用户名: 密码: 验证码:
超音速尖锥/钝锥边界层稳定性、转捩及湍流的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着航空航天技术的发展,超音速、高超音速边界层的转捩与湍流问题越来越受到人们的关注。为了更贴近工程需要,本文以超音速、高超音速锥体边界层为研究对象,用直接数值模拟(DNS)的方法研究了其稳定性、转捩及湍流,并对用BL湍流模式计算锥体湍流边界层进行了研究,主要得到以下结论:
     1.用摄动法对小攻角尖锥边界层的层流基本流进行了简化计算,并通过扰动演化的DNS与线性稳定性理论结果的比较,证实了所用方法的可靠性。
     2.通过对马赫数为6的高超音速零攻角尖锥边界层转捩机理的数值研究,得到与平板情况相似的结论,即平均流剖面稳定性的迅速变化是breakdown过程的内在机理,并且第一模态不稳定波在此过程中起主导作用。
     3.通过超音速钝锥湍流边界层的DNS,发现经过Van Driest变换后的平均速度壁面律与平均流剖面的相似性不受锥体效应的影响;而与平板相比,钝锥湍流边界层内的平均温度较高,压缩性较弱;钝锥湍流边界层内雷诺应力的分布规律,脉动量的相关函数,以及湍动能方程中各项的贡献与平板趋势相同,锥体效应的影响只表现在定量上。
     4.通过BL湍流模式与DNS计算结果的对比,发现二者给出的湍流区壁面摩擦系数基本吻合,但它们给出的热力学量相差较大;BL模式计算的速度经过Van Driest变换后,能很好地满足不可压缩湍流的壁面律,但是平均流剖面在有些地方与DNS结果有一定的差别;另外,BL模式所给出的转捩判定准则可能是针对某一风洞实验提出的,由于风洞的背景湍流度比较大,它不适用于预测高空飞行器的转捩。
     5.分析表明,BL模式不能准确给出壁面处的热力学量的原因是它对湍流普朗特数为常数的假设不正确。本文提出了修正方法,使计算结果有了很大改进。
With the development of the aeronautics and aerospace technology in recent years, the problems of transition and turbulence in supersonic and hypersonic boundary layers attract more and more attention. In order to be closer to real situation in the engineering problems, boundary layers on supersonic and hypersonic cones are selected as prototypes for our research. Direct numerical simulation (DNS) method is used to study the stability, transition and turbulence of the boundary layers, and the BL turbulence model has also been used to compute the turbulent boundary layers. The main conclusions obtained are as follows:
     1. The laminar basic flow of the boundary layer of a sharp cone with small angle of attack is calculated by a simplified perturbation method. Through the comparison of the evolution of disturbances obtained by DNS with that obtained by linear stability theory (LST), the reliability of the method is confirmed.
     2. Through the numerical study and the subsequent analysis of the transition process in the boundary layer of a hypersonic sharp cone with zero angle of attack and oncoming Mach number 6, similar conclusions, in regard with the mechanism of transition, has been found as for the transition in boundary layers on flat plates, i.e., the rapid change of the stability characteristics of the mean flow profile is the inherent mechanism for the breakdown in the transition, and in which the first mode unstable waves play the key role.
     3. Through the DNS of supersonic turbulent boundary layers on a blunt cone, it is found that, the near-wall law of the mean velocity, under Van Driest transformation, and the similarity of the mean profiles are not influenced by the cone effect, while the mean temperature of the turbulent boundary layers is higher and the compressibility effect is weaker than those for flat plates. The distribution of the Reynolds stresses, the correlation of the fluctuations of turbulent quantities and the budget of turbulent kinetic energy in the turbulent boundary layers of a blunt cone are similar, in tendency, with those for boundary layers on flat plates, and the influence of cone effect is only of quantitative nature.
