用户名: 密码: 验证码:
四川盆地东北部中—新生代造山与前陆变形构造叠合关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陆内多个造山带及其前陆相互叠合的变形区,无疑是大陆内部造山带中变形更为强烈的地区,对其构造叠加与盆山耦合关系的研究已成为当前大陆动力学研究的国际性前沿课题,由于其所处构造的特殊部位,也已成为油气资源勘探的焦点区域,对油气勘探具有重要的现实意义。国内外有关造山带及其前陆盆地构造的研究基本上描述并确立了造山带及其前陆变形的几何学和部分运动学模式,但对于陆内多个边界推覆叠合并共同作用到前陆盆地及其先存构造上的多期次、多方向耦合过程及其变形形迹尚未开展详细解剖,缺少可借鉴的理论依据和模式,尚待深入研究。
    四川盆地东北部地区归属于上扬子板块的西北缘,其北侧为近东西向的米仓山冲断构造带,东北侧为北西向大巴山弧形冲断构造带,西北侧为北东向的龙门山造山带。四川盆地东北部地区经历了自古生代到中三叠世被动陆缘沉积环境,中三叠世末的印支运动结束了海相碳酸盐岩沉积进入前陆盆地沉积,自晚三叠世至早白垩世,沉积了厚度巨大的陆相红层沉积。随后,受周缘山系向前陆逆冲推覆的影响,卷入了多期次、多边界的构造变形,出现了东西、北东和北西方向构造叠加特征,无疑是研究山-盆多边界、多期次构造关系不可多得的良好场所之一。
    本文在前人研究的基础上,综合最新的地表地质、钻井和石油地震勘探等资料,立足于现有的二千多公里石油地震剖面所揭示的深部构造信息,以米仓山、大巴山前陆区和构造叠加区通南巴构造带为切入点,对米仓山、大巴山及其前陆深浅部构造耦合特征进行了研究,主要讨论了米仓山近东西向构造、南大巴山北西向构造和通南巴北东向构造之间的叠加关系和形成机制。
    研究内容:(1)建立晚三叠世以来川东北前陆盆地的层序框架,恢复其岩相古地理展布并探讨前陆沉积对周缘山系的造山响应机制。(2)在地表和深部研究的基础上,对米仓山及其前陆的构造变形特征进行分带,并探讨北东向构造对先期近东西向构造的叠加关系,加强米仓山前缘带深浅部构造耦合研究。(3)对大巴山及其前陆的构造变形特征进行分带,并探讨北西向构造对先期东西向和北东向构造的叠加关系,加强南大巴山前缘带深浅部构造耦合研究。(4)在地震剖面综合解释的基础上,重点研究通南巴构造带上、下形变层构造样式,北东、北西向断裂的三维几何学、运动学特征,探讨通南巴构造带与周缘山系的时空演化关
A superimposed belt of several continental orogens and their associated foreland is anintensively deformed zone. Its deforming and coupling relationship is a front topic in continentaldynamics. Additionally, its special tectonic position and hydrocarbon potential arouse muchattention. Although geometric and kinematic models of single fold-thrust belt and associatedforeland basin have been put forward by many geologists, more complex superimposed deformationof multi-boundaries fold-thrust belts and foreland with multi-stages and multi-directions has notbeen studied in detail. So the theories and models about superimposed deformation of multi-orogensand foreland need to be established based on deep research.
    The Northeastern Sichuan basin(NSB)is located at the north-west edge of the Yangtz plate.Regoinally, it is bounded on the north by the west-east trending Micang Shan fold-thrust belt(MSB),on the east by the north-west trending Daba Shan arcuate fold-thrust belt(DSB), and onthe northwest by the north-east trending Longmen Shan fold-thrust belt(LSB). This region behavedas a passive margin of the Yangtz plate from the Paleozoic to middle Triassic times and then evolvedinto a peripheral foreland basin in response to the continental collision of Qinling belt since the latemiddle Triassic. With the uplifting mountains advancing toward the foreland, multi-stages andmulti-boundaries deformation with east-west, north-east and north-west superimposed structureswere formed. So the NSB provides an ideal area to study superimposed deformation of amulti-boundaries fold-thrust belt and a foreland with multi-boundaries.
