用户名: 密码: 验证码:
粗粒土斜坡高路堤变形性状与稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于地形、地貌条件复杂,高填方成为山区公路一种常见的结构型式。为了避免高填方路基过度沉降变形甚至失稳滑塌等地质灾害发生,急需对设计和施工中的相关技术难题开展研究。依托实际工程,对粗粒土的变形特性和强度特性、高填方填筑体沉降计算方法、高边坡与陡斜坡路堤稳定性计算方法、高路堤变形控制与边坡稳定成套技术等问题进行研究,具有重要的理论意义和工程实用价值。
     本文依托实际工程,针对粗粒土工程特性、本构模型和粗粒土高路堤的变形特性与稳定性及其处治措施开展了系统的研究,重点研究粗粒土斜坡高路堤的变形特性与稳定性,为粗粒土高填方路基的合理设计提供科学依据,直接指导工程实践,同时为进一步推动粗粒土土力学学科的发展做出学术上的贡献。
     主要研究内容和成果如下:
     以实际工程为依托,开展了室内大型三轴试验,对粗粒土的压缩特性和剪切特性进行了研究。结果表明,水对巨粒土的压缩特性和剪切特性有重要影响;应力-应变曲线表现为弱应变软化型或应变硬化型,其形态主要决定于围压的大小;粗粒土具有明显的剪胀和剪缩特性,抗剪强度随着应力水平变化,表现出非线性特性。
     对Naylor的K-G模型进行了修正,建立了能综合反映粗粒土剪胀性、应变软化性及应力水平影响的非线性本构模型。该模型采用分段函数分别描述粗粒土应变硬化和应变软化阶段,推导的剪切模量G t和体变模量K t是应力状态、应力比和应力增量比的函数,可以反映材料的剪胀性和应变软化特性。通过数值模拟与试验研究验证了本模型有效性和可靠性。
     采用建立的粗粒土改进K-G模型进行数值模拟分析,得到了不同填方高度和坡比下斜坡高路堤变形规律、地基坡度对斜坡高路堤变形的影响规律、地基覆盖层厚度及强度参数对斜坡高路堤变形的影响规律。
     探讨了分级填筑条件下粗粒土路堤压缩变形的实用计算方法,提出了考虑土层因压实所承受的前期固结压力的高填方沉降简化计算方法,并采用现场压实试验和路基沉降监测,验证所提出的计算方法。
     采用极限平衡法,开展粗粒土高填方路堤稳定性研究,得到了不同填方高度与坡比对平坦地基上高路堤斜坡稳定性的影响规律,原地基坡度和覆盖层对斜坡高路堤稳定性的影响规律,坡脚码砌和挡土墙对斜坡高路堤稳定性的影响规律。
     通过对坡脚码砌、坡脚挡土墙等侧向变形限制技术的数值模拟分析,得到了粗粒土高填方斜坡路堤侧向变形限制方法的实际效果及其影响因素。
High embankment has become to a common structural style of roads in mountainous areas due to the complex topography conditions. In order to avoid geologic disasters resulting from excessive deformation or unstable landslide of the high filled foundations, it is urgent to study the related technical problems existing in design and construction of the high embankment. Therefore, depending on the practical projects, this dissertation carried out studies mainly about deformation and strength characteristics of the coarse grained soils, calculation method for settlement of the high filled body and stability of the high slopes and steep slants, deformation control of the high embankment and complete set of technique for slope stabilization. And these studies have very important theoretical and practical values.
     Depending on the practical projects, engineering characteristics and constitutive model of the coarse grained soils, deformation characteristics and stability of the high embankment filled by coarse grains soils as well as treatment method of the stability were all systemically studied. And the studies of the deformation characteristics and stability of the high embankment filled by coarse grained soils on sloping ground were especially focused on. Therefore, the studies of this dissertation provide scientific references for reasonable design of the high embankment and useful guides for engineering practice. Furthermore, the studies also contribute to further development of science of the coarse grained soil mechanics.
