用户名: 密码: 验证码:
三峡工程两坝联合通航调度算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡—葛洲坝联合通航调度系统是长江三峡河段上特有的一种内河航运调度系统,三峡工程的修建大大改善了长江中上游航道的通航条件,但不可否认的是,随着长江中上游航运的日益繁忙,三峡大坝和葛洲坝必将成为这一水域的通航瓶颈,“十一五”期间,交通部计划投资一百五十亿元人民币实施的长江黄金水道建设中,重点推进的六大工程中就包括三峡过坝运输扩能(其他五项工程分别是航道治理、港口建设、船型标准化、水运保障及干支联动)。由于三峡大坝和下游的葛洲坝相距不到40公里(大约为普通船只2-4小时左右的航程),两者构成了一个有机的整体,因此要充分发挥该水域的航运能力就必须对两座大坝的通航设施(包括三峡大坝的双线五级船闸和目前尚未投入使用的升船机,以及葛洲坝的三线单级船闸)和所有过坝船只实行统一的通航调度管理,针对船舶过坝的联合通航调度是这一管理模式中的主要环节,而设计稳定高效的调度算法是实现联合通航调度稳定高效的关键。
     然而由于三峡工程的独特性,这一联合通航调度问题在理论和方法上都缺乏必要的研究,针对这一现状本文首先通过借鉴受到加工车间调度问题的研究成果,提出了联合通航调度问题的非线性混合整数规划模型,这一模型主要基于联合通航调度问题与柔性制造调度问题的相似性,从柔性制造调度问题的混合整数规划模型演化而来,同时结合二维packing模型描述了船舶在闸室中停泊位置的优化编排问题,该模型是一种强NP-hard复杂度的组合优化问题,因此对于大规模的航运调度来说,可行时间内的精确优化算法是不存在的。
     静态环境中的优化能力是对调度算法的基本要求,为了在可行的计算时间内得到稳定有效的优化性能,本文提出了一种混合优化算法将针对船舶过坝时间表的优化计算转化为针对船闸闸次时间表的优化计算。闸次时间表优化模型也是一种混合整数规划模型,我们提出的混合优化算法是一种具有启发式变换策略的随机局域搜索算法和模拟退火算法的合成,其中随机局域搜索算法针对整数型优化变量,而模拟退火算法针对实数型优化变量,基于实际通航数据的测算表明该算法优化性能稳定,并且计算速度和优化效果能够满足实际应用的需要。
     与上述针对的是全局静态调度问题的混合优化算法相比,更具有实用价值的是复杂环境中的动态调度算法。在加工制造领域,滚动时域方法(Rolling Horizon Procedure, RHP)在Job Shop问题的单机以及并行多机系统动态调度中取得了非常好的效果,本文借鉴这一思路,设计了基于闸次时间表优化的联合通航调度滚动时域算法,在滚动时段内采用具有启发式剪枝策略的分枝定界算法搜索最优解。静态调度模型下的测试结果表明该算法的全局优化能力和计算速度均优于全局混合优化算法。而在实际的动态调度环境中,由于系统参数和船舶航行的随机性,滚动时段内的短期计划往往只有部分能够准确执行,而当实际环境与预测值相差过大时就需要进行调度调整或者重调度,与Job Shop中的单机和并行多机系统不同的是,联合通航调度系统是一种双服务台(大坝)的串联结构,各服务台面临的输入输出环境是不同的,往往并不需要同时进行调度调整或者重调度,因此我们设计了一种异步滚动时域调度策略以提高滚动时域方法的灵活性并降低重调度的计算量。
     最后本文介绍了联合通航调度算法在实际的航运管理系统中的应用,现阶段调度算法主要用于长时段内的调度计划编制问题,从更大的时间跨度来看,这也是一种滚动时域调度,然而由于时域长度过大(通常为24小时),该问题以及具有了全局静态优化的性质,同时在实际系统中需要考虑的优化目标更加复杂,我们采取了利用较短时段内的滚动时域算法得到调度计划初值,然后运用全局混合优化算法进一步改进调度计划的方法。目前这一算法已经实际应用于长江三峡通航管理局的“三峡—葛洲坝水利枢纽通航调度系统”中,并取得了较好的效果,得到了调度专家们的一致认可。
The navigation co-scheduling system of the Three Gorges Dam and the Gezhouba Dam is a particular navigation scheduling system on the Three Gorges reach of the Yangtze River. The traffic on the middle and upper reaches of the Yangtze River has became busy more and more when the navigation condition has been improved by The Three Gorges Project remarkably. So the enhancement of transportation capacity of the Three Gorges Dam has been included in the six key projects on constructing the golden-waterway of the Yangtze River, which are proposed to get 15 billion RMB investement from the Ministry of Communications. But because the distance between the Three Gorges Dam and the downstream Gezhouba Dam is less than 40km, it’s necessary to make collaborative scheduling for all locks, including two five-stair locks in the Three Gorges Dam and three single-stair locks in the Gezhouba Dam, and passage ships of both of the two dams to improve the navigation capacity. This collaborative scheduling is called navigation co-scheduling and the feasible and effective algorithms for it is the main objective of this thesis.