    Based on previous research of the NSB, this dissertation synthesizes and analyze the updatedsurface geology, borehole and seismic data, especially more than two thousand 2D seismicexploration profiles, and studies superimposed deformation of the Tongnanba(TNB) tectonic zoneas a breakthrough. This dissertation conducts detail analysis of surface and sub-surface structures ofMSB, DSB and its foreland, and mainly discusses superimposed structural relationship anddeformation mechanism of MSB, southern DSB and TNB.
    Main contents are(:1)To establish a NSB regional Mesozoic stratigraphic framework, restoresedimental facies and paleo-geographical environment, and unravel coeval basin-margin tectonics.(2)To analyse the zoning structure of MSB and its foreland on the basis of surface and sub-surfacegeological data, discuss early west-east structure superimposed by north-east structure, and mainly
    discuss deformed relationship between surface and sub-surface structures at the front of MSB.(3)To analyse the zoning structure of DSB and its foreland on the basis of surface and sub-surfacegeological data, discuss early north-east structure superimposed by north-west structure, and mainlydiscuss deformed relationship between surface and sub-surface at the front of DSB.(4)To analysethe deformation style of upper and lower deformation strata and 3D geometric and kinematiccharacters of north-east and north-west faults in TNB on the basis of detailed interpretation of 2Dseismic profiles, and further discuss the structural relationship between TNB and peripheralmountains such as MSB and DSB.Research methodologies are:(1)To use the sub-surface structural information disclosed by2D seismic profiles on the basis of field geological survey and investigation, strengthen the researchof surface and sub-surface structure at margins of basins and mountains(.2)To use borehole data, theupdated processing and interpretation methods of seismic data as well as kinematic models offold-thrust to improve the credibility of seismic structural interpretation.(3)Because there are nomiddle Cretaceous-Neocene strata or the strata were eroded, the main structural deformationhappened from late Yenshan Orogeny to early Himalaya Orogeny. So using the traditional structuralanalysis method to infer deformational history by coeval sediment is difficult. Fortunately, thesuperimposed deformation information provides a key record about tectonic evolution of this region.In a word, the most important method is to deduce the periphery mountains tectonic evolvement byanalyzing the surface and sub-surface superimposed structures recorded by foreland deformation atTNB.Main conclusions: This dissertation has discussed superimposed structures of multi-stages,multi-directions, surface and sub-surface on the basis of 2D seismic data interpretation. The surfaceand sub-surface superimposed structures of MSB, DSB and TNB are analyzed. The 3D structure ofTNB which is the foreland of MSB and DSB is put forward. It also discusses the tectonicevolvement of TNB and periphery mountains. It's the first time to discuss the deformation ofperipheral mountains by the sub-surface superimposed structure and evolution of foreland. The mainconclusions are as follows:(1)The foreland of NSB is characterized by thick accumulation(3000-5000m)of lateTriassic-early Cretaceous continental sedimentary deposits including alluvial plain, lacustrine andfan delta depositional systems. The strata from late Triassic Xujiahe Formation to the middleJurassic Qianfuya Formation are composed of 8 sequences according to sequence interfaces ofuplifting erosion, ablating erosion and lithological surface of discontinuities. The analysis results ofold current direction show that the sediment supply is from the north-east, and the mountain uplift ismore active on the north and east sides. From late Triassic to early Jurassic times, the NSB behavedas a typical foreland basin in response to continental collision and southward thrust of the Qinling
