用户名: 密码: 验证码:
燃料理化特性对均质压燃影响的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
均质压燃(HCCI)结合了传统汽油机和柴油机的优点,能够同时降低氮氧化物(NOX)和微粒(PM)排放而且具有较高的热效率,被认为是最有潜力的新一代内燃机燃烧方式,是目前国际内燃机燃烧学研究的热点。HCCI着火和燃烧主要受到混合气燃烧化学反应动力学的控制,燃料特性以及燃烧边界条件对HCCI燃烧过程有决定性影响。
     为了研究不同特性燃料的HCCI燃烧反应机理、探索有效的HCCI燃烧控制策略以及寻找适合HCCI燃烧的特性燃料,最终实现对HCCI燃烧着火时刻和燃烧反应速率的精确控制以及拓宽其运转工况范围,本文对燃料特性和燃烧边界条件(负荷、转速、EGR、进气温度和压力等)对HCCI燃烧特性、运转工况范围、发动机性能以及排放特性等的影响规律进行了系统的试验研究。
     首先,本文采用由正庚烷和异辛烷混合而成的不同辛烷值基础燃料(PRF)研究燃料辛烷值和燃烧边界条件对HCCI燃烧过程、运转工况范围以及排放特性等的影响。基础燃料的HCCI燃烧过程表现了明显的双阶段放热特点,燃料辛烷值越低,低温反应放热越明显。燃料辛烷值对HCCI燃烧过程的影响与燃烧边界条件有关,且随燃烧边界条件变化而变化,负荷越低、发动机转速和EGR率越高,燃料辛烷值对HCCI燃烧过程的影响越明显。提高燃料辛烷值和EGR率可使HCCI运转工况范围向大负荷区域拓宽。HCCI对燃料辛烷值的要求介于汽油燃料和柴油燃料之间,在本研究试验条件下,辛烷值为60燃料的HCCI运转工况范围及高效率运转区域覆盖的工况范围均为最宽,能够实现的最高指示效率也最高。HCCI的HC排放与燃料辛烷值和工况有关,大负荷时主要来源于缸内的缝隙容积,但低负荷时,缸内大范围的淬熄是HC排放的主要来源;与HC排放不同,CO排放主要取决于缸内温度,并与它具有很好的一致性。
     采用研究法辛烷值近似相同但理化特性不同的燃料研究燃料特性和燃烧边界条件对HCCI燃烧过程、运转工况范围以及排放特性等的影响。研究法辛烷值相同但理化特性不同的燃料即使在相同燃烧边界条件下其燃烧特性参数也有较大的差别,而且在不同的燃烧边界条件下燃料特性对HCCI燃烧特性参数的影响也不同,即燃料特性对HCCI燃烧过程的影响与燃烧边界条件有关,且随燃烧边界条件变化而变化。OI是比研究法辛烷值和马达法辛烷值相对全面的燃料抗爆性能的相对度量指标,它在各种运转工况条件下均能较好的表征不同燃料在相同工况条件下的抗爆性能的相对强弱。相同运转工况条件下,燃料的OI越高,其抗爆性能相对越强,HCCI主燃烧着火时刻越晚。
     最后,作者采用模拟增压研究进气压力和燃料特性对HCCI燃烧过程、运转工况范围以及排放特性等的影响。进气压力升高,主燃烧着火时刻提前,缸内最大爆发压力增大,但不同进气压力条件下,燃料特性对HCCI燃烧过程也有不同的影响。提高进气压力可使HCCI的正常运转工况范围同时向高负荷和低负荷拓宽。进气压力对燃烧效率的影响与燃料辛烷值以及运行工况有关,对于燃烧效率和指示效率均存在一个最佳进气压力,燃料辛烷值和运行工况不同,该最佳进气压力的值不同;而不同进气条件下,燃料特性对燃烧效率和指示效率的影响均与燃料的OI有关。不同进气条件下,燃料特性对HC和CO比排放的影响也与OI有关,但进气压力和燃料特性对HCCI NOX比排放的影响均不明显。
Combined the advantages of Gasoline engine and Diesel engine, with ultra-low NOx and PM emissions and high thermal efficiency, homogeneous charge compression ignition (HCCI) was considered as a new combustion process with the strongest potential in internal combustion engine and a focus in the field of combustion study in the world. Its ignition and combustion are mainly controlled by combustion chemistry reaction kinetics of mixture; therefore, the fuel properties and combustion boundary condition have dominant effect on HCCI combustion process.
