silvia D, et al . Tyrosine hydroxylase immunoreactivity in the locus coeruleus is reduced in depressed non-suicidal patients but normal in depressed suicide patients. European Archives of Psychiatry and Clinical Neuroscience, 1999,249: 212-219.
    52. Lucassen PJ, Muller MB, Holsboer F, et al. Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure. Am J Pathol 2001;158(2): 453—68.
    53. Banmann B, Danos P, Krell D, et al. Impact of suicide and diagnosis on tyrosine hydroxylase expressing neurons in the locus coeruleus of patients with mood disorder . European Archives of Psychiatry and Clinical Neuroscience, 1999, 249: 303.
    54. Duncko P, Kiss A, Skultetyova I, et al. Corticotropin—releasing hormone Mrna levels in response to chronic mild stress rise in male but not in female rats while tyrosine hydroxylase mRNA level decrease in both sexes. Psychoneuroendocrinology, 2001, 26: 77-89.
    1. Abbott A. And now for the proteome. Nature, 2001, 409:747.
    2. Caprioli RM, Farmer TB, Gile J, et al. Molecular imaging of Biological sample: localization of peptides and proteins using MALDI-TOF-MS. Anal Chem, 1997, 69(23): 4751-4760.
    3. White J, N Zhang Let. Detection of prostate cancer using sorum proteomicspattern in a histologically confirmed pophhtion. J Urol, 2004;171(5):1782-1787.
    4. Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption ionization-time of light-mass spectrometry [J]. Electrophoresis. 2000 Apr;21 (6):1164-77.
    5. Grizzle WE, Semmes OJ, Basler J, et al. The early detection researchnetwork surface-enhanced laser desorption and ionization prostatecancer detection study: a study in biomarkervalication in genitourinary oncology. Urol Oncol 2004; 22: 337-343.
    6. Zhang Z, Bast RC Jr, Yu Y, Li J, Sokoll LJ, Rai AJ, Rosenzweig JM, Cameron B, Wang YY, Meng XY, Berchuck A, Van Haaften-Day C, Hacker NF, de Bruijn HW, vander Zee AG, Jacobs IJ, Fung ET, Chan DW. Three biomarkers identified from serum proteomic analysis for thedetection of early stage ovarian cancer. Cancer Res 2004; 64: 5882-5890.
    7. Conrads TP, Hood BL, Issaq HJ, Veenstra TD. Proteomic patterns as adiagnostic tool for early-stage cancer: A review of its progress to a clinically relevanttool. Mol Diagn 2004;8: 77-85.
    8. Wilson LL, Tran L, Morton DL, Hoon DS. Detection of differentiallyexpressed proteins in early-stage melanoma patients using SELDI-TOF mass spectrometry. Ann N YAcad Sci 2004:1022: 317-322.
    9. Wang VW, Chan CS, Ng TB, Chung TK, Mok SC. Protein profiling ofcervical cancer by protein-biochips: proteomic scoring to discriminate cervical cancerfrom normal cervix. Cancer Lett 2004;211: 227-234.
    10. Fowler LJ, Lovell MO, Izbicka E. Fine-needle aspiration inPreservCyt: a novel and reproducible method for possible ancillary proteomic pattern expression ofbreast neoplasms by SELDI-TOF. Mod Pathol 2004;17: 1012-1020.
    11.Cazares LH, Adam BL, Ward MD, Nasim S, Schellhammer PF, Semmes OJ, Wright GL Jr. Normal, benign, preneoplastic and malignant prostate cells have distinctprotein expression profiles resolved by surface enhanced laser desorption/ionization mass spectrometry. Clin Cancer Res 2002:8:2541-2552.
    12. Menon U, Jacobs I. Screening of ovarian cancer. Best Pract Res ClinObstet Gynaecol 2002;16: 469-482.
    13. Adam BL, Qu Y, Davis JW, Ward MD, Clements MA, Cazares LH, SemmesOJ, Schellhammer PF, Yasui Y, Feng Z,Wright GL Jr. Serum protein fingerprintingvoupled with a pattern-matching algorithm distinguishes prostatecancer from benign prostate prostate hyperplasiaand health men. Cancer Res 2002; 62: 3609-3614.
    14.Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, SteinbergSM, Mills GB, Simone C, Fishman DA, Kohn EC, Liotta LA. Use of proteomic patterns in serum toidentify ovarian cancer. Lancet 2002; 359:572-577.
    15. Bouin M, Plourde V, Boivin M, et al. Rectal distention testing in patients with irritable bowel syndrome: sensitivity, specificity, and predictive values of pain sensory thresholds. Gastroenterology 2002: 122: 1771-1777.
    16. Quigley EM. Disturbances of motility and visceral hypersensitivity in irritable bowel syndrome: biological markers or epiphenomenon. Gastroenterol Clin North Am 2005: 34: 221-233.
