用户名: 密码: 验证码:
若干土壤修复模式对不同林分类型土壤特性及杉木幼苗叶绿素荧光参数的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杉木是我国南方最主要的速生用材树种之一,栽培面积广布南方十六省市。长期以来的林业生产实践表明,杉木连栽引起的土壤退化,严重影响了杉木人工林连栽地生产力的提高。本论文针对杉木连栽地力衰退,结合经济因素考虑,以杉木一代林、二代林、阔叶林土壤为培养基质,采用模拟生物培养方法,从生物修复、化学修复等角度,分析外源添加不同量的木荷枯枝落叶、有机肥、活化剂PVP(乙烯吡咯啉酮K30)对杉木一代林、二代林、阔叶林土壤养分含量、微生物数量、酶活性的影响,并测定杉木幼苗叶绿素荧光参数的动态变化,研究结果对防治杉木人工林连栽地力衰退及实现杉木人工林可持续经营奠定了理论基础,并提供了技术支撑。研究结果表明:
     (1)pH值
     添加木荷枯枝落叶、有机肥、PVP处理后,同一测定时间,三种林分类型土壤的pH值均比相应的对照上升,以木荷枯枝落叶100g、有机肥500g、PVP 6g/L上升的幅度最大;三种修复模式下,同一质量处理下,同一测定时间,阔叶林土壤pH值上升的幅度最大,一代林次之,二代林最小;
     (2)土壤养分
     添加木荷枯枝落叶、有机肥、PVP处理后,同一测定时间,三种林分类型土壤的全氮、速效钾、速效磷、有机质均比相应的对照上升,木荷枯枝落叶100g、有机肥500g、PVP 6g/L上升的幅度最大;三种修复模式下,同一质量处理下,同一测定时间,阔叶林土壤全氮、速效磷、速效钾、有机质上升的幅度最大,一代林次之,二代林最小;
     (3)土壤微生物
     添加木荷枯枝落叶、有机肥、PVP处理后,同一测定时间,三种林分类型土壤的菌株数量均比相应的对照上升,以木荷枯枝落叶100g、有机肥500g、6g/L处理上升的幅度最大;三种修复模式下,同一质量处理下,同一测定时间,阔叶林土壤细菌、放线菌数量上升的幅度为最大,二代林土壤真菌数量上升的幅度为最大;
     (4)土壤酶活性
     添加木荷枯枝落叶、有机肥、PVP处理后,同一测定时间,三种林分类型土壤的转化酶、脲酶、过氧化氢酶、酸性磷酸酶及多酚氧化酶活性均比相应的对照上升,木荷枯枝落叶100g、有机肥500g、PVP 6g/L上升的幅度最大;同一质量处理下,同一测定时间,阔叶林土壤转化酶、脲酶、过氧化氢酶、酸性磷酸酶活性上升的幅度为最大,二代林土壤多酚氧化酶活性上升的幅度为最大;
     (5)叶绿素荧光参数
     添加木荷枯枝落叶、有机肥、PVP处理后,同一测定时间,杉木幼苗光能潜在活性和光化学效率均比相应的对照上升,木荷枯枝落叶100g、有机肥500g、PVP 6g/L处理上升的幅度最大;同一质量处理下,同一测定时间,杉木幼苗阔叶林上升的幅度为最大,杉木一代林次之,二代林最小;同一质量处理下,同种林分土壤,杉木幼苗光能潜在活性和光化学效率从8月12月均呈上升趋势。
     综上,采用不同的土壤修复措施后,土壤有机质、全氮、速效磷、速效钾的含量、土壤PH值、转化酶和过氧化氢酶活性等指标均表现为阔叶林>一代林>二代林,木荷枯枝落叶处理中以100g效果最佳,有机肥处理以500g效果最佳,PVP处理以6g/L效果最佳。因此,从既获得较高的优质木材产量,又有利于土壤肥力的保持和提高的经营目出发,建议对杉木连栽土壤进行施肥、营造杉荷混交林,以促进人工林生态系统的持续生产力和稳定性的提高,从而更有效地提高人工林的生态经济效益。而PVP的经济成本相对较高,从经济效益的角度考虑,不建议采用。
Chinese-fir is one of the most important fast-growing timber trees in South China with planting in 16 provinces. It was demonstrated by Long-term planting practice that continuous planting of Chinese-fir will cause soil degradation, and the productivity of Chinese-fir plantations will seriously influenced. Focusing on the soil degradation caused by continuous planting ,in this paper the soil of Chinese-fir stand of generations 1,2 and broadleaf forest were taken as culture matrix and biological culture method was adapt. In the view of biological and chemical remediation, the paper analyzed the effect of soil nutrients, microbes, enzymes with the addition of the litter of Schima superba, organic fertilizer, PVP in different levels, and recorded the dynamic changes of chlorophyll fluorescence parameters of Chinese-fir seedlings. The results will lay a theory foundation for sustainable management of the planting of Chinese-fir and chlorophyll fluorescence parameters of Chinese-fir seedlings provided technical support for further development in forestry. The results show that:
     (1) pH value
     With the addition of the litter of Schima superba, organic fertilizer, PVP in different levels in the same measuring time, the pH value of different kinds soils increased comparing to the control, and the pH value in the level of 100g , 500g、6g/L were the peak. In the same treat level, the increasing extent of pH value of broadleaf forest was the maximum in the same measuring time.