     4. Through the comparison between the results obtained by BL turbulence model and the DNS, it is found that the wall friction coefficient obtained by both methods agree well with each other, while the thermodynamic variables do not. The near wall Van Driest transformed velocity profile agrees well with the near-wall law in incompressible turbulent boundary layers, while for other places, there are certain differences between the mean flow profiles obtained by DNS and BL model. In addition, the method proposed in the BL model for predicting the transition is found to be inapplicable for vehicles flying at high altitude, because its parameters seem to be determined by conventional wind tunnel experiments, for which the background disturbances is relatively high.
     5. By analyzing the result of DNS, it is found that the assumption of a constant turbulent Prandl number in the BL model is the main cause for its incorrect prediction of the thermodynamic variables. Modification is accordingly proposed, and the result is satisfactory.
引文
[1]是勋刚,湍流,天津:天津大学出版社, 1994, 1~41
    [2]周恒,赵耕夫,流动稳定性,北京:国防工业出版社, 2004, 1~212
    [3] Lees L., Lin C. C., Investigation of the stability of the laminar boundary layer in a compressible fluid, NACA Technical Note, 1946, NO.1115
    [4] Lees L., Gold H., Stability of laminar boundary layers and wakes at hypersonic speeds: Part I. stability of laminar wakes, in“Proceedings of International Symposium on Fundamental Phenomenon in Hypersonic Flow”, Cornell Univ Press, 1964, 310~337
    [5] Brown W. B., Exact numerical solutions of the complete linearized equations for the staility of compressible boundary layers. Norair Report, Northrop Aircraft Inc., Hawthorne, CA 1962
    [6] Mack L. M., Stability of the Compressible Laminar Boundary Layer According to a Direct Numerical Solution, in AGARDograph 97, Part I, 1965: 329~362
    [7] Malik, M. R., COSAL-A black-box compressible stability analysis code for transition prediction in three-dimensional boundary layers, NASA CR-165952, 1982
    [8] Malik M. R., Accurate numerical solution on compressible linear stability equations, J. of Applied Mathematics and Physics (ZAMP), 1982, 33(3): 189~201.
    [9] Mack L. M.,Review of linear compressible stability,in“The Stability of Time-Dependent and Spatially Varying Flows”, AGARD Report, 1987, 44: 164~187
    [10] Gasperas, The stability of the compressible boundary layer on a sharp cone at zero angle of attrack, AIAA Pap., 1987, NO. 87-0494
    [11] Balakumar p., Reed H.L., Stability of three-dimensional supersonic boundary layers, Phys. Fluids, 1991, 617~632
    [12] Mack L. M., Stability of axisymmetric boundary layers on sharp cones at hypersonic Mach numbers, AIAA Pap., 1987, NO.87-1413
    [13] Stetson K. F., Thompson E. R., Laminar boundary layer stability experiments on a cone at Mach 8, Part 2: Blunt Cone, AIAA pap., 1984, NO.84-0006
    [14]赵耕夫,超音速、高超音速三维边界层的层流控制,力学学报, 2001, 33(4): 519~523
    [15]赵耕夫,徐立,高速三维边界层的横流不稳定性,力学学报, 1998, 30(5): 521~530
    [16]袁湘江,周恒,赵耕夫,超音速、高超音速球锥绕流的边界层稳定性特点初探,空气动力学学报, 1999, 17(1): 98~104
    [17] Egorov I. V., Fedorov A. V., Soudakov V. G., Direct numerical simulation of unstable disturbances in supersonic boundary layer, AIAA Pap., 2004: 5728~5738