     Because of the uniqueness of the Three Gorges Project, the navigation co-scheduling of the two dams is lack of research both theoretically and methodologically. First of all, a mixed-integer nonlinear program (MINLP) model is proposed to describe the problem, which is evolved from the mixed-integer model of the job shop problem based on the similarity of these two scheduling problem by combining a 2D packing model for the berth problem in lock chamber. It’s a strong NP-hard combinational optimization model, so there isn’t accurate algorithm with reasonable computation for the huge scale navigation co-scheduling.
     Thus a hybrid approximate optimization algorithm is designed for the static co-scheduling, which converts the optimization on the timetable of ships to the optimization on the timetable of locks. The optimization model on the timetable of locks is also a mixed-integer program model but has less variables and simpler feasible domain than the above MINLP model. Our algorithm is a hybrid of local search and simulated annealing with heuristic transform strategy, where the local search deals with the integer variables and the simulated annealing deals with the real variables. The result of test under real navigation data shows that the algorithm has good and feasible effect and reasonable computation.
     Comparing with the static co-scheduling algorithm, the dynamic co-scheduling algorithm is thought to be more practical. Because the Rolling Horizon Procedure (RHP) has been proved to have better global optimization capacity than traditional dispatch-rule based algorithms on the dynamic job shop scheduling in the single machine or parallel machines category, we attempt to make use of RHP on the dynamic navigation co-scheduling. Our RHP method is still based on the lock timetable model and use a kind of approximate branch and bound algorithm to deal with the optimization within each rolling horizon. The tests on static co-scheduling show that the RHP method has better global optimization capacity than above hybrid algorithm. On dynamic co-scheduling because of the random of navigation and system status the scheduling in a rolling horizon is usually carried out partly and re-scheduled when the deviation of prediction is too remarkable from the real environment. In the single machine or parallel machines category of job shop scheduling, the re-scheduling can occur in all machines synchronously since there is only one service station. But in the navigation co-scheduling, there are multi service stations within different input and output environment, so we designed an asynchronous policy to improve the flexibility and decrease the computation when re-scheduling.
     At the end of the thesis the real navigation management system involving the navigation co-scheduling sub-system and navigation information management sub-system is introduced. In the navigation co-scheduling sub-system, the optimization algorithm is used obtaining the scheduling plan within a long period. The long period scheduling have both characteristics of RHP and global static scheduling but with multi optimization objectives. As the RHP method can only deal with the problems whose objectives can be separated by the scheduling unit, we combine the RHP and hybrid algorithm for the long period multi objectives optimal co-scheduling. At present the combinational algorithm has been put into use of the real system and obtained comparatively good effect which is recognized by the navigation scheduling experts.
引文
[1]荣天富,汪厚琏,谭德绥.导流明渠参与三峡工程施工通航的决策与作用长江科学院院报, 2002, 19(5): 3-6.