     (2) soil nutrient
     With the addition of the litter of Schima superba, organic fertilizer, PVP in different levels in the same measuring time, the total nitrogen, available potassium, available phosphorus, organic matter of different kinds of soil increased comparing to the control, whose values were peak in the level of 100g,500g,6g/L.In the same treat level, the increasing extent of the total nitrogen, available potassium, available phosphorus, organic matter of broadleaf forest was the maximum in the same measuring time.
     (3) soil microbes
     With the addition of the litter of Schima superba, organic fertilizer, PVP in different levels in the same measuring time, the number of bacteria, fungi and actinomyces of different kinds of soil increased comparing to the control, whose values were peak in the level of 100g, 500g,6g/L.In the same treat level, the increasing extent of the number of bacteria and actinomyces of broadleaf forest was the maximum, the number of fungi in the soil from generations 2 was the maximum in the same measuring time.
     (4) Soil enzyme activities
     With the addition of the litter of Schima superba, organic fertilizer, PVP in different levels in the same measuring time, the activities of converting enzyme, urease, catalase, polyhphenol oxidase, acid phosphates of different kinds of soil increased compring to the control, whose values was peak in the level of 100g, 500g,6g/L.In the same treat levels ,the increasing extent of the the activities of converting enzyme, urease, catalase and acid phosphates of broadleaf forest was the maximum, the activities of polyhphenol oxidase in soil from generations 2 was the maximum in the same measuring time.
     (5) chlorophyll fluorescence
     With the addition of the litter of Schima superba, organic fertilizer, PVP in different levels in the same measuring time, the value of Fv/Fo and Fv/Fm increased compring to the control, whose values was peak in the level of 100g,500g,6g/L.In the same treat level,the increasing extent of Fv/Fo and Fv/Fm was the maximum in the same measuring time.In the same treat level, the value of Fv/Fo and Fv/Fm increased from August to December gradually.
     In summary, after the application of different measures of soil restoration, the organic matter, total nitrogen, available potassium, available phosphorus, pH value, converting enzyme and catalase activity and other indicators of soil were showed as the broadleaf forest > new forest > second-generation forest. The restoration effect was to the best in the level of 100g of the litter of Schima superba, 500g of organic fertilizer,6g/L of PVP. Therefore, It is suggested to fertilize and add litter of Schima superba to receive a high quality timber production and improve the benefits of Ecological and economic. As to the high economic cost of PVP, from the economic point of view, it is not recommended.
引文
[1]杨卿,郎南军,苏志豪,蔡烁.土壤退化研究综述[J].林业调查规划,2009,7(1):20-24.
    [2]宫阿都,何毓蓉.土壤退化研究的进展及展望[J].世界科技研究与发展,2001,6(2):18-20.
    [3]邵宏波,梁宗锁,邵明安,韦鹏霄.21世纪土壤科学的主要任务及挑战[J].草业学报,2004,13(2):28-34.
    [4]张荣辉,武云霞.土壤退化状况与土壤污染现状调查之必要性[J].江西能源,2007,41(4):120-122.