    [18]董明,零攻角尖锥边界层中二维扰动演化特征的数值研究:[硕士学位论文],天津:天津大学, 2005
    [19] Klebanoff P. S., Tidstrom K. D., Sargent L. M., Three-dimensional nature of boundary layer instability, J. Fluid Mech., 1962, 12(1): 1~34
    [20] Saric W. S., Kozlov V. V., Levchenko V. Y., Force and unforced subharmonic resonance in boundary layer transition, AIAA Pap., 1984, NO.84-0007
    [21] Craik A. D., Nonlinear resonant instability in boundary layers, J. Fluid Mech., 1971, 50: 393~413
    [22] Herbert Th., Secondary instability of plane channel flow to subharmonic three-dimensional disturbances, Physics of Fluids, 1983, 26: 871~874
    [23] Herbert Th., Subharmonic three-dimensional disturbances in unstable plane Poiseuille flows, AIAA Pap., 1983, NO. 83-1759
    [24] Herbert Th., Analysis of subharmonic route to transition in boundary layer, AIAA Pap., 1984, NO.84-0009
    [25] Kachanov Y. S., On the resonant nature of the breakdown of a laminar boundary layer, J. Fluid Mech., 1987, 184: 43~74
    [26] Dryganets S. V., Kachanov Y. S., Levehenko V. Y., et al., Resonant flow randomization in K-Regime of boundary layer transition, J. Appl. Mech. Phys., 1991, 31(2): 234~249
    [27] Herbert Th., Secondary instability of boundary layers, Annu. Rev. Fluid Mech., 1988, 20: 487~526
    [28] Erlebacher G., Hussaini M. Y., Numerical experiments in supersonic boundary layer, Int. J. Nonlinear Mechanics, 1995, 30(5): 661~671
    [29] Gengfu Zhao, Secondary subharmonic instability of compressible boundary layer on flat plate, Journal of Tianjin University, 2003, 36(3): 276~280
    [30]董亚妮,周恒,二维超音速边界层中三波共振和二次失稳机制的数值模拟研究,应用数学和力学, 2006, 27(2):127~133
    [31] Stetson K. F., Thompson E. R., Donaldson J. C., et al., Laminar boundary layer stability experiments on a cone at Mach 8, part I: Sharp cone. AIAA Pap., 1983, 83-1761
    [32] Bountin D. A., Sidorenko A. A., Development of natural disturbances in a hypersonic boundary layer on a sharp cone, Jounal of Applied Mechanics and Technical Physics, 2001, 42(1): 57~62
    [33] Bashkin V. A., Egorov I. V., Theoretical and experimental investigation of supersonic flow past a slender sharp circular cone at incidence, Fluid Dynamics, 2003, 38(1): 105~114
    [34] Fedorov A. Maslov A., Stabilization of hypersonic boundary layers by porous coatings, AIAA J., 2001, 39(4): 605~610
    [35] Fedorov A. Shuplyuk A. Maslov A., Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating, J. Fluid Mech., 2003, 479: 99~124
    [36] Kimmel R. L., Dementriades A., Space-time correlation measurements in hypersonic transitional boundary layer, AIAA J., 1996, 34(2): 2484~2489.
    [37] Steven P. S., Hypersonic laminar instability on round cones near zero angle of attack, AIAA Pap., 2001, 2001-0206
    [38] Dicristina V., Three dimensional laminar boundary layer transition on a sharp 8-deg. Cone at Mach 10, AIAA J., 1970, 8(5): 852~856
    [39] Stetson K. F., Hypersonic boundary layer transition experiments, AFSC Wright-patterson Air Force Base, AFWAL-TR-80-3062, 1980
    [40] Holden M. S., Experimental studies of the effects of asymmetric transition on the aerothermal characteristics of hypersonic blunted slender cones, AIAA Pap., 1985, 85-0325
    [41] Doggett G. P., Effect of angle of attack on hypersonic boundary layer stability, AIAA J., 1997, 35(3): 464~470.