    [2]舒荣龙,杜宗伟,蔡汝哲.三峡明渠汛期通航技术研究.重庆交通学院学报, 1999, 18(2): 136-144.
    [3]夏凤鸣.高洪水位期船舶通过三峡明渠的理论与实践.交通科技, 1999, 4: 22-24, 26.
    [4]薛林桥,刘念.三峡工程二期施工期通航设施通过能力的系统分析与研究.系统工程理论与实践, 1997, 4: 126-131.
    [5]余绍明,华克俭,熊宇.船舶过坝优化调度辅助决策系统研究.交通与计算机, 1997, 15(5): 18-22.
    [6]杜经农,陈淑楣.三峡工程两坝联合调度辅助决策系统的研究与实施.交通与计算机, 2002, 20(5): 40-44.
    [7]杜经农,余绍明.三峡工程船舶智能调度系统的动态规划建模与算法.计算机与数字工程, 2003, 31(3): 47-50.
    [8]余绍明,曹雄.层次分析法在船舶坝优化调度决策中的应用.交通与计算机, 1997, 15(5): 59-61.
    [9]高雄.三峡工程二期两坝船舶统一调度的初期实践.中国三峡建设, 2000, 7: 1-4.
    [10]宋维邦.三峡双线五级船闸通过能力分析.中国三峡建设, 2003, 9: 44-45.
    [11]高雄.三峡船闸试通航半年简析.水运工程, 2004, 5: 64-68.
    [12]王小平,曾亮,肖恒辉等.基于J2EE的三峡-葛洲坝水利枢纽通航调度系统的设计与开发.交通与计算机, 2006, 24(5): 82-84.
    [13]王小平,齐欢,肖恒辉等.基于串联排队网络的三峡-葛洲坝水利枢纽联合调度模型.计算机技术与发展, 2006(12): 19-21.
    [14]卢方勇,齐欢,曹杰.永久船闸运行闸室编排调度计算机应用与研究.计算机应用研究, 2000, 6: 65-67.
    [15]赖炜,齐欢.三峡船闸运行调度中的多属性决策问题.控制与决策, 2002, 17(2): 163-166.
    [16]刘云峰,齐欢.二维优化编排启发算法及其在三峡永久船闸调度决策系统中的应用.计算机与现代化, 2002(1): 1-3.
    [17]刘云峰,齐欢. DFS算法在三峡永久船闸优化编排中的应用.计算机工程, 2002, 28(8): 224-226.
    [18]孙波,齐欢,张晓盼,等.三峡-葛洲坝联合调度系统闸室编排快速算法.计算机技术与发展, 2006, 12: 19-21.
    [19] Andre de Palma, Robin Lindsey. Optimal timetable for public transportation. Transportation Research Part B, 2001, 35: 789-813.
    [20] Tijs Huisman, Richard J. Boucherie, Nico M. van Dijk. A solvable queueing network model for railway networks and its validation and applications for the Netherlands. European Journal of Operational Research, 2002, 142: 30-51.
    [21] Maurizio Bielli, Massimiliano Caramia, Pasquale Carotenuto. Genetic algorithms in bus network optimization. Transportation Research Part C, 2002, 10: 19-34.
    [22]任传祥,张海,范跃祖.混合遗传-模拟退火算法在公交智能调度中的应用.系统仿真学报, 2005, 17(9): 2075-2081.
    [23] Tang-Hsien Chang, Guey-Yin Sun. Modeling and optimization of an oversaturated signalized network. Transportation Research Part B, 2004, 38: 687-707.
    [24] Halim Ceylan, Michael G. H. Bell. Genetic algorithm solution for the stochastic equilibrium transportation networks under congestion. Transportation Research Part B, 2005, 39: 169-185.
    [25]原清海,严隽琪. FMS调度研究的现状与发展.上海交通大学学报, 1998, 5: 124-127.
    [26]王冰.滚动时域调度方法及其性能分析研究(博士论文).上海交通大学,控制理论与控制工程专业, 2005.
    [27]舒海生.柔性制造系统工件流和刀具流动态调度的研究(博士论文).哈尔滨工程大学,机械设计及理论专业, 2004.