     To learn the combustion reaction mechanism of different characteristic fuel and the effects of fuel physical and chemical properties on HCCI combustion, find effective controlling strategy of HCCI combustion, the effects of fuel properties and combustion boundary condition on the HCCI combustion characteristics, operation region, engine performance and emission characteristics were systematically investigate by experiments. The purpose of this study is to realize the exact control to HCCI ignition timing and combustion reaction rate and the extended of operation region.
     Firstly, Primary Reference Fuels (PRFs) with different octane number (ON), obtained by mixing with n-heptane and isooctane, were applied to learn the effects of ON and combustion boundary condition on HCCI combustion process, operation region and emission characteristics. The HCCI combustion process of PRFs was characteristic by two-stage heat release. The lower the ON is, the more obvious the heat release of low temperature reaction. The influence of ON of fuel on HCCI combustion process has relations with combustion boundary condition, and change with the variation of combustion boundary condition. With the load lower, the engine speed and EGR rate higher, the influence becomes more obvious. The increase of RON of fuel and ratio of EGR would expend the HCCI operation region to high load range. The demanded ON of fuel for HCCI is between that of gasoline fuel and diesel fuel. In the experiment condition of this paper, both the HCCI operation load region and the high efficiency operation region get the broadest area when the fuel ON is 60, the highest indicated efficiency is the highest, too. The HC emissions of HCCI are related to fuel ON and operation condition. At high load condition HC emissions mainly come from crevice in the cylinder while at the low load condition mainly from quenching. Different to HC, CO emissions are related to the in-cylinder temperature, and there is the good consistent relation between CO and in-cylinder temperature.
     Fuels, with the almost same Research Octane Number (RON) but different physical and chemical properties, were used to learn the effects of fuel property and combustion boundary condition on HCCI combustion process, operation region and emission characteristics. With the same combustion boundary condition, the fuels with same RON but different physical and chemical characteristics have large differences in combustion characteristic parameters. If combustion boundary condition changed, the fuel has different effects on HCCI combustion characteristic parameters. It means that the effects of fuel properties of HCCI combustion process are relate with combustion boundary condition. Octane Index (OI) is relatively measurement of antiknock performance, more comprehensive than RON and Motor Octane Number (MON). No matter what operation condition, it could relatively indicate the antiknock performance of fuel in the same operation condition. In the same condition, the higher OI is, the stronger the capability is, the later the ignition timing is.
     Finally, simulated boost was applied to learn the effects of intake pressure and fuel properties on HCCI combustion process, operation region and emission characteristics. The intake pressure increased, the main combustion ignition timing advanced, the maximum cylinder pressure rise. But with different intake pressures, the fuel properties have different effects on HCCI combustion process. The increase of intake pressure would expand the normal operation region of HCCI to both high load condition and low load condition. The effects of intake pressure on combustion efficiency are related to the ON of fuel and operation condition. For the combustion efficiency and indicated efficiency, exits an optimum intake pressure. When operation condition changed, the optimum intake pressure changed. At different intake pressure conditions, the influences of fuel properties on both combustion efficiency and indicated efficiency are related to OI. In different intake pressure conditions, its influences on HC and CO emissions are also related to OI, while the influences of intake pressure and fuel properties are not obvious on NOx emissions.