    [5] Elias Symeonakis,Adolfo Calvo-Cases,Eva Arnau-Rosalen,Land Use Change and Land Degradation in Southeastern Mediterranean Spain,Environmental Management 2007,5(2).
    [6]程水英,李团胜.土地退化的研究进展[J].干旱区资源与环境,2004,18(3):38-43.
    [7]关培辅.保护地土壤退化的预防和修复技术[J].吉林蔬菜,2005,62(3):53-54.
    [8]张桃林,王兴祥.土壤退化研究的进展与趋向[J].自然资源学报,2000,15(3):280-284.
    [9]熊晓姣,张家来,闫峰陵,程军勇,严琼,阮金华.国内外水土流失与土壤退化现状,特点分析[J].,湖北林业科技,2006,13(4):41-44.
    [10]牛德奎,郭晓敏.土壤可蚀性研究现状及趋势分析[J].江西农业大学学报,2004,26(6):936-940.
    [11]华珞.国内外土壤侵蚀研究进展[J].首都师范大学学报(自然科学版),2003,18(2):86-95.
    [12]朱教君,李凤芹.森林退化衰退的研究与实践[J].应用生态学报,2007,31(7):197-205.
    [13]时永杰,刘一祥.非洲的土壤侵蚀与土壤生产力[J].中兽医医药杂志,2003,38(S1)125-129.
    [14]时永杰,刘一祥.美洲的沙漠化[J].中兽医医药杂志, 2003,36(S1):115-119.
    [15]刘庆生,刘高焕,励惠国.辽河三角洲土壤盐渍化现状及特征分析[J].ACTA PEDOLOGICA SINICA,2004,4(2):31-36,171.
    [16]田丽梅,贾兰英,韩建华,胡连艳,马金柱.天津市土壤重金属污染现状与综合治理对策[J].天津农林科技,2006,17(4):36-38.
    [17]张桥,蔡婵凤.森林土壤退化及其防治研究综述[J].生态环境,2004,13(4):677-680.
    [18]韩官运,邓先保.植物铝毒害的产生及防治研究进展[J].福建林业科技,2007,44(2):182-187.
    [19]陈鹏.基于3S吉林省黑土退化监测与评价.2008.
    [20]朱松丽,陈育峰.全球变化中土壤信息系统的研究进展.地球科学进展,1998,10(5):75-81.
    [21]和立君,于敬平.我国土壤资源现状及对策分析[J].黑龙江水利科技,2006,32(5):59-60.
    [22]肖烨,张于光,张小全,易图永.土地利用变化对土壤肥力影响研究进展.世界林业,2007,1(1):8-11.
    [23]傅伯杰,郭旭东,陈利顶,马克明,李俊然.土地利用变化与土壤养分的变化——以河北省遵化县为例.生态学报,2001,10(1):62-67.
    [24]艾应伟,范志金.我国西部退化土壤生态重建的特点与土壤培肥[J].水土保持学报,2001,13(2)45-48:.
    [25]张桃林,李忠佩,王兴祥.高度集约农业利用导致的土壤退化及其生态环境效应[J].土壤学报,2006,19(5):137-144.
    [26]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004,29(3):127-131.
    [27]陆秀君,郭书海,孙清,梁成华.石油污染土壤的修复技术研究现状及展望[J].沈阳农业大学学报,2003,17(1):64-68.
    [28]Significant Acidification in Major Chinese Croplands,Science ,19 February, 2010.
    [29]魏丹,杨谦,迟凤琴.东北黑土区土壤资源现状与存在问题[J].黑龙江农业科学,2006,23(6):72-75.
    [30]黄国勤,王兴祥,钱海燕,张桃林,赵其国.施用化肥对农业生态环境的负面影响及对策.生态环境,2004,1(4)196-200:.
    [31]孙叶芳.矿区土壤重金属毒性评价及污染修复[J].浙江大学,2005.
    [32]付建华.我国土壤修复的研究现状.中国环境科学学会学术年会优秀论文集(中卷),2008:245-249.
    [33]曹琳,汪祖莲.浅谈污染土壤修复技术[J].江西化工,2007,12(1):46-49.