    [28] Ulrich A. W. Tetzlaff, Erwin Pesch. Optimal Workload Allocation Between a Job Shop and an FMS. IEEE Transactions on Robotics and Automation. 1999, 15(1): 20-32.
    [29]周炳海,施海峰,蔡建国. FMS计划中零件分批核机床负荷分配集成算法.组合机床与自动化加工技术. 2001, 11: 1-3.
    [30]刘飞,杨舟,王时龙. CIMS集成制造自动化.北京:机械工业出版社, 1997.
    [31] J. Y. Liu, B.L. MacCarthy. A Global MILP Model for FMS Scheduling. European Journal of Operational Research, 1997, 100: 441-453.
    [32]王硕苹,陈奇,俞瑞钊. Job-shop调度问题的一种遗传算法表示方法.计算机应用研究, 2004, 4: 60-62.
    [33] George A. Rovithakis, Vassilis I. Gaganis, Stelios E. Perrakis, et al. Dynamic Neural Networks for Real Time Adaptive Control of FMS. Proceedings of the 36th Conference on Decision & Control, 1997: 2187-2192.
    [34] George A. Rovithakis, Vassilis I. Gaganis, Stelios E. Perrakis, et al. Real-time control of manufacturing cell using dynamic neural networks. Automatica, 1999, 35: 139-149.
    [35]李响,陈小平.一种动态不确定性环境中的持续规划系统.计算机学报, 2005,28 (7): 1163-1170.
    [36] George Chryssolouris, Velusamy Subramaniam. Dynamic scheduling of manufacturing job shops using genetic algorithms . Journal of Intelligent Manufacturing, 2001, 12(3): 281-293.
    [37] S.M. Johnson. Optimal two-and three-stage production schedules with setup times included. Naval. Res. Logistics Q, 1954, 1: 61-68.
    [38] M. Held, R. M. Karp. A dynamic programming approach to sequencing problem. J.Soc. Indust. Appl. Math., 1962, 10 : 196-210.
    [39] J. Carlier, E. Pinson. An algorithm for solving the job-shop problem. Management Science, 1989, 35(2): 164-176.
    [40] H. Belouadah, M. E. Posner, C. N. Potts. Scheduling with release dates on a single machine to minimize total weighted completion time. Discrete Applied Mathematics, 1992, 36: 213-231.
    [41] A. Meral, K. Omer. On the minimization of total weighted flow time with identical and uniform parallel machines. European Journal of Operational Research, 1999, 113: 91-100.
    [42] J. Balasubramanian, I. E. Grossmann. A novel branch and bound algorithm for scheduling flowshop plants with uncertain processing times. Computers and Chemical Engineering, 2002, 26: 41-57.
    [43] A. S. Jain, S. Meeran. Deterministic Job Shop scheduling: past, present and future. European Journal of Operational Research, 1999, 113: 390-434.
    [44] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, et al. Sequencing and scheduling: algorithms and complexity. In: Handbook in Operations Research and Management Science 4: Logistics of Production and Inventory, 1993.
    [45] J. Adams, E. Balas, D. Zawack. The shifting bottleneck procedure for job shop scheduling. Management Science, 1989, 34: 391-401.
    [46] C. Y. Low, T. H. Wu. Mathematical Modelling and Heuristics Approaches to Operation Scheduling Problems in an FMS Environment. International Journal of Product Research, 2001, 39: 689-708.
    [47] C. Y. Low, Y. YIP, T. H. Wu. Modelling and Heuristics of FMS Scheduling with Multiple Objectives. Computers & Operations Research, 2006, 33: 674-694.
    [48]田澎,杨自厚,张嗣瀛.同顺序Flow Shop排序问题的模拟退火求解.信息与控制. 1994, 23(3): 133-139.
    [49] Hisao O., Shinta M., Hideo T.. Modified simulated annealing algorithms for theflow shop sequencing problem. European Journal of Operation Research. 1995, 81: 388-398.