引文
[1] 周龙保,刘巽俊,高宗英,内燃机学,北京:机械工业出版社,2005:1~3
    [2] http://www.cmrn.com.cn/html/7401.htm,中国市场研究网,汽车,统计数据
    [3] http://www.cnengine.com/article/Article_Show.asp?ArticleID=795,中国发动机网,发动机市场状况分析
    [4] 阳树毅,内燃机工业可持续发展战略的探讨,中国内燃机学会第六界学术年会会议论文集,上海,2001,11:6~13
    [5] 俞凯,浅析 2020 年我国石油能源需求及对策,江苏国土资源网,2005.12.5
    [6] http://www.chinainfo.gov.cn/data/200107/1_20010724_8974.html,世界能源的消费状况
    [7] 中国汽车工业协会, 汽车行业 2003 年经济运行报告
    [8] 2005-2006 中国石油开采业研究报告
    [9] 张 小 虞 , 张 小 虞 细 述 车 用 发 动 机 “ 今 生 来 世 ” , 中 华 机 械 网http://news.infocom.cn/html/2005-2-18/79983.html
    [10] 中 国 太 阳 能 热 水 器 网 , 中 国 能 源 的 现 状 与 发 展http://www.solar-china.cn/fsbk/show.asp?id=6248&lei=%B9%FA%C4%DA%B6%AF%CC%AC,
    [11] 陈因达,发展我国车用发动机的战略思考,中国内燃机学会第六界学术年会会议论文集,上海,2001,11:1~6
    [12] 美国洛杉矶光化学烟雾事件,人民网,2004-04-21
    [13] 环境与健康小论,文学博客网,2006-05-03
    [14] 十大环境问题 尾气污染排行老大,沈阳今报,2003 年 07 月 17
    [15] 国 内 外 汽 车 排 放 法 规 对 比 分 析 , 中 国 发 动 机 网 , 2005.8.8 ,http://www.cnengine.com/article/Article_Show.asp?ArticleID=505
    [16] C. Arcoumanis and K.-P Schindler, Mixture Formation and Combustion in the Dl Diesel Engine, SAE Paper 972681,1997
    [17] Mike Potter and Russ Durrett, High-Efficiency Clean Combustion Design for Compression Ignition Engines, General Motors, August 24, 2006
    [18] 敬章超,EGR进气方式对汽油机性能及其NOX排放影响的试验研究:[硕士论文],天津:天津大学,2003
    [19] 林志强,天然气准均质充量压燃着火(QHCCI)燃烧过程的研究:[博士论文],天津:天津大学,2001,9
    [20] Lucien Koopmans, Ingemar Denbratt. A Four Stroke Camless Engine, Operated in Homogeneous Charge Compression Ignition Mode with Commercial Gasoline. In SAE Paper, 2001-01-3610, 2001
    [21] S. Onishi, S. Hong Jo and K. Shoda et al, Active Thermo-AtmosphereCombustion (ATAC) – A New Combustion Process for Internal Combustion Engines, SAE Paper 790501,1979
    [22] Masaaki Noguchi, Yukiyasu Tanaka and Taro Tanaka ea al, A Study on Gasoline Engine Combustion By Observation of Intermediate Reactive Products During Combustion, SAE Paper 790840,1979
    [23] Paul M. Najt and David E. Foster, Compression-Ignited Homogeneous Charge Combustion, SAE Paper 830264,1983
    [24] R. H. Thring, Homogeneous Charge Compression Ignition (HCCI) Engines, SAE Paper, 892068, 1989
    [25] Rudolf H, Stanglmaier, Homogeneous Charge Compression Ignition (Hcci): Benefits, Compromises, and Future Engine Applications, SAE Paper 1999-01-3682, 1999
    [26] Norimasa Iida, Combustion Analysis of Methanol-Fueled Active Thermo- Atmosphere Combustion (Atac) Engine Using a Spectroscopic Observation, SAE Paper 940684, 1994
    [27] Dr Thomas W Ryan Iii, Allen W Gray Iii, Homogeneous Charge Compression Ignition (HCCI) of Diesel Fuel, SAE Paper 971676, 1997
    [28] Salvador M. Aceves, Daniel Flowers and Joel Martinez-Frias et al, Fuel and Additive Characterization for HCCI Combustion, SAE Paper 2003-01-1814, 2003
    [29] Hisakazu Suzuki, Noriyuki Koike, Hajime Ishii et al, Exhaust Purification of Diesel Engines by Homogeneous Charge with Compression Ignition, Part I:experimental investigation of combustion and exhaust emission behavior under pre-mixed homogeneous charge compression ignition method , SAE paper 970313,1997
    [30] Kazuhisa Inagaki, Takayuki Fuyuki and Kazuaki Nishikawa et al, Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability, SAE Paper, 2006-01-0028, 2006