    [34]冯凤玲.污染土壤物理修复方法的比较研究[J].山东省农业管理干部学院学报,2005,21(4):135-136.
    [35]周建斌,邓丛静,陈金林,张齐生.棉秆炭对镉污染土壤的修复效果[J].生态环境,2008,30(5):145-148.
    [36]王金芬,刘雪梅,王希英.土壤盐碱改良剂施用量及施用时期研究[J].安徽农业科学, 2007,78(1):156-157.
    [37]乔德波,牛明芬,徐丽,赵明梅,袁雅姝,张玉龙.生物表面活性剂在石油污染土壤生物修复中的应用[J].安徽农业科学,2007,97(28):207-209,218.
    [38]朱遐.生物修复的研究和应用现状及发展前景[J].生物技术通报,2006(5):30-32.
    [39]罗义,毛大庆.生物修复概述及国内外研究进展[J].辽宁大学学报,自然科学版,2003,30(4):298-302.
    [40]隋红,徐世民,李鑫钢,段云霞.生物通风技术去除土壤中甲苯[J].化工进展, 2003,22(10):86-88.
    [41]罗泽娇,梁杏.土壤修复与改良的微生物技术[J].安全与环境工程,2005,12(4):8-12.
    [42]韩慧龙,刘铮.分子生物学技术在土壤生物修复中的应用及展望[J].化工进展,2007,5(6):33-38.
    [43]黄巧云.土壤生物修复研究的回顾与展望.土壤化学与生态环境建设和农业可持续发展学术讨论会,2001:10.
    [44]周东美,郝秀珍,薛艳,仓龙,王玉军,陈怀满.污染土壤的修复技术研究进展[J].生态环境,2004,31(2):88-96.
    [45]叶春和.土壤污染的植物修复技术:现状与前景[J].山东科学,2004,12(1):47-52.
    [46]桑爱云,张黎明,曹启民,夏炜林,王华国.土壤重金属污染的植物修复研究现状与发展前景[J].热带农业科学,2006,18(1):79-83.
    [47]阎晓明,何金柱.重金属污染土壤的微生物修复机理及研究进展[J].安徽农业科学,2002,22(6):58-60,64.
    [48]唐莲,刘振中,蒋任飞.重金属污染土壤植物修复法[J].环境保护学,2003,10(6):35-38.
    [49]肖鹏飞,李法云,付宝荣,王效举.土壤重金属污染及其植物修复研究[J].辽宁大学学报:自然科学版,2004,26(3):91-95.
    [50]徐丽娜,孙清,杨静,李剑,张峰龙.污染土壤的生物修复技术研究进展[J].农机化研究, 2007,3(6):15-17.
    [51]林开敏,章志琴,邹双全,曹光球.杉木与阔叶树叶凋落物混合分解对土壤性质的影响[J].土壤通报,2006,37(2):258-262.
    [52]林开敏,章志琴,曹光球,何宗明,马祥庆.杉木与楠木叶凋落物混合分解及其养分动态[J].生态学报,2006,26(8):2732-2738.
    [53]东克范.希尔科恩.荷兰技术巧妙创造更洁净的世界[J].中国环保产业,2006(7):45-48.
    [54]郑喜珅,鲁安怀,高翔,赵谨,郑德圣.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,19(1):83-88.
    [55]陈锋,王业耀,盂凡生.重金属污染土壤和地下水电动修复技术研究[J].中国资源综合利用,2008,17(2):36-38.
    [56]何益波,李立清,曾清如.重金属污染土壤修复技术的进展[J].广州环境科学,2006,8(4):28-33.
    [57]玉芳.As污染农田土壤的高效生物修复技术研究[J].内蒙古农业大学,2008(7):85-87.
    [58]郑洁敏,宋亮.放射性Cs污染土壤的植物修复及其影响因素[J].杭州农业科技,2005(4):51-54.
    [59]郑乐乐.阴极逼近法电动修复贵州地区典型汞污染土壤的研究[J].上海交通大学,2007:1-10.
    [60]宋书巧,周永章,周兴,吴欢.土壤砷污染特点与植物修复探讨[J].热带地理,2004,2(1):7-10.