    [50] Danial A. Finke, Mark T. Traband. Shop Scheduling Using Tabu Search and Simulation. Proceedings of the 2002 Winter Simulation Conference: 1013-1017.
    [51]李霄峰,邵惠鹤,仁德祥.求解混合Flow Shop调度问题的简化禁忌搜索方案.上海交通大学学报. 2003, 37(4): 234-238.
    [52]潘全科,王文宏,朱剑英.一类解决Job Shop问题的改进遗传算法.中国机械工程, 2006, 17(8): 866-869.
    [53] Waiman Cheung, Hong Zhou. Using Genetic Algorithms and Heuristics for Job Shop Scheduling with Sequence-Dependent Setup Times. Annals of Operations Research, 2001, 107(1-4): 65-81.
    [54] Sanja Petrovic, Carole Fayad. A Genetic Algorithm for Job Shop Scheduling with Load Balancing. LNAI 3809, 2005: 339-348.
    [55]黄孔亮,雍正正.一种求解作业车间调度问题的协同进化算法.深圳大学学报(理工版), 2004, 21(3): 272-275.
    [56] C. Oguz, Yu-Fai Fung, M. Fikret Ercan, et al. Parallel Genetic Algorithm for a Flow-Shop Problem with Multiprocessor Tasks. Lecture Notes in Computer Science, 2003: 548-559.
    [57]李艳军,吴铁军.求解混杂生产调度问题的嵌套混合蚁群算法.自动化学报, 2003, 29(1): 95-101.
    [58]刘志雄.调度问题中的粒子群优化方法及其应用研究(博士论文).武汉理工大学,机械设机及理论专业, 2005.
    [59]高亮,高海兵,周驰.基于粒子群优化的开放式车间调度.机械工程学报, 2006, 42(2): 129-134.
    [60]彭传勇,高亮,邵新宇等.求解作业车间调度问题的广义粒子群优化算法.计算机集成制造系统, 2006, 12(6): 911-917,923.
    [61]梁旭,黄明,常征.求解车间调度问题的一种新遗传退火混合策略.计算机集成制造系统, 2005, 11(6): 851-854.
    [62] D. N. Zhou, V. Cherkassky, T. R. Baldwin, et al. A neural network approach to job-shop scheduling. IEEE Transactions on Neural Networks, 1991, 2(1): 175-179.
    [63] A. H. Song, J. T. Ootsuki, W. K. Yoo, et al. FMS's scheduling by colored petri net model and Hopfield neural network algorithm. Proceedings of The 34th SICE Annual Conference, 1995: 1285-1290.
    [64] P. Luh, X. Zhao, Y. Wang. Lagrangian relaxation neural network for job shop scheduling [A]. Proceeding of the IEEE int. Conf. on Robotics and Automation [C], 1998: 1799-1804.
    [65] Joseph D. Dillon, Mark J. O’Malley. A Lagrangian augmented Hopfield nerwork for mixed integer non-linear programming problems. Neurocomputing, 2002, 42: 323-330.
    [66] Xiangtong Qi, Fengsheng Tu. Earliness and tardiness scheduling problems on a batch processor. Discrete Applied Mathematics, 1999, 98: 131-145.
    [67] C. S. Sung, J. I. Min. Scheduling in a two-machine flowshop with batch processing machine(s) for earliness/tardiness measure under a common due date. European Journal of Operational Research, 2001, 131: 95-106.
    [68] Jose A. Ventura, Daecheol Kim. Parallel machine scheduling with earliness-tardiness penalties and additional resource constraints. Computers & Operations Research, 2003, 30: 1945-1958.
    [69] Cheng-shuo Wang, Reha Uzsoy. A genetic algorithm to minimize maximum lateness on a batch processing machine. Computers & Operations Research, 2002, 29: 1621-1640.
    [70] Meral Azizoglu, Scott Webster. Scheduling a batch processing machine with incompatible job families. Computer & Industrial Engineering, 2001, 39: 325-335.
    [71] Imelda C. Perez, John W. Fowler, W. Matthew Carlyle. Minimizing total weighted tardiness on a single batch process machine with incompatible job families.Computers & Operations Research, 2005, 32: 327-341.