     The main contents and results of this dissertation include:
     Depending on the practical projects, large-sized triaxial tests were carried out in lab in order to study the compression and shear characteristics of the coarse grained soils. According to the test results, firstly, water has important influence to the compression and shear characteristics of massive grain soils. Secondly, the pattern of stress-strain curve is mainly weak strain-softening or strain-hardening style. And the patterns were determined by the around confining press. Finally, the coarse grained soils possess characteristics of shearing expand and shearing compression. And the shearing strength has nonlinear characteristics and varies with the strain level.
     The nonlinear constitutive model of coarse grained soils considering effects of characteristics of shearing expand, characteristics of strain softening and strain level was created by modifying the Naylor’s K-G model. The modified model describes the strain hardening and softening phases using sectional-function. The deduced shearing modulus Gt and volume change modulus Kt are functions of variables of stress state, stress ratio and incremental ratio of stress. And the modulus can also reflect the characteristics of shearing expand and strain softening. Validity and reliability of the modified model were verified by numerical modeling and test study.
     According to the numerical modeling and analysis using the modified K-G model, deformation rules of the high embankment on sloping ground with different filled heights and slope ratios, as well as effecting rules of slope gradient, cover thickness of foundation and strength parameter to the deformation of the high embankment on sloping ground were obtained.
     Practical calculation method of compression deformation of the high embankment step filled by coarse grained soils was discussed. Then, considering the consolidation pressure resulted from the soil compacting in the earlier stage, the simplified calculation method for settlement of the high embankment was put forward. And the method was verified by carrying out field compacting test and settlement monitoring of roadbeds.
     Stability of the high embankment filled by coarse grained soils was studied using limiting equilibrium method. Thus, effecting rules of the different filled heights and slope ratios to the stability of high embankment slope on plane foundations as well as effecting rules of slope gradient, cover thickness of foundation, toe blocks and retaining wall to the high embankment on sloping ground were all obtained.