    [31] Per Risberg, David Johansson and Johan Andrae et al, The Influence of NO on the Combustion Phasing in an HCCI Engine, SAE Paper 2006-01-0416, 2006
    [32] Rui Chen, Nebojsa Milovanovic, A Review of Experimental and Simulation Studies on Controlled Auto-Ignition Combustion, SAE Paper 2001-01-1890, 2001
    [33] Christnesen M. and Johansson B., Homogeneous Charge Compression Ignition with Water Injection, SAE Paper 1999-01-0182, 1999
    [34] Furutani, M., Ohta, Y. and Kono, M., An Ultra-Lean Premixed Compression-Ignition. Engine Concept and its Characteristics, Proceedings of 4th COMODIA, 1998: 173-177
    [35] Akagawa, H., Miyamoto, T. and Harada, A. et al, Approaches to Solve problems of the Premixed Lean Diesel Combstion, SAE Paper 1999-01-0183, 1999
    [36] A. Oakley, H. Zhao and T. Ma, Dilution Effects on the Controlled Auto-Ignition (CAI) Combustion of Hydrocarbon and Alcohol Fuels, SAE Paper 2001-01-3606, 2001
    [37] Thomas W. Ryan and Timothy J. Callahan, Homogeneous Charge Compression Ignition of Diesel Fuel, SAE Paper 961160, 1996
    [38] Thomas W Ryan Iii and Allen W Gray Iii, Homogeneous Charge Compression Ignition (Hcci) of Diesel Fuel, SAE Paper 971676, 1997
    [39] Yoshinaka Takeda and Keiichi Niimura, Characteristics of Diesel Combustion and Emissions With a Multi-Injector System, SAE Paper 952511, 1995
    [40] Akagawa, H., Miyamoto, T. and Harada, A. et al, Approaches to Solve problems of the Premixed Lean Diesel Combstion, SAE Paper 1999-01-0183, 1999
    [41] Yoshinaka Takeda and Nakagome Keiichi, Emission Characteristics of Premixed Lean Diesel Combustion With Extremely Early Staged Fuel Injection, SAE Paper 961163, 1996
    [42] Keiich Nakagome and Keiichi Niimura, Combustion and Emission Characteristics of Premixed Lean Diesel Combustion Engine, SAE Paper 970898, 1997
    [43] Akira Harada, Naoki Shimazaki and Satoru Sasaki et al, The Effects of Mixture Formation on Premixed Lean Diesel Combustion, SAE Paper 980533, 1998
    [44] Yoshiaki Nishijima, Yasuo Asaumi and Yuzo Aoyagi, Premixed Lean Diesel Combustion (Predic) Using Impingement Spray System, SAE Paper 2001-01-1892, 2001
    [45] H. Yanagihara, Yasuo Sato and Junichi Mizuta, A Study of DI diesel combustion under uniform higher-dispersed mixture formation, JSAE Paper 9733675, 1997
    [46] Ryo Hasegawa and Hiromichi Yanagihara, HCCI Combustion in DI Diesel Engine, SAE Paper 2003-01-0745, 2003
    [47] 苏万华,林铁坚,张晓宇等,MULINBUMP-HCCI 复合燃烧放热特征及其对排放和放热率的影响,内燃机学报,2004,22 (3):193~202
    [48] Wanhua Su, Tiejian Lin and Yiqiang Pei, A Compound Technology for Hcci Combustion in a Di Diesel Engine Based on the Multi-Pulse Injection and the Bump Combustion Chamber, SAE Paper 2003-01-0741, 2003
    [49] 林铁坚,苏万华,裴毅强, 基于电控高压共轨燃油系统的多脉冲复合控制燃烧系统,内燃机学报,2002,20 (6):475~480
    [50] 裴毅强,苏万华,林铁坚,一种基于稀扩散燃烧的BUMP燃烧室及其对柴油机碳烟和NOX排放影响的实验研究,内燃机学报,2002,20 (5):381~386
    [51] 裴毅强,苏万华,林铁坚,一种基于稀扩散燃烧概念的 BUMP 燃烧室及其降低柴油机有害排放机理的研究,自然科学进展,2003,13 (5):523~527
    [52] Yoshinori Iwabuchi, Kenji Kawai and Takeshi Shoji et al, Trial of New Concept Diesel Combustion System - Premixed Compression-Ignition Combustion, SAE Paper 1999-01-0185, 1999
    [53] Yasushi Mase, Junichi Kawashima and Masakazu Eguchi et al, NissanS New Multivalve Di Diesel Engine Series, SAE Paper 981039, 1998