    [72] Panwalker S. S., Iskander Wafik. A survey of scheduling rules. Operation Research, 1977, 25(1): 45-61.
    [73] Montazeri M. Van Wassehove L. N.. Analysis of scheduling rules of an FMS. International Journal Production Research, 1990, 28(4): 785-802.
    [74] S. Thiagarajan, Chandrasekharan Rajendran. Scheduling in dynamic assembly job-shops to minimize the sum of weighted earliness, weighted tardiness and weighted flowtime of jobs. Computers and Industrial Engineering, 2005, 49(4): 463-503.
    [75] Youngshin Park, Sooyoung Kin Young-Hoon Lee. Scheduling jobs on parallel machines applying neural network and heuristic rules. Computers & Industrial Engineering, 2000, 38: 189-202.
    [76] Lars Monch, Jens Zimmermann, Peter Otto. Machine learning techniques for scheduling jobs with incompatible families and unequal ready times on parallel batch machines. Engineering Applications of Artificial Intelligence, 2006, 19: 235-245.
    [77] Tammy Holter, Xiaoqiang Yao, Luis Carlos Rabelo, et al. Integration of Neural Networks and Genetic Algorithms for an Intelligent Manufacturing Controller. Computer & Industrial Engineering, 1995, 29(4): 211-215.
    [78] Yohanan Arzi, Lior Iaroslavitz. Neural network-based adaptive production control system for a flexible manufacturing cell under a random environment. IIE Transactions, 1999, 31: 217-230.
    [79] Li-Xin Tang, Wen-Xin Liu, Ji-Yin Liu. A neural network model and algorithm for the hybrid flow shop scheduling problem in a dynamic environment. Journal of Intelligent Manufacturing, 2005, 16: 361-370.
    [80] Y. R. Shiue, C. T. Su. Attribute Selection for Neural Network-Based Adaptive Scheduling Systems in Flexible Manufacturing Systems. The International Journalof Advanced Manufacturing Technology, 2002, 20: 532-544.
    [81] Chuan Yu Chang, Mu Der Jeng. Experimental study of a neural model for scheduling job shops. Proceeding of IEEE International Conference on Systems, Man and Cybernetics, 1995: 22-25.
    [82]席裕庚.预测控制.北京:国防工业出版社, 1993.
    [83] Chand S., Hsu V. N., Sethi S.. Forecast solution and rolling horizons in operations management problems: a classified bibliography. Manuf. Serv. Oper. Manag. 2002, 4(1): 25-43.
    [84] Chand S., Traub R., Uzsoy T. Rolling horizon procedures for the single machine deterministic total completion time scheduling problem with release dates. Annals of Operations Research, 1997, 70: 115-125.
    [85] Ovacik I. M., Uzsoy R. Rolling horizon algorithms for a single-machine dynamic scheduling problem with sequence-dependent setup Times. International Journal of Production Research, 1994, 32(6): 1243-1263.
    [86] Ovacik I. M., Uzsoy R. Rolling horizon procedures for dynamic parallel machine scheduling with sequence-dependent setup Times. International Journal of Production Research, 1995, 33: 3171-3192.
    [87] Keskinocak P., Ravi R., Tayur S.. Scheduling and reliable lead time quotation for orders with availability intervals and lead time sensitive revenues. Management Science, 2001, 47(2): 264-279.
    [88] Kimms A. Stability measures for rolling schedules with application to capacity expansion planning, master production scheduling, and lot sizing. Omega. Int. J. Mgme Sci., 1998, 26(3): 355-366.
    [89] Baker K. R.. An experimental study of the effectiveness of rolling schedules in production planning. Decision Sciences, 1977, 8: 19-28.
    [90] Sridharan V., Berry W. L., Udayabhanu V.. Measuring master production schedule stability under rolling horizons. Decision Sciences, 1988, 19: 147-166.
    [91] Federgruen A., Tzur M.. Minimal forecast horizons and a new planning procedure for the general dynamic lot sizing model: nervousness revisited. Operations Research, 1994, 42: 458-468.