     Via the numerical modeling and analysis for restriction technique of lateral deformation of the toe blocks, toe retaining wall, etc., actual effects and influencing factors of the restriction technique were obtained.
引文
[1]郑治,曾忠.西部地区高填方路堤沉降病害调查与分析.公路交通科技, 2005, 22(9): 107-110
    [2]郭庆国.粗粒土的工程特性及应用.郑州:黄河水利出版社, 1998, 98-106
    [3]张克昌.含泥砂砾石的强度特性.岩土工程学报, 1985, 7(6): 51-59
    [4]郭庆国.关于粗料土抗剪强度特性的试验研究.水利学报, 1987, 5(5): 59-65
    [5] Leps TM. Review of shearing strength of rockfill. Journal of the Soil Mechanics and Foundations Division, ASCE, 1970, 96 (SM4): 1159-1170
    [6] Marachi NDC,Han CK,Seed HB,Duncan JM. Strength and deformation characteristics of rockfill materials. Report No. TE-69-5, Uni. of California. 1969
    [7] Seed HB,Goodman RE. Earthquake stability of slopes of cohesionless soil. Journal of the Soil Mechanics and Foundations Division, ASCE, 1964, 90 (SM4): 43-73
    [8] Indrarama B, Wijewaedena LSS, Balasubramaniam AS. Large-scale triaxial testing of greywacke rockfill. Geotechnique, 1993,43(1): 37-5l
    [9]陈梁生.关于密实的卵石和砂的抗剪强度及边坡稳定的探讨,见:本集编委会.中国土木工程学会第一届土力学及基础工程学术会议论文集,北京:中国工业出版社, 1964, 985-989
    [10]张启岳.用大型三轴仪测定砂砾料和堆石料的抗剪强度.水利水运科学研究, 1980, (1): 25-38
    [11]柏树田,崔亦昊.堆石的力学性质.水力发电学报, 1997, 3(3): 21-30
    [12] Jaroslav F. Notes on the effect of grain crushing on the granular soil behaviour. Engineering geology, 2002, 30(63): 93-98
    [13] Jaroslav F. Mechanics of particulate materials-the principle, development in geotechnical engineering. Amsterdam: Elsevier Scientific publishing company, 1982
    [14]王保田,余湘娟,刘汉龙.面板堆石坝坝料力学性质试验研究.岩石力学与工程学报, 2003, 22(2): 332-336
    [15]武明,安楚试验路土石混合非均质填料的力学特性试验研究.云南公路科技, 1995, 1(2): 25-33
    [16]司洪洋.论无粘性砂卵石与堆石力学性质.岩土工程学报, 1990, 12(6): 30-41
    [17] Barton N, Kjernsli B. Shear strength of rockfill. J Geotech. Engng. Div., ASCE, 1981, (GT7): 873-891
    [18] De Mello VFB. Reflection on design of practical significance to embankment dam construction. 17th Rankine Lecture, Geotechnique, 1977, 27(3): 281-345
    [19] Charles JA,Scares MM. Stability of compacted rockfill slopes. Geotechnique, 1984, 34(1): 61-70
    [20] Duncan JM,Byrne PM et al. Strength,stress strain and bulk modulus parameters for finite element-analysis of stresses and movements in soil masses. Report. No.UCB/GT/78-02, Univ. of California Berkeley, 1978
    [21]郭庆国.关于粗粒土应力-应变特性及非线性参数的试验研究.水利学报, 1983, (11): 44-50
    [22]甘霖,袁光国.大型高压三轴试验测试及粗粒土的强度特性明.大坝观测与土工测试, 1997, 21(3): 9-12
    [23]胡辉.颗粒破碎对粗粒料抗剪强度的影响:硕士学位论文.武汉:长江科学院图书馆, 1995
    [24] Hardin B O. The Nature of Stress-Strain Behavior of Soil. Engineering and Soil Dynamic, 1978, Pasadena CA Vol1: 3-90
    [25] Hardin B O, Blandford GE. Elasticity of particulate materials. Journal of Geotechnical Engineering, ASCE, 1989, 115(6): 788-805