    [42] Zhong X. L., Leading-edge receptivity to free-stream disturbance waves for hypersonic flow over a parabola, J. Fluid Mech., 2001, 441: 315~367
    [43] Murdock J. W., A numerical study of nonlinear effects on boundary-layer stability, AIAA Pap., 1986, 86-0434
    [44] Fasel H. F., Rist U., Konzelmann U., Numerical investigation of the three dimensional development in boundary-layer transition, AIAA J., 1990, 28: 29~37
    [45] Biringen S., Laurien E., Nonlinear structures of transition in wall-bounded flows, Appl. Numer. Math., 1991, 7(1): 129~150
    [46] Sandham N. D., Kleiser L., The late stages of transition to turbulence in channel flow, J. Fluid Mech., 1992, 245: 319~348
    [47] Normand X, Lesieur M., Direct and large-eddy simulations of transition in the compressible boundary layer, Theoret. Comput. Fluid Dyn., 1992, 3: 231~252
    [48] Rai M. M., Moin P., Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer, J. Comput. Phys., 1993, 109: 169~192
    [49] Zhong X., High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition, J. Comput. Phys., 1998,144: 662~709
    [50] Borodulin V. L. Gaponenko V. R., Kachanov Y. S., et al., Late-stage transitional boundary layer structures direct numerical simulation and experiment, Theoret. Comput. Fluid Dynamics, 2002, 15: 317~337
    [51] Rempfer D., Low-dimensional modeling and numerical simulation of transition in simple sharp flows, Annu. Rev. Fluid Mech., 2003, 35: 229~265
    [52] Kachanov Y. S., Physical mechanisms of laminar-boundary-layer transition, Ann. Rev. Fluid Mech., 1994, 20: 411~482
    [53]王新军,罗纪生,周恒,平面槽道流中层流-湍流转捩的“breakdown”过程的内在机理,中国科学G辑, 2005, 35(1): 71~78
    [54]黄章峰,曹伟,周恒,超音速平板边界层转捩中层流突变为湍流的机理——时间模式,中国科学G辑, 2005, 35(5): 537~547
    [55]曹伟,黄章峰,周恒,超音速平板边界层转捩中层流突变为湍流的机理,应用数学和力学, 2006, 27(4): 379~386
    [56] Morkovin M. V., Critical evaluation of transition from laminar to turbulent shear layer with emphasis of hypersonically traveling bodies, AFFDL Tech. Rep., 1968, 68~149
    [57] Morkovin M. V., Reshotko E., Dialogue on progress and issues in stability and transition research, Laminar-Turbulent Transition, IUTAM Symposium, Toulouse, D. Arnal and R. Michel, eds., Springer, Berlin, 1990, 1~29
    [58] Corrsin S., Investigation of flow in an axially symmetric heated jet of air, NACA Adv. Conf. Rep., 1943, NO.3123
    [59] Corrsin S., Kistler A. L., The free stream boundaryes of turbulent flows, NACA Tech Notes, 1954, NO.3133
    [60] Klebanoff P. S., Characteristics of turbulence in a boundary layer with zero pressure gradient, NACA Tech. Note,1954, NO.1247
    [61] Townsend A. A., The Structure of turbulent shear flow, Combridge Press, 1956
    [62] Kline S. J., Reynolds W. C., Schraub F. H.,et al., The structure of turbulent boundary layer, J. Fluid Mech., 1967, 30: 741~774
    [63] Corino E. R., Brodkey R. S., A visual investigation of the wall region in turbulent flow, J. Fluid Mech., 1969, 37: 1~30
    [64] Kim H. T., Kline S. J., Reynolds W. C., The production of turbulence near a smooth wall in a turbulent boundary layer, J. Fluid Mech., 1971, 50: 133~160
    [65] Smith C. R., Metzler S. P., The characteristics of low speed streaks in the near wall region of a turbulent boundary layer, J. Fluid Mech., 1983, 129: 27~54
    [66] Taylor G. I., Statistical theory of turbulence, Proc. Roy. Soc. London Series A, 1935, 151,: 421~478