    [92]席裕庚.动态不确定环境下广义控制问题的预测控制.控制理论与应用, 2000, 17(5): 665-670.
    [93] Xiaochuan Luo, Feng Chu. A branch and bound algorithm of the single machine schedule with sequence dependent setup times for minimizing total tardiness, Applied Mathematics and Computation, 2006, 183: 575-588.
    [94] Eui-Seok Byeon, Wu S. D., Storer R. H. Decomposition heuristics for robust job shop scheduling. IEEE Transactions on Robotics and Automation, 1998, 14(2): 303-313.
    [95] Fang Jian, Xi Yugeng. A rolling horizon job shop rescheduling strategy in the dynamic environment. International Journal of Advanced Manufacturing Technology, 1997, 13(3): 227- 232.
    [96] Smith S.. Reactive scheduling systems. Carnegie Mellon University, Pitsburg, PA 15213.
    [97] Sun J., Xue D.. A dynamic reactive scheduling mechanism for responding to changes of production orders and manufacturing resources. Computers in Industry, 2001, 46: 189-207.
    [98] Sabuncuoglu I. Bayiz M.. Analysis of reactive scheduling problems in a job shop environment. European Journal of Operational Research, 2000, 126: 567-586.
    [99] Mehta S. V., Reha M., Uzsoy R. Predictable scheduling of a job shop subject to breakdowns. IEEE Transactions on Robotics and Automation, 1998, 14(3): 365-378.
    [100] Ronan O’Donovan, Uzsoy R., McKay K. N.. Predictable scheduling of a single machine with breakdown and sensitive jobs. Int. J. Prod. Res., 1999, 37(18): 4217-4233.
    [101] J.R. Jackson. Networks of waiting lines. Operations Research, 1957, 5: 518-521.
    [102] J.R. Jackson. Jobshop-like queueing systems. Management Science, 1963, 10: 131-142.
    [103] A. Haskose, B. G. Kingsman, D. Worthington. Modelling flow and jobbing shops as a queueing network for workload control. International Journal of Production Economics, 2002, 78(3): 271-285.
    [104] W.J. Gordon, G.F. Newell, Closed queueing systems with exponential servers. Operations Research, 1967, 15(2): 254-265.
    [105] F. Baskett, K.M. Chandy, R.R. Muntz et al. Open, closed and mixed networks of queues with different classes of customers. Journal of the ACM, 1975, 22(2): 248-260.
    [106] Rusty O. Baldwin, Nathanniel J. Davis IV, Scott F. Midkiff, et al. Queueing network analysis: concepts, terminology and methods. The Journal of Systems and Software, 2003, 66: 99-117.
    [107] John J. Hasenbein. Necessary Conditions for Global Stability of Multiclass Queueing Networks. Operations research letters, 1997, 21(2): 87-94.
    [108]刘存霞,吕文.一类一般化的排队网络族的全稳定性.工程数学学报, 2006, 21(3): 351-355.
    [109] P.R. Kumar, T. I. Seidman. Dynamic Instabilities And Stabilization Methods In Distributed Real-Time Scheduling Of Manufacturing Systems. IEEE Transactions on Automatic Control, 1990, 35(3): 289-298.
    [110] J. G. Dai, Caiwei Li. Stabilizing Queueing Networks with Setups. Mathematics of Operations Research, 2004, 29(4): 891-922.
    [111] Hong Chen, Hanqin Zhang. Stability of Multiclass Queueing Networks under FIFO Service Discipline. Mathematics of operations research, 1997, 22(2): 691-725.
    [112]沈玉波,冯恩民.一类批处理排队网络在批FIFO排队原则下稳定性.大连理工大学学报, 2003, 43(6): 715-718.
    [113] Hong Chen, Hanqin Zhang. Stability of Multiclass Queueing Networks under Priority Service Discipline. Operations Research, 2000, 48(1): 26-37.
    [114]沈玉波,冯恩民.排队网络在受限的优先服务原则下的稳定性.数学的实践与认识, 2005, 35(9): 71-75.