    [54] Shuji Kimura, Osamu Aoki and Hiroshi Ogawa et al, New Combustion Concept for Ultra-Clean and High-Efficiency Small Di Diesel Engines, SAE Paper 1999-01-3681, 1999
    [55] Sassan Etemad and Johan P. Wallesten, CFD-Analysis of Cycle Averaged Heat Flux and Engine Cooling in an IC-Engine, SAE Paper 2001-01-0200, 2001
    [56] Hisakazu Suzuki, Rahman M. Montajir and Terunao Kawai et al, Exhaust Emission Behavior of Mixed Fuels Having Different Component Cetane Number and Boiling Point, SAE Paper 2004-01-1868, 2004
    [57] Hisakazu Suzuki, Noriyuki Koike, Hajime Ishii et al, Exhaust Purification of Diesel Engines by Homogeneous Charge with Compression Ignition, Part I:Experimental investigation of combustion and exhaust emission behavior under pre-mixed homogeneous charge compression ignition method, SAE paper 970313,1997
    [58] Matsuo Odaka, Noriyuki Koike and Hajime Ishii et al, Search for Optimizing Control Method of Homogeneous Charge Diesel Combustion, SAE Paper 1999-01-0184, 1999
    [59] Jacques Lavy, Jean-Charles Dabadie and Christian Anqelberqer et al. Innovative Ulra-Low Nox Controlled Auto-Ignition Combustion Process for Gasoline Engines: the 4-Space Project. SAE Paper, 2000-01-1837, 2000
    [60] Aaron Oakley, Hua Zhao and Nicos Ladommatos et al, Experimental Studies on Controlled Auto-Ignition (Cai) Combustion of Gasoline in a 4-Stroke Engine, SAE Paper 2001-01-1030, 2001
    [61] Hua Zhao and Z. Peng, Understanding the Effects of Recycled Burnt Gases on the Controlled Autoignition (Cai) Combustion in Four-Stroke Gasoline Engines, SAE Paper 2001-01-3607, 2001
    [62] Hua zhao, Jian Li, and Tom Ma et al, Performance and Analysis of a 4-Stroke Multi-Cylinder Gasoline Engine with CAI combustion, SAE Paper 2002-21-0420, 2002
    [63] Don, Law and Jeff Allen, On the Mechanism of Controlled Auto Ignition, SAE Paper 2002-01-0421, 2002
    [64] 谢辉,赵华,杨林等,基于可变气门定时策略的 HCCI 汽油机试验研究,内燃机学报, 2005,23 (6):510~517
    [65] P. Wolters, W. Salber and J.Geiger et al, Controlled Auto Ignition Combustion Process with an Electromechanical Valve Train, SAE Paper 2003-01-0032, 2003
    [66] J.Willand, R-G. Nieberding and G. Vent et al, The Knocking Syndrome——Its Cure and Its Potential, SAE Paper 982483, 1998
    [67] George Kontarakis, Nick Collings and Tom Ma, Demonstration of HCCI Using a Single Cylinder Four-stroke SI Engine with Modified Valve Timing, SAE Paper 2000-01-2870, 2000
    [68] 陈韬,拓展汽油 HCCI 运行范围的试验研究:[硕士论文],天津:天津大学,2007
    [69] Hui Xie, shengzhi Hou, Jing Qing et al, Control Strategies for Steady and Transient Operation of a 4-Stroke Gasoline Engine with CAI Combustion Using a 4 –Variable Valve Actuating System(sVVAS), SAE Paper 2006-01-1083, 2006
    [70] Christensen M., Johansson B. and Einewall P., Homogeneous Charge Compression Ignition (HCCI) Using Iso-octane, Ethanol and Natural Gas- A Comparison with Spark Ignition Operation, SAE Paper 972874, 1997
    [71] Magnus Christensen, Anders Hultqvist and Bengt Johansson, Demonstrating the Multi-Fuel Capability of a Homogeneous Charge Compression Ignition Engine With Variable Compression Ratio, SAE Paper 1999-01-3679, 1999