    [67] Karman T. V., Howarth L., On the statistical theory of isotropic turbulence, Proc. Rey. Soc. London Series A, 1938, 164: 192~215
    [68] Richardson L. F., Weather prediction by numerical process, Cambridge University Press, 1922
    [69] Kolmogorov A. N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds number, Dokl. Akad. Nauk SSSR, 1941, 30: 9~13
    [70] Kolmogorov A. N., A refinement of previous hypotheses concerning the local structure of turbulence in incompressible viscous fluid for very large Reynolds number, J. Fluid Mech., 1962, 13: 82~85
    [71] Benzi R., On the scaling of 3-dimensional homogeneous and isotropic turbulence , Physica D, 1994, 80(4): 385~398
    [72] She Z. S., Intermittent vortex structures in homogeneous turbulence, Nature, 1990, 344: 226~228
    [73] Fernholz H. H., Finley P. J., A further compilation of compressible turbulent boundary layer data with a survey of turbulence data, AGAR-Dograph-AG-263, 1981
    [74] Gaviglio J., Reynolds analogies and experimental study of heat transfer in the supersonic boundary layer, Int. J. Heat Mass Transfer, 1987, 30: 911~926
    [75] Cogne S., Forkey J., Miles R. B.,et al., The evolution of large scale structures in a supersonic turbulent boundary layer, Proc. of the symp. on transitional and turbulent compressible flows, ASME Fluids Engrg. Div, 1993
    [76] Fernand E. M., Smits A. J., A supersonic turbulent boundary layer in an adverse pressure gradient, J. Fluid Mech., 1990, 211: 285~307
    [77] Donovan J. F., Spina E. F., Smits A. J., The structure of a supersonic turbulent boundary layer subjected to concave surface curvature, J. Fluid Mech., 1994, 259: 1~24
    [78] Orszag S. A., Patterson G. S., Numerical simulation of three dimensional homogeneous isotropic turbulence, Phys. Rev. Lett., 1972, 28: 76~79
    [79] Riley J. J., Metcalfe R. W., Direct numerical simulation of a perturbed turbulent mixing layer, AIAA Pap., 1980, 80-0274
    [80] Moin P., Kim J., Numerical investigation of turbulent channel flow, J. Fluid Mech, 1982, 118: 341~377
    [81] Kim J., Moin P., Moser R. D., Turbulence statistics in fully-developed channel flow at low Reynolds number, J. Fluid Mech., 1987, 177: 133~166
    [82] Moser R. D., Moin P., The effects of curvature in wall bounded turbulent flows, J. Fluid Mech., 1987, 175: 479~510
    [83] Feiereisen W. J., Reynolds W. C., Ferziger J. H., Numerical simulation of a compressible homogeneous turbulent shear flow, Rep. TF-13, Thermosci. Div., Dept. Mech. Eng., Stanford Univ., Calif, 1981
    [84] Coleman G. N., Kim J., Moser R. D.,A numerical study of turbulent supersonic isothermal wall channel flow, J. Fluid Mech., 1995, 305: 159~183
    [85] Rai M. M., Gatski T. B., Erlebacher G., Direct simulation of spatially evolving compressible turbulent boundary layers, AIAA Pap., 1995, 95-0583
    [86] Perot B., Moin P., Shear free turbulent boundary layers, Part 1: Physical insights into near-wall turbulence, J. Fluid Mech., 1995, 295: 199~227
    [87] Perot B., Moin P., Shear free turbulent boundary layers, Part 2: New concepts for Reynolds stress transport equations modeling of inhomogeneous flows, J. Fluid Mech.,1995, 295: 229~245
    [88] Spina E. F., Smits A. J., Robinson S. K., The physics of supersonic turbulent boundary layer, Annu. Rev. Fluid Mech., 1994, 26: 287~319