    [115]赵丽娜.开环可重入生产系统的排队网络模型及求解算法.控制与决策, 2000, 15(2): 181-185.
    [116]杨根科,吴智铭.多服务器排队网络的规则行为.自动化学报, 2002, 28(6): 943-948.
    [117]张润彤,朱晓敏.串联排队网络顾客准入的模糊控制.自动化学报, 2000, 26(2): 192-198.
    [118]李圣军.基于排队网络的容量分析与模拟.计算机应用研究, 2002, 19(10): 99-104.
    [119]汪浩,李晓明,严伟.一个具有阻行机制的成批到达排队系统GIX/M/1/N .北京大学学报(自然科学版), 2006, 42(3): 406-411.
    [120] K. Avrachenkov, U. Ayesta, P. Brown, et al. Batch Arrival Processor-Sharing with Application to Multi-Level Processor-Sharing Scheduling. Queueing Systems, 2005, 50: 459-480.
    [121] Hiroyuki Takada. Markov modulated fluid queues with batch fluid arrivals. Journal of Operations Research, 2001, 44(4): 344-365.
    [122] Niruhn Harnpanichpan, Guy Pujolle. Product-form discrete-time queues in series with batch transition: late arrival case. Performance Evaluation, 1995, 21: 261-269.
    [123]冯恩民,沈玉波.一类批处理排队网络的稳定性.工程数学学报, 2004, 21(5): 675-679.
    [124] J. G. Dai, Caiwei Li. Stabilizing Batch Processing Networks. Operations Research, 2001: 1-23.
    [125] Antonis Economou. An Alternative Model for Queueing Systems with Single Arrivals, Batch Services and Customer Coalescence. Queueing Systems, 2002, 40:407-432.
    [126] Constantinos Maglaras, Sunil Kumar. Capacity Realization in Stochastic Batch-Processing Networks Using Discrete-Review Policies. Stanford University Graduate School of Business Research Paper Series, 1999, 12.
    [127] Youngshin Park, Sooyoung Kim, Chi-Hyuck Jun. Mean value analysis of re-entrant line with batch machines and multi-class jobs. Computers & Operations Research, 2002, 29: 1009-1024.
    [128]丁连宇.一类可修非周期Fork-Join排队网络分析.自动化学报, 1997, 23(3): 408-412.
    [129]刘瑞华. Fork-Join排队网络的建模与稳定性.控制与决策, 1994, 9: 161-166.
    [130] P.R. Kumar. Scheduling Queueing Networks: Stability, Performance Analysis and Design. Stochastic Networks, 1994, 71: 1-54.
    [131] P.R. Kumar. A tutorial on some new methods for performance evaluation of queueing networks. IEEE Journal on Selected Areas in Communications, 1995, 13(6): 970-980.
    [132] Shane G. Henderson, Sean P. Meyn, Vladislav B. Tadic. Performance Evaluation and Policy Selection in Multiclass Networks. Discrete Event Dynamic Systems, 2003, 13(1): 149-189.
    [133]殷保群,代桂平,周亚平,等.闭排队网络基于并行仿真的灵敏度估计和优化算法.控制与决策, 2003, 18(3): 348-350.
    [134]周亚平,奚宏生.一类受控闭排队网络基于性能势的最优性方程.控制理论与应用, 2002, 19(4): 521-526.
    [135] Xi-Ren Cao. Uniformization and Performance Sensitivity Estimation in Closed Queueing Networks. Mathematical and Computer Modelling, 1996, 23(11-12): 77-92.
    [136] Rong-Rong Chen, Sean Meyn. Value iteration and optimization of multiclass queueing networks. Queueing Systems, 1999, 32(1): 65-97.
    [137] S.P. Meyn. The Policy Improvement Algorithm: General Theory with Applications to Queueing Networks and Their Fluid Models. 35th IEEE Conference on Decision and Control, 1996.
    [138] M. J. D. Powell. Direct search algorithms for optimization calculations. Acta Numerica, 1996, 7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700