    [26] Tatsuoka F, Shibuya S, et al. Discussion on the use of hall effect semiconductors in geotechnical instrumentation. Geotechnical Testing Journal, 1990, 13(1): 63-67
    [27] Shibuya S,Tatsuoka F,X J Kong. Elastic deformation properties of geomaterials. Soils and Foundations, 1992, 32(3): 26-46
    [28]日本土质工学会(日).粗粒料的现场压实.郭熙灵,文丹译.北京:中国水利水电出版社, 1999
    [29]司洪洋.几种粗颗粒土的剪胀性质.水利水运科学研究, 1986, (2): 45-51
    [30]蒋关鲁.大型三轴试验变形强度特性:博士学位论文.东京:日本东京大学图书馆, 1996
    [31]孙岳裕,淡家骆,李广信.不同应力路径对砂土应力应变关系的影响.岩土工程学报, 1987, 9(6): 79-87
    [32]邱金营.应力路径对砂土应力应变关系的影响.岩土工程学报, 1995, 17(2): 75-82
    [33]刘祖德,陆士强,杨天林等.应力路径对填土应力应变关系的影响及应用.岩土工程学报, 1982, 4(4): 45-54
    [34]徐日庆,龚晓南.土的应力路径非线性行为.岩上工程学报, 1995,17(4): 56-60
    [35]王朝东,潘招湘,喻小生.在普通土大三袖仪上进行土的应力路径试验的探讨.岩土力学, 1991, 12(1): 57-63
    [36]高莲士,赵红庆,张丙印.堆石料复杂应力路径试验及非线性K-G模型研究.见:中田水利学会编.国际高土石坝-混凝土面板堆石坝学术会议论文集.北京:国科学技术出版社, 1993, 110-117
    [37]吴京平,诸瑶等.颗粒破碎对钙质砂变形及强度特性的影响.岩土工程学报, 1997, 19(5): 49-55
    [38]郭熙灵,胡辉,包承刚.堆石料颗粒破碎对剪胀性及抗剪强度的影响.岩土工程学报, 1997, 19(3): 83-88
    [39]王继庄.粗粒料的变形特性和缩尺效应.岩土工程学报, 1994, 16(4): 89-95
    [40]张启岳.砂卵石料的强度和应力-应变特性.水利水运科学研究, 1985, (3): 133-145
    [41] Wang JZ. Test of coarse material under isostress ratio and study of its deformation characteristics[A]. In: ICOLD. Proceeding of International Symposium on High Earth- Rockfill Dams (Sponsored by Chinese Society for Sponsored by Chinese Society for Hydro-electric Engineering and International Commission on Large Dams). Beijing: CSHEE, 1993, 319-325
    [42]左元明,沈珠江.坝壳砂砾料浸水变形特性的测定.水利水运科学研究, 1989, (1): 107-113
    [43]李广信.堆石料的湿化试验和数学模型.岩土工程学报, 1990, 12(5): 58-64
    [44]矫德全,陈愈炯.土的各向异性和卸荷体缩.岩土工程学报, 1994, 16(4): 9-16
    [45]沈珠江,左元明.堆石料的流变特性试验研究.见:本集编委会.中国第六届土力学及基础工程学术讨论会论文选集.上海:同济大学出版社、中国建筑工业出版社, 1991, 443-446
    [46] Rowe P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Pro Roy Soc, 1962(A), 269: 500-527
    [47] Tatsuoka F, Sakamow M,et al. Strength and deformation characteristics of sand in plane strain compression at extremely low pressures. Soil and Foundation, 1986,26: 65-84
    [48] Park CS. Deformation and Strength Characteristics of a Variety of Sand by Plane Strain Compression Test: Dissertation of the degree of Doctor. Tokyo: The library of University of Tokyo, 1993
    [49]张建民,张丙印. Geotechnical Aspects of High Embankment Dams in China( Key note Paper). In: Proceedings of the 12th Asian regional Conference on Soil Mechanics and Geotechnical Engineering, Singapore: World Scientific Publishing Co., 2003, 913-916
    [50] Duncan JM,Chang CY. Non-linear analysis of stress and strain in soils. J Soil Mech and Found Engrg, ASCE, 1970, 96(5): 1629-1652
    [51]朱百里,沈珠江.计算土力学.上海:上海科技出版社, 1990
    [52]沈珠江.鲁布革心墙堆石埂变形的反馈分析.岩土工程学报, 1994, 16(3): 1-13
    [53]沈珠江.土体应力应变分析中的一种新模型.第五届土力学及基础工程学术讨论会论文集,北京:中国建筑工业出版社, 1990: 101-105