    [61]吴宇澄,骆永明,滕应,李振高.土壤中二噁英的污染现状及其控制与修复研究进展[J].土壤,2006,2(5):9-16.
    [62]房妮,俱国鹏.多环芳烃污染土壤的微生物修复研究进展[J].安徽农业科学, 2006,77(7):157-158.
    [63]彭星辉,谢晓阳.稻田镉(Cd)污染的土壤修复技术研究进展[J].湖南农业科学, 2007,27(2):71-73.
    [64]熊愈辉.镉污染土壤植物修复研究进展[J].安徽农业科学,2007,92(22):194-196.
    [65]王新,周启星.土壤Hg污染及修复技术研究[J].生态学杂志,2002,10(3):44-47.
    [66]周启星,师荣光,刁春燕.污染土壤的超积累花卉诊断与修复过程的本质分析[J].全国耕地土壤污染监测与评价技术研讨会,2006,:163-166.
    [67]彭红云,杨肖娥.香薷植物修复铜污染土壤的研究进展[J].水土保持学报, 2005,48(5):197-201.
    [68]张映翠.乡土草本植物对干热河谷退化土壤修复的生态效应及机制研究[J],西南农业大学,2005.
    [69]王松良,郑金贵.芸苔属蔬菜的Cd富集特性及其修复土壤Cd污染的潜力[J].福建农林大学学报:自然科学版,2004,23(1):95-100.
    [70]李秋玲,凌婉婷,高彦征,李福春,熊巍.丛枝菌根对有机污染土壤的修复作用及机理[J].应用生态学报,2006,17(11):2217-2221.
    [71]吴林林,阮宇鹰,武琳慧,黄民生.白腐真菌在环境保护中研究与应用进展[J].上海化工,2006,31(1):8-10.
    [72]赵丽,刘征涛,冯流,沈萍萍,孔志明.单歧藻对烷基酚类化合物的生物降解性及QSBR研究[J].环境科学研究,2005,18(1):23-26.
    [73]沈标,邵劲松,李顺鹏.假单胞菌DLL-1在土壤生物修复中的作用[J].中国环境科学, 2002,22(4):365-369.
    [74]杨基峰,虞云龙,方华.甲磺隆污染土壤的生物修复[J].环境化学,2006,18(1):78-81.
    [75] Yu YL,Wang X, Luo YM, et al. Fungal degradation of metsufuron2methyl in pure cultures and soil[J],Chemosphere,2005,60(4):460~466.
    [76]胡江,代先祝,李顺鹏.两株降解菌对阿特拉津污染土壤的修复效果研究[J].土壤学报, 2005,21(2):148-152.
    [77]李闻,马静,张伟.高效甲苯降解菌的驯化及筛选方法研究[J].卫生研究,2008,1(2):4-7.
    [78] Sriprang ,R. ,M. Hayashi ,M. Yamashita ,et al . A novel bioremediation system for heavy metals using t he symbiosis between leguminous plant and genetically engineered rhizobia [J],Biotechnol ,2002 ,99(3):279 - 93.
    [79] Khan ,A. G. ,C. Kuek , T. M. Chaudhry ,et al . Role of plant s ,mycorrhizae and phytochelators in heavy metal contaminatedland remediation[J]. Chemosphere ,2000 ,41(1-2):197-207.
    [80]马淑敏,孙振钧,王冲.蚯蚓-甜高粱复合系统对土壤镉污染的修复作用及机理初探[J].农业环境科学学报,2008,25(1):135-140.
    [81]杨科璧.中国农田土壤重金属污染其植物修复研究[J].世界农业,2007,18(8):64-67.
    [82]陈明智,杨毅敏,蒙生儒,周良玉.不同种植年限菠萝园土壤肥力衰退的研究[J].土壤环境,2002,8(4):36-39.
    [83]孙磊,蒋新,周健民,焦文涛,王代长,王芳.五氯酚污染土壤的热修复初探[J].土壤学报, 2004,20(3):135-138.
    [84]杜国坚,洪利兴,陈福祥,杨演,戴慈荣,刘春芳.杉木连栽地力衰退效应研究[J].应用研究,2001,15(4):11-13.
    [85]林协,洪利兴,杜国坚.杉木连栽与头栽林地质量评价的比较研究[J].浙江林业科技,2000,20(1).