    [89] Lele S. K., Compressibility effects on turbulence, Annu. Rev. Fluid Mech., 1994, 26: 211~254
    [90] Guarini S. E., Moser R. D., Shariff K., et al., Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5, J. Fluid Mech., 2000, 414: 1~33
    [91] Maeder T., Adams N. A., Kleiser L., Direct simulation of turbulent supersonic boundary layers by an extended temporal approach, J. Fluid Mech., 2001, 429: 187~216
    [92] Gatski T. B., Erlebacher G., Numerical simulation of a spatially evolving supersonic turbulent boundary layer, NASA Tech. Memo., 2002, 2002-211934
    [93] Pirozzoli S., Grasso F. L., Gatski T. B., Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25, Physics of Fluid, 2004, 16(3): 530~545
    [94] Gao H., Fu D. X., Ma Y. W., et al., Direct numerical simulation of supersonic turbulent boundary layer flow, Chin. Phys. Lett., 2005, 22(7): 1709~1712
    [95] Li X. L., Fu D. X., Ma Y. W., Direct numerical simulation of a spatially evolving supersonic turbulent boundary layer at Ma=6, Chin. Phys. Lett., 2006, 23(6): 1519~1522
    [96]黄章峰,周恒,罗纪生,超音速平板边界层湍流的直接数值模拟及分析,中国科学G辑, 2006, 36(1): 46~58
    [97]李新亮,傅德薰,马延文,可压缩钝楔边界层转捩到湍流的直接数值模拟,中国科学G辑, 2004, 34(4): 466~480
    [98] Reynolds O., On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Phil. Trans. Roy. Soc. London, 1894, 186: 123~161
    [99] Prandlt L., Bericht uber untersuchungen zur ausgebildeten turbulenz, Z. Angew. Math. Mech., 1925: 136~139
    [100] Kolmogorov A.V., The equations of turbulent motion in an incompressible fluid, Izvestia Acad. Sci. USSR Phys., 1942: 56~58
    [101] Taylor G. I., Note on the distribution of turbulent velocities in a fluid near a solid wall, Proc.Roy. Soc. London Series A, 1932, 135: 678~684
    [102] Karman T. Von, Mechanische ahnlichkeit und turbulenz, Nachr. Ges. Wiss. Gottingen Math.- phys.kl., 1930: 58~76
    [103] Baldwin B. S., Lomax H., Thin layer approximation and algebraic model for separated turbulent flows, AIAA Pap., 1978, 78-257.
    [104] Baldwin B. S., Barth T. J., A one-equation turbulence transport model for high Reynolds number wall bounded flows, AIAA Pap., 1991, 91-0610
    [105] Kline S.J. et al., Proceedings of AFOSR-HTTM-Stanford conference on complex turbulent flows, Stanford University Press, 1982
    [106]童秉纲,气体动力学,北京:高等教育出版社, 1990: 140~150
    [107] Poinsot T. J., Lele S. K., Boundary conditions for direct simulations of compressible viscous flows, J. of Comp. Phys., 1992, 101:104~129
    [108]张涵信,无波动、无自由参数、耗散的隐式差分格式,应用数学和力学, 1991, 12(1): 97~100
    [109]苏彩虹,周恒,嵌边法出流条件在可压缩流直接数值模拟中的应用,空气动力学学报, 2006, 24(3): 289~294
    [110] Tang Hongtao, Luo Jisheng, Zhou Heng, Mechanism of breakdown in laminar-turbulent transition of incompressible boundary layer on a flat plate, Journal of Tianjin University, 2007, 13(2): 79~87
    [111]周恒,熊忠民,湍流边界层近壁区相干结构起因的研究,中国科学A辑, 1994, 24(9): 942~948
    [112]周恒,陆昌根,罗纪生,湍流边界层近壁区单个相干结构的模拟,中国科学A辑, 1999, 29(4): 366~372
    [113]张东明,罗纪生,周恒,湍流边界层外区扰动激发近壁区相干结构的一种机制,应用数学和力学, 2005, 26(4): 379~385
    [114] White F.M., Viscous Fluid Flow, McGraw-Hill, 1974
    [115] Spalart P.R., Direct simulation of a turbulent boundary layer up to Reθ=1410, J. Fluid Mech., 1988, 187:61~98
    [116] Morkovin M. V., Effects of compressibility on turbulent flows, In Mecanique de la turbulent CNRS, 1962: 367~380

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700