    [54]罗刚,张建民.邓肯-张模型和沈珠江双屈服面模型的改进.岩土力学. 2004, 25(6): 887-890
    [55]高莲士,赵红庆,张丙印.堆石料复杂应力路径试验及非线性K-G模型研究.见:中国水利学会编.国际高土石坝-混凝土面板堆石坝学术会议论文集.北京:中国水利水电出版社. 1993, 110-117
    [56] Gao Lianshi. The nonlinear uncoupled K-G model for rockfill materials and its verification. In: Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering-International Conference on Mechanics and Foundation Engineering. Hamburg: 1997, 103-108
    [57]高莲士,汪召华,宋文晶.非线性解耦K-G模型在高面板堆石坝应力变形分析中的应用.水利学报, 2001, (10): 1-7
    [58]高莲士,宋文晶,张宗亮等.天生桥面板堆石坝实测变形的三维反馈分析.水利学报, 2002,(3): 26-31
    [59]殷宗泽.一个土体的双屈服面应力-应变模型.岩土工程学报, 1988, 10(4): 64-71
    [60]张丙印,于玉贞,张建民.高土石坝的若干关键技术问题.见:本集编委会.第九届土力学及岩土工程学术会议论文集.北京:清华大学出版社, 2003, 163-186
    [61]张丙印,李全明,付建.堆石料邓肯EB模型体变参数的修正.见:本集编委会.第九届土力学及岩土工程学术会议论文集.北京:清华大学出版社, 2003, 945-949
    [62]张丙印,李全明.大型压缩试验在堆石坝应力变形分析中的应用.水利学报, 2004, (9): 38-43
    [63]殷宗泽.土石坝应力变形计算中的几个问题.见:龚晓南.第五届浙江省岩土力学与工程学术讨论会.杭州:龚晓南, 2002, 8-12
    [64] Indraratna B, Ionescu D, Christie HD. Shear behavior of railway ballast based on large-scale triaxial tests. Journal of Geotechnical & Geoenviromental Engineering, 1998, 124(5): 439-448
    [65] Muneo H.. Micromechanical Analysis on Granular Column Formation and Macroscopic Deformation. Soil and Foundations, 1996, 36(4): 71- 80
    [66] Herle I, Gudehus G.. Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies . Mech of Cohesive-Fric Mater, 1999. (4): 461-486
    [67] Gudehus G. A. comprehensive constitutive equation for granular materials . Soils and Foundations, 1996, 36(1): 1-12
    [68] Bauer E. Calibration of a comprehensive hypoplastic model for granular materials. Soils and Foundations, 1996, 36(1): 13-26
    [69]张嘎,张建民.粗颗粒土的应力应变特性及其数学描述研究.岩土力学, 2004, 25(10): 1587-1591
    [70]张嘎,吴伟,张建民.粗粒土亚塑性损伤模型.清华大学学报(自然科学版), 2006, 46(6): 793-796
    [71]迟世春,贾宇峰.土颗粒破碎耗能对罗维剪胀模型的修正.岩土工程学报, 2005, 27(11): 1266-1269
    [72] Hardin B. Crushing of soil particles. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192
    [73]刘萌成,高玉峰,黄晓明.考虑强度非线性的堆石料弹塑性本构模型研究.岩土工程学报, 2005, 27(3): 294-298
    [74]谢婉丽,王家鼎,张林洪.土石粗粒料的强度和变形特性的试验研究.岩石力学与工程学报, 2005, 24(3): 430-437
    [75]阎宗岭,龚红兵,董云.土石混填路基填料散体本构关系研究.公路交通技术,2004, (6): 10-13
    [76]刘宏,张倬元,韩文喜.用离心模型试验研究高填方地基沉降.西南交通大学学报, 2003, 38(3): 323-326
    [77]卿笃千,黄庆,王桂尧.高路堤沉降稳定问题的探讨.公路与汽运, 2003, (1): 37-38
    [78]曹喜仁,钟守滨,淤永和,等.高填石路堤工后沉降分析及工程算法探讨.湖南大学学报(自然科学版), 2002, 29(6): 112-117
    [79]郑治.路堤自身压缩的分层总和法.华东公路, 1996, (5): 51-55
    [80]郝传毅.路堤自身压缩的非线性有限元分析.中国公路学报, 1987, 11(1): 34-44
    [81]何兆益,周虎鑫.高填方路堤填筑体沉降的三维有限元分析.重庆交通学院学报, 2000, 19(3): 58-62
    [82]於永和,李素艳.施工过程中的高填方路堤自身沉降计算有限元分析.中外公路, 2006, 26(5): 137-141
    [83]李秀珍,许强,孔纪名等.九寨黄龙机场高填方地基沉降的数值模拟分析.岩石力学与工程学报, 2005, 24(12): 2188-2193
    [84]刘涌江,邓卫东,杨青等.高速公路路堤稳定性与沉降变形规律研究.公路交通技术, 2005, (5): 16-20