    [86]秦国宣.湖南会同第2代杉木人工林地土壤酶活性.中南林业科技大学生态研究室,2008,2(28):1-7.
    [87]李传涵,李明鹤,何绍江,向臻峰.杉木连栽导致减产的原因分析[J].华中农业大学学报,1999,18(3):872-92.
    [88]张其水,俞新妥.杉木连栽林地混交林土壤酶的分布特征的研究.福建林学院学报,1989,9(3):258-262.
    [89]焦如珍,杨承栋.不同代杉木人工林根际及非根际土壤微生物数量及种类的变化[J].林业科学,1999,2(1):16-21.
    [90]俞新妥,张其水.杉木连栽地营造不同混交林后的土壤生化特性及土壤肥力的研究[J].福建林学院学报,1990,(3):3-11:.
    [91]俞新妥.论杉木人工林的回归——从杉木林地力衰退的因果谈杉木林的可持续经营[J].世界林业研究,1999,3(5):16-20.
    [92]范少辉,马祥庆,陈绍栓,林上杰.多代杉木人工林生长发育效应的研究[J].林业科技,2000,36(4):9-15.
    [93]马祥庆.杉木人工林连栽生产力下降研究进展[J].福建林学院学报,2001,21(4):380-384.
    [94]林思祖,黄世国,曹光球,黄志群.杉木自毒作用的研究[J].应用生态学报,1999,10(6):661-664.
    [95]曹光球,刘学芝,林思祖等.腐解6个月后杉木枯枝落叶及腐殖土中的化感成分对杉木种子的化感效应[J].植物资源与环境学报,2008,17(2):39-43.
    [96]曹光球,林思祖,黄世国等.几个树种枝叶杉木水浸液处理杉木6年后其生物量及分配[J].西北植物学报,2002,27(4):174-179.
    [97]曹光球,林思祖等.腐解3个月后杉木枯枝落叶及腐殖土中的化感成分对杉木种子的化感效应[J].植物资源与环境学报,2007,16(4):56-60.
    [98]曹光球,林思祖等.阿魏酸和肉桂酸对杉木化感作用的生物评价[J].中国生态农业学报,2003,11(2):8-10.
    [99]何光训等.连栽杉木林地土壤肥力退化的症结[J].浙江林学院学报,2002,23(1):102-105.
    [100]林开敏,俞新妥.杉木人工林地力衰退与可持续经营[J].中国生态农业学报,2001,9(4):39-42.
    [101]陈龙池,汪思龙,陈楚莹.杉木人工林衰退机理探讨[J].应用生态学报,2004,15(10):1953-1957.
    [102]刘卫东.浅析杉木二代人工林发展障碍及对策[J].现代农业科技,2007(13):63-66.
    [103]张宪武,许光辉,郑洪元.杉木连栽与土壤中毒杉木人工林生态学研究论文集.中国科学院林业土壤研究, 1980.
    [104]张龙贵.死活相克原理“病根遗毒”假说——初解杉木连栽引起地力衰退之谜[J].浙江林业科技,1995,8(6):22-25.
    [105]魏世清,张磊,李艳宾.生物措施缓解酸性土壤铝毒害研究进展[J].土壤(Soils), 2007,39(4):536-540.
    [106]何绍江,毛新国等.杉木解酚菌的研究[J].应用生态学报,2001,12(3):344-346.
    [107]徐洪利,胡江春,汪思龙.杉木连栽根际土壤致害Fusarium oxysporum拮抗菌的筛选[J].吉林农业大学学报,2008,30(3):259-262.
    [108]毛新国,何绍江,李传涵.杉木解酚菌的筛选及对杉木苗抗酚作用的研究[J].生物学杂志,2001,18(2):61-64.
    [109]张猛,张健.林地土壤微生物、酶活性研究进展[J].四川农业大学学报,2003,17(4):73-77.
    [110]丁耀光.土壤重金属污染及微生物修复.世界华商经济年鉴?高校教育研究,2008.
    [111]郑喜珅,鲁安怀,高翔,赵谨,郑德圣.土壤中重金属污染现状与防治方法[J].2002,19(1):83-88.