    [72] Salvador M. Aceves, Daniel Flowers and Joel Martinez-Frias et al, Fuel and Additive Characterization for HCCI Combustion, SAE Paper 2003-01-1814, 2003
    [73] Matthew Jason Athins, Experimental Examination of the Effects of Fuel Octane and Diluent on HCCI Combustion:[A thesis for the degree of Master], Edmonton:University of Alberta, 2004
    [74] Thomas W. Ryan III and Andrew C. Matheaus, Fuel Requirements for HCCI Engine Operation, SAE Paper 2003-01-1813, 2003
    [75] Koji Kitano, Ryoji Nishiumi and Yukihiro Tsukasaki et al, Effects of Fuel Properties on Premixed Charge Compression Ignition Combustion in a Direct Injection Diesel Engine, SAE Paper 2003-01-1815, 2003
    [76] James P. Szybist and Bruce G..Bunting, Cetane Number and Engine Speed Effects on Diesel HCCI Performance and Emissions, SAE Paper 2005-01-3723, 2005
    [77] Magnus Sj?berg and John E. Dec, Combined Effects of Fuel-Type and Engine Speed on Intake Temperature Requirements and Completeness of Bulk-Gas Reactions for HCCI Combustion, SAE Paper 2003-01-3173, 2003
    [78] John E. Dec and Magnus Sj?berg, Isolating the Effects of Fuel Chemistry on Combustion Phasing in an HCCI Engine and the Potential of Fuel Stratification for Ignition Control, SAE Paper 2004-01-0557, 2004
    [79] Daisuke Kawano, Hiroyoshi Naito and Hisakazu Suzuki et al, Effects of Fuel Properties on Combustion and Exhaust Emissions of Homogeneous Charge Compression Ignition (HCCI) Engine, SAE Paper 2004-01-1966, 2004
    [80] Lucien Koomans and Elna Str?mberg, The Influence of PRF and Commercial Fuels with High Octane Number on the Auto-ignition Timing of an Engine Operated in HCCI Combustion Mode with Negative Valve Overlap, SAE Paper, 2004-01-1967, 2004
    [81] Thomas W. Ryan III, Timothy J. Callahan and Darius Mehta, HCCI in a Variable Compression Ratio Engine-Effects of Engine Variables, SAE Paper 2004-01-1971, 2004
    [82] Gen Shibata, Koji Oyama and Tomonori Urushihara et al, Correlation of Low Temperature Heat Release with Fuel Composition and HCCI Engine Combusiton, SAE Paper 2005-01-0138, 2005
    [83] Manfred Amann, Thomas W. Ryan III and Naoki Kono, HCCI Fuels Evaluations-Gasoline Boiling Range Fuels, SAE Paper 2005-01-3727, 2005
    [84] M. Furutani, T. Isogai and Y. Ohta, Ignition Characteristics of Gaseous Fuels and Their Difference Elimination for Si and Hcci Gas Engines, SAE Paper 2003-01-1857, 2003
    [85] Toshio Shudo and Takehiro Takahashi, Influence of Reformed Gas Composition on HCCI Combustion of Onboard Methanol-Reformed Gases, SAE Paper 2004-01-1908, 2004
    [86] Zunqing Zheng, Mingfa Yao and Zheng Chen et al, Experimental Study on HCCI Combustion of Dimethyl Ether (DME) / Methanol Dual Fuel, SAE Paper 2004-01-2993, 2004
    [87] Kazuhisa Inagaki, Takayuki Fuyuki and Kazuaki Nishikawa et al, Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability, SAE Paper, 2006-01-0028, 2006
    [88] Gautam Kalghatgi, Per Risberg and Hans-Erik, A Method of Defining Ignition Quality of Fuels in Hcci Engines, SAE Paper 2003-01-1816, 2003
    [89] Ock Taeck Lim, Naofumi Sendoh and Norimasa Lida, Experimental Study on HCCI Combustion Characteristics of n-Heptane and iso-Octane Fuel/Air Mixture by the use of a Rapid Compression Machine, SAE Paper 2004-01-1968, 2004