    [85] Baecher GB,Ingra T. Stochastic FEM in settlement predictions. Journal of Geotechnical Engineering, ASCE, 1981, 107(4): 449-463
    [86] Righetti G,Williams KH. Finite element analysis of random soil media. J. Eng.. Mech., ASCE, 1988, 114 (1): 59-75
    [87] Phoon KK, Quck ST, Chow YK. Reliability analysis of pile settlement. J. Geotech. Eng., 1990, 116(11): 1717-1735
    [88] Quek ST, Chow YK, Phoon KK. Further contributions to reliability-based pile settlement analysis. J. Geotech. Eng., 1992, 118(7): 449-463
    [89] Brzakala W, Pula WA. Probabilistic analysis of foundation settlements. Computer and Geotechnics, 1996, 18(4): 291-309
    [90]何兆益,周虎鑫.高路堤填筑体变形粘弹性三维有限元分析.工程力学, 2000, (增): 567-572
    [91]刘伟,黄晓波,周立新.高填方工程填筑体沉降变形试验研究.机场工程, 2006, 18(3): 37-39
    [92]谢春庆.巨粒土填筑体工后变形的研究.路基工程, 2002, 16(3): 29-31
    [93]折学森,刘保林,周志军.灰色理论在土石混填路基工后沉降预测中的应用.西部交通科技. 2006, 20(3): 62-65
    [94]陈祖昱.土质边坡稳定分析-原理·方法·程序.北京:中国水利水电出版社, 2003
    [95] Ziekiewicz C, Humpheson C, Lewis RW. Assaaated and nonassociated viscc-plasticity in soil mechanics. Geotechnique, 1975, 25(4): 691-689
    [96] Ugai K. A method of calculation of total factor of safety of slopes by elasto-plastic FEM. Soils and Foundations, 1989, 29 (2 ): 190-195
    [97]宋二祥.土工结构安全系数的有限元计算.岩土工程学报, 1997, 19(2): 1-7
    [98]赵尚毅,郑颖人,时卫民等.用有限元强度折减法求边坡稳定安全系数.岩土工程学报, 2002, 24(3): 343-346
    [99] Dawson EM, Roth WH. Drescher A. Slope stability analysis by strength reduction. Geo technique, 1999, 49(6): 835-84
    [100] Griffiths DV, Lane PA. Slope stability analysis by finite elements. Geotechnique, 1999, 49(3): 387-403
    [101] Matsui T, San KC. Finite Element Slope Stability Analysis by Shear Strength Reduction Technique. Soils and foundations, JSSMFE, 1992, 32 (1): 59-70
    [102]连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边破的稳定性.岩土工程学报, 2001, 23(4): 407-411
    [103]张鹏,於永和.高填路堤变形破坏的原因及对策.广西工学院学报, 2005, 16(3): 27-31
    [104]朱颖斌,李艳丽.土石坝的合理边坡形状和稳定分析.黑龙江水利科技, 2002, 16(2): 46,40
    [105]王志斌,李亮,杨小礼.斜坡地基上高路堤稳定性计算研究.路基工程, 2006, 22(5): 89-90
    [106]高永涛,张怀静,孙金海,等.高填方路基单纯侧滑失稳治理的理论研究及工程应用.公路交通科技, 2004,21(9): 9-12
    [107]吕擎峰,殷宗泽.非线性强度参数对高土石坝坝坡稳定性的影响.岩石力学与工程学报, 2004, 23(16): 2708-2711
    [108]李碧雄,张利民等.斜坡上高路堤的稳定及变形试验研究.成都科技大学学报, 1996, 20(5): 12-18
    [109]董云,黄湖锋,柴贺军等.土石混填路基变形破坏机制的底摩擦试验模拟.中南公路工程, 2006, 31(4): 4-8
    [110]冯文凯,石豫川,柴贺军等.斜坡填筑路堤变形破坏物理模拟研究.岩石力学与工程学报, 2006, 25(s1): 2861-2867
    [111]黎莉,刘代全,刘晓明.山区高速公路高填石路堤稳定性.公路, 2003, (1): 72-76
    [112]侯运秋,刘代全.某高速公路倾斜基底高路堤滑坡机理分析与治理.公路, 2004, (1): 46-50
    [113] Duncan JM. State of the art:Limit equilibrium and finite element analysis of slopes. Journal of Geotechnical Engineering, ASCE, 1996, 122(7): 477-596
    [114]陈祖煜.土质边坡稳定分析的原理和方法.北京:中国水利水电出版社, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700