    [112]赵桂芳,吴晓磊.石油污染土壤微生物治理技术发展方向[J].中国农业科技早报,2007,9(4):61-66.
    [113]张凌云.土壤盐碱改良剂对滨海盐渍土的治理效果及配套技术研究[J].山东农业大学,2005:1-10.
    [114]宋晨.开展土壤重金属污染的生物修复建议[J].甘肃农业,2008,25(8):49-50.
    [115]赵桂芳,吴晓磊,向仁军,成应向.石油污染土壤的微生物修复技术进展.2005(2):52-55.
    [116]陈威.利用自然衰减法修复受污染土壤和沉积物.首届北京生态建设国际论坛文集, 2005:105.
    [117]李晓云,史良图,王海文,崔宏宇.微生物在污染蔬菜土壤修复中的作用[J].吉林农业科学,2007,8(4):28-30.
    [118]刘继朝,崔岩山,张燕平,邹树增.植物与微生物对石油污染土壤修复的影响[J].生态与农村环境学报,2009,21(2):82-85.
    [119]王曙光,林先贵.菌根在污染土壤生物修复中的作用[J].农村生态环境,2001,17(1):56-59.
    [120]李智勤.污染土壤的生物修复研究现状与进展[J].中山大学研究生学刊,2000,21(2):92-97.
    [121]曹德菊等.一株降酚菌的原生质体制备和再生研究[J],安徽农业科学,2007,35(24):7588-7590.
    [122]吉艳芝,冯万忠,陈立新.落叶松混交林根际与非根际土壤养分、微生物和酶活性特征[J].生态环境,2008,67(1):347-351.
    [123]范延辉.根际促生菌及其在防治连作障碍中的应用[J].天津职业院校联合学报,2008,10(2):33-35.
    [124]周艳虹,黄黎锋,喻景权.持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分配的影响[J].植物生理与分子学报,2004,5(2):35-42.
    [125]田耀华,冯玉龙.微生物研究在土壤质量评估中的应用[J].广西农业生物科学,2008,14(1):132-137.
    [126]杜伟文,欧阳中万.土壤酶研究进展[J].湖南林业科技,2005,32(5):76-79.
    [127]中华人民共和国国家标准局.GB7848 O7858O87森林土壤分析法.北京:中国标准出版社,1987.
    [128]中国土壤学会农业化学委员会.土壤农业化学常规分析[M].北京:科学出版社, 1983.
    [129]关松荫.土壤酶及其研究方法[M].北京:农业出版社,1986.
    [130]刘雁,林思祖,曹光球等.杉木及其伴生树种化感物质的分离与生物测定[J].福建林学院报,2001,21(3):268-271.
    [131]林开敏,章志琴,邹双全,曹光球.杉木与阔叶树叶凋落物混合分解对土壤性质的影响[J].土壤通报,2006,37(2):58-62.
    [132]沈启昌.杉木萌芽林与木荷混交效应试验[J].中南林业调查规划,2006,16(3):59-61.
    [133]陈堆金.木荷凋落物分解及对土壤作用规律的研究[J].福建林业科技,2001,28(2):35-38.
    [134]郑成才.木荷、杉木混交林林地与根际土壤养分特性的研究[J].武夷科学,2006 (22):123-126.
    [135]杨玉盛,邱仁辉,俞新妥.杉木连栽土壤微生物及生化特性的研究[J].生物多样性,1999,7(1):1-7.
    [136]张其水.福建杉木连栽林地营造不同混交林后土壤酶活性的季节动态[J].土壤学报,1992,29(1):104-108.
    [137]王理平.杉木桤木混交林土壤酶与土壤肥力的研究[J].林业科技通讯,1998,2(8):28-30.
    [138]张建国等.施肥对盆栽杉木苗土壤养分含量的影响[J].林业科学,2006,8(4):47-53.
    [139]周溏.施肥对杉木幼林生长效应影响的研究[J].青海农林科技,2007(1):17-22.
    [140]李延茂,胡江春,张晶,汪思龙,王书锦.杉木连栽土壤微生物多样性的比较研究[J].应用生态学报,2005,16(7):1275-1278.
    [141]孙启武,杨承栋,焦如珍.江西大岗山连栽杉木人工林土壤性质的变化[J].林业科学.2003,39(3):1-5.