    mountain belt. After Jurassic time, the lacustrine depositional system dominated this area.(2)MSB extending west-east direction is composed of a fold-thrust belt and foreland fromnorth to south. From Cenozoic time, with the Qinghai-Tibet plateau uplifting and LSB growing, thetectonic compressive stress from northwest had a great effect on the Sichuan basin and MSB. As aresult, a set of north-east trending structures including folds and faults which cut or interfere thewest-east structure were formed. The deformed strata are obviously controlled by regional evaporatedecollement strata at the Leikoupo and Jialingjiang Formation. The upper continental strata withweak deformation make up of the MSB frontal monocline. On the other hand, the lower sea facialstrata with lots of folds and thrust faults make up of triangle zones buried in the front of MSB.(3)The northwest-southeast trending Daba Shang arcuate fold-thrust belt is convex towardsouthwest with different deformation styles of which the folds and faults become less intensivetoward the foreland. With the foreland-verging compression from the southern DSB hinterland in thelate Himalaya orogeny, a set of north-west trending folds and faults were formed at the late Triassicto early Cretaceous continental strata which were detached by regional evaporate decollementstratum. In the front of DSB, the Paleozoic rocks are overlapped and uplifted by duplex in which theregional decollement stratum behaves as roof faults and Sinian shale as sole thrust faults.(4)Separated by regional evaporate decollement stratum at the Leikoupo and JialingjiangFormation, TNB can be divided into upper and lower deformation strata. The north-west trendingfolds and thrust faults dominate the upper deformation stratum while the north-east trending faultsand main fold dominate the lower deformation stratum. The two deformation strata are composed ofthe inconsonant superimposed structure from surface to sub-surface. The research results ofdisplacement-distance show that north-west trending faults cut cross the early north-east trendingmain fold with SW dip and back-thrust which cut up the section of the Shaximiao Formation andmerge down to regional decollement stratum. The change of displacement of north-west trendingfaults from north-west to south-east and from two limbs and core of the main fold is as follows: thedisplacement at the fold core is little and becomes larger toward the two limbs, and larger at thesouth-west deep limb than that at the north-west gentle limb;On one seismic profile, thedisplacement at the Xujiahe Formation is the largest and decreases toward the two ends at thesouth-west weakly deformed segment of TNB, while the displacement at the Qianfuya Formation isthe smallest and increases toward the two ends at the north-east intensively deformed segment ofTNB. The analysis results imply that deformation of north-west trending faults in the north-east ismore intensive than that in the south-west TNB. The north-east trending faults dominate the lowerdeformation stratum and mainly develop at the two limbs of main north-east trending fold while thefaults at the south-east deep limb are larger than those at the north-west gentle limb, anddisplacement of the faults at the two limbs is negatively correlated along the axis of the main fold
    from south-west to north-east which adjusts the shortening amount of compressive deformation. Theformation of TNB is mainly consist of three stages since middle Cretaceous time: The initial stage ofnorth-east trending main fold, the formation of north-east trending main fold with faults, and thenorth-west trending structure superimposed stage.(5)Surface geological survey results show that the eastern segment of east-west trendingMSB is superimposed by north-west trending structure of southern DSB with typical largesuperimposed buckling fold. TNB is located at the superimposed deformation zone of MSB andDSB. Its structural frame is controlled not only by the base of Sichuan basin but also by compressionfrom MSB and DSB.The main structure of TNB is north-east trending main fold and faults which are the firstly andextensively deformed after the formation of Mesozoic foreland. The north-east TNB main foldexperienced two stages: the initial stage of main fold and the formation of main fold and thrust faultswhich are related with the formation and evolvement of MSB. The north-west superimposedstructure dominating the upper deformation stratum mainly consist of thrust faults or back-thrustfaults and thrust-related folds which are related with the DSB arcuate fold and thrust system.. Thesurface and sub-surface thrust or back-thrust faults with north-west trend consist of the front thrustsystem buried at the front of DSB freland.(6)According to the initial orogeny of peripheral mountains from late Triassic to earlyJurassic times, three tectonic evolution stages can be determined: pre-orogeny( HercynianOrogeny),orogeny(Indian Orogeny, Yanshan Orogeny) and re-orogeny and foreland deformation(Early and Late Himalaya Orogeny).Especially, the Himalaya Orogeny is the import deformationstage of TNB