    17. Blomhoff S, Spetalen S, Jacobsen MB, et al. Phobic anxiety changes the function of brain-gut axis in irritable bowel syndrome. Psychosom Med 2001: 63: 959-965.
    18.Miwa J,Echizen H,Matsueda K,et al.Patients with constipation-predominant irritable bowel syndrome IBS)may have elevated serotonin concentrations in colonic mucosa as compared with diarrhea-predominant patients and subjects with normal bowel habits.Digestion 2001;63:188-194.
    19.Talley NJ.Serotoninergic neuroenteric modulators.Lancet 2001;358:2061-2068.
    20.杨云生。肠易激综合征神经免疫内分泌网络调控机制.胃肠病学和肝病学杂志,2002;11:320-322。
    21.0' Sullivan M,Clayton NJ,Breslin NP,et al.Increased mast cells in the irritable bowel syndrome.Neurogastroenterol Motil 2000;12:449-457.
    22.李兆申,董文珠,邹多武等。肠易激综合征肠黏膜肥大细胞的实验研究。解放军医学杂志2002;27:628-630。
    23.Barbara G,Stanghelini V,De Giorgio R,et al.Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome.Gastroenterology 2004;126:693.702.
    24.詹丽杏,许国铭,李兆申等。肠易激综合征患者活动期和缓解期血浆5-HT、5-HIAA的变化。第二军医大学学报2003;24:152-154。
    25.杨艺,邓长生。肠易激综合征患者一氧化氮和5-羟色胺含量改变。世界华人消化杂志1999;7:640-641。
    26.Simren M.Bjornsson KS,Abrahamsson H.High interdigestive and postprandial motilin levels in patients with the irritable bowel syndrome.Neurogastroenterol Motil 2005;17:51-57.
    27.Palsson OS,Morteau O,Bozymski EM,et al.Elevated vasoactive intestinal peptide concentrations in patients with irritable bowel syndrome.Dig Dis Sci 2004;49:12316-1243.
    28.Simren M,Stotzer PO,Sjovall H,et al.Abnormal levels of neuropeptide Y and peptide YY in the colon in irritable bowel syndrome.Eur J Gastroenterol Hepatol 2003:15:55-62.
    29.彭丽华,杨云生,孙刚,等。冰水灌胃刺激对大鼠肠道敏感性及血清生物活性物质的影响.解放军医学杂志 2005;30:51-53。
    30.令狐恩强,杨云生.肠易激综合征患者外周血T淋巴细胞亚群分析。中华消化杂志 2002;22:423-425。
    31.彭丽华,杨云生,孙刚等。便秘型肠易激综合征结肠黏膜组织蛋白质组双向凝胶电泳分析。世界华人消化杂志,2005.10;13(19):2339-2342。
    32.Johnston-Wilson NL,Sims CD,Hofmann JP,et al.Disease-specific alterations in frontal cortex brain proteins in schizophrenia,bipolar disorder,and major depressive disorder.The Stanley Neuropathology Consortium.Mol Psychiatry,2000.5:142-149.
    33.Bisgaard CF,Jayatissa MN,Enghild JJ,et al.Proteomic investigation of the ventral rat hippocampus links DRP-2 to escitalopram treatment resistance and SNAP to stress resilience in the chronic mild stress model of depression.J Mol Neurosci.2007;32(2):132-44.
    34.Beasley CL,Pennington K,Behan A,et al.Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders:Evidence for disease-associated changes.Proteomics.2006 Jun;6(11):3414-25.
    35.Kim HG,Kim KL.Decreased hippocampal cholinergic neurostimulating peptide precursor protein associated with stress exposure in rat brain by proteomic analysis.J Neurosci Res.2007 Oct;85(13):2898-2908.
    36.Huang JT,Leweke FM,Oxley D,et al.Disease biomarkers in cerebrospinal fluid of patients with first-onset psychosis.2006 Nov;3(11):e428.
    37.Brunner J,Bronisch T,Uhr M,et al.Proteomic analysis of the CSF in unmedicated patients with major depressive disorder reveals alterations in suicide attempters.Eur Arch Psychiatry Clin Neurosci.2005Dec;255(6):438-440.
    38.Fonteh AN,Harrington RJ,Huhmer AF,et al.Identification of disease markers in human cerebrospinal fluid using lipidomic and proteomic methods. Dis Markers. 2006;22(1-2):39-64.
    39. Strohle A. New pharmacological treatment approaches for anxiety disorders. Handb Exp Pharmacol. 2005;(169):503-26.
    40. Berry GT, Buccafusca R, Greer JJ, et al. Phosphoinositide deficiency due to inositol depletion is not a mechanism of lithium action in brain. Mol Genet Metab. 2004 May; 82(1):87-92.
    41. Khawaja X, Xu J, Liang JJ, et al. Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: Implications for depressive disorders and future therapies. J Neurosci Res, 2004, 75 (4) : 451-460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700