    [142]郭剑芬,杨玉盛,林鹏.木荷与杉木人工林枯枝落叶层水文生态功能[J].东北林业大学学报,2006,34(4):49-51.
    [143]陈龙池,汪思龙,陈楚莹.杉木人工林衰退机理探讨[J].应用生态学报,2004,15(10):1953-1957.
    [144] N. F. Gomonova, I. N. Skvortsova, G. M. Zenova. Effect of the long-term application of different fertilization systems on soddy-podzolic soils[J]. Eurasian Soil Science,2005,7(4):456-462.
    [145] Ahmed A. Melegy. Relationship of environmental geochemistry to soil degradation in Helwan catchment, Egypt[J].Environmental Geology,2005 (4):524-530.
    [146] F. H. Evers,R. F. Hüttl. new fertilization strategy in declining forests [J]. Water, Air, & Soil Pollution,1990 (1):495-508.
    [147] Ana Navas,Javier Machín et al.Soil properties and physiographic factors controlling the natural vegetation re-growth in a disturbed catchment of the Central Spanish Pyrenees [J]. Agroforestry Systems,2008(3):173-185.
    [148] R. Dinesh, S. G. Chaudhuri at el. Biochemical properties of soils of undisturbed anddisturbed mangrove forests of South Andaman (India)[J]. Wetlands Ecology and Management,2004 (5):309-320.
    [149] A. Castrignanò,G. Buttafuoco et al. Multi-scale assessment of the risk of soil salinization in an area of south-eastern Sardinia (Italy) [J]. Precision Agriculture,2008(1):17-31.
    [150] Dazhong Wen,Wenju Liang. Soil Fertility Quality and Agricultural Sustainable Development in the Black Soil Region of Northeast China [J]. Environment, Development and Sustainability,2001 (1):31-43.
    [151] R. M. Milne,R. J. Haynes. Soil organic matter, microbial properties, and aggregate stability under annual and perennial pastures [J]. Biology and Fertility of Soils,2003 (3):172-178.
    [152] Wenqiang Xu,Geping Luo, Xi Chen .Response of soil nutrients to different cropping systems in the oasis of arid land [J]. Chinese Science Bulletin,2004(1):167-172.
    [153] Karine Vezina et al. Agricultural land-use patterns and soil erosion vulnerability of watershed units in Vietnam’s northern high [J]. Landscape Ecology,2006 (8):1311-1325.
    [154] Dirk Mohr, Werner Topp. Forest soil degradation in slopes of the low mountain range of Central Europe—Do deer matter[J]. Forstwissenschaftliches Centralblatt,2001(10):220-230.
    [155] Ashraf Z. Al-Hamdan, Krishna R. Reddy.Surface Speciation Modeling of Heavy Metals in Kaolin: Implications for Electrokinetic Soil Remediation Processes [J]. Adsorption,2005(5):529-546.
    [156] Olli Dahl, Risto P?yki?, Hannu Nurmesniemi. Concentrations of heavy metals in fly ash from a coal-fired power plant with respect to the new Finnish limit values [J]. Journal of Material Cycles and Waste Management,2008(1):87-92.
    [157] V. A. Korolev. Electrochemical soil remediation from environmental toxicants: Results and prospects [J]. Moscow University Geology Bulletin,2008(1):11-18.
    [158] Hua Zhong, Guang ming Zeng et al. Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity [J]. Applied Microbiology and Biotechnology,2008(2):447-455.
    [159] Rafal Kucharski et al. A Method of Mercury Removal from Topsoil Using Low-Thermal Application [J]. Environmental Monitoring and Assessment,2005(1):341-351.
    [160] Kyung-Hee Shin, Kyoung-Woong Kim.A Biosurfactant-Enhanced Soil Flushing for the Removal of Phenanthrene and Diesel in Sand [J]. Environmental Geochemistry and Health,2004(1):5-11.
    [161]Eun-Joung Ko,Kyoung-Woong Kim,U. Wachsmuth .Remediation Process Monitoring of PAH-Contaminated Soils using Laser-Induced Fluorescence [J]. Environmental Monitoring and Assessment,2004(1):179-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700