    [90] Rui Chen, Nebojsa Milovanovic and Jamie Turner et al, The Thermal Effect of Internal Exhaust Gas Recirculation on Controlled Auto Ignition, SAE Paper 2003-01-0751, 2003
    [91] Jan-Ola Olsson, Per Tunestal and J. Ulfvik et al, The Effect of Cooled EGR on Emissions and Performance of a Turbocharged HCCI Engine, SAE Paper 2003-01-0743, 2003
    [92] Tanet Aroonsrisopon, Volker Shm and Philipp Werner et al, An Investigation Into the Effect of Fuel Composition on HCCI Combustion Characteristics, SAE Paper 2002-01-2830, 2002
    [93] Nebojsa Milovanovic, Dave Blundell and Richard Pearson et al, Enlarging the Operationnal Range of a Gasoline HCCI Engine By Controlling the Coolant Temperature, SAE Paper 2005-01-0157, 2005
    [94] Daniel Flowers, Salvador M. Aceves, Joel Martinez-Frias et al, Operation of a Four-Cylinder 1.9L Propane Fueled Homogeneous Charge Compression Ignition Engine: Basic Operating Characteristics and Cylinder-to-Cylinder Effects, SAE Paper 2001-01-1895, 2001
    [95] Randy E. Herold, Rinaldo Augusta and David E. Foster et al, The Effects of Intake Charge Preheating in a Gasoline-Fueled HCCI Engine, SAE Paper 2005-01-3742, 2005
    [96] Gen Shibata and Tomonori Urushihara, The Interaction Between Fuel Chemicals and HCCI Combustion Characteristics Under Heated Intake Air Conditions, SAE Paper 2006-01-0207, 2006
    [97] Magnus Christensen and Bengt Johansson, Supercharged Homogeneous Charge Compression Ignition, SAE Paper 980787, 1998
    [98] Jari Hyv?nen, G?ran Haraldsson and Bengt Johansson, Supercharging HCCI to Extend the Operating Range in a Multi-Cylinder VCR-HCCI Engine, SAE Paper 2003-01-3214, 2003
    [99] 蒋德明,内燃机燃烧与排放学,西安:西安交通大学出版社出版发行,2001:512~516
    [100] Gautam Kalghatgi, Per Risberg and Hans-Erki\aSngstrom, A Method of Defining Ignition Quality of Fuels in HCCI Engine, SAE Paper 2003-01-1816, 3002
    [101] 郑朝蕾,尧命发,正庚烷均质压燃燃烧反应化学动力学数值模拟研究,内燃机学报,2004,22(3):227~234
    [102] 邱先文,降低柴油机有害排放物NOX的废气再循环技术,拖拉机与农用运输车,2001(4):11~13
    [103] 曲明辉,贺宇,姚广涛等,采用废气再循降低柴油机 NOX 排放,小型内燃机,2000,29(2):29~32
    [104] John B.Heywood,《Internal Combustion Engine Fundamentals》,McGraw-Hill Book Company,1988
    [105] Toshio Shudo, HCCI Combustion of Hydrogen, Carbon Monoxide and Dimethyl Ether, SAE Paper 2002-01-0112,2002
    [106] Salvador M. Aceves, Joel Martinez-Frias, Daniel L.Flowers, et al, “A Decoupled Model of Detailed Fluid Mechanics Followed by Detailed ChemicalKinetics for Prediction of Iso-Octane HCCI Combustion”,SAE Paper 2001-01-3612
    [107] 程至远等编,《内燃机排放与净化》,北京:北京理工大学出版社,2000.7
    [108] 李约上等编,《内燃机排放与净化》,大连:大连理工大学出版社,1990.7第一版
    [109] 王贺武,周龙保,蒋德明等,直喷式柴油机燃用二甲基醚排放特性的研究”,内燃机学报,2000,18(1):6~10
    [110] ASTM Standard, Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel, D 2699-07a
    [111] ASTM Standard, Standard Test Method for Motor Octane Number of Spark-Ignition Engine Fuel, D 2700-07a
    [112] Willian R. Leppard, The Chemical Origin of Fuel Octane Sensitivity, SAE Paper 902137, 1990
    [113] 何学良,詹永厚,李疏松,内燃机燃料,北京:中国石化出版社,1999
    [114] Gautam Kalghatgi, Fuel Anti-Knock Quality-Part Ⅱ:Vehicle Studies-How Relevant is Motor Octane Number (MON) in Modern Engines, SAE Paper 2001-01-3585, 2001
    [115] 何学良, 李疏松, 内燃机燃烧学,北京:机械工业出版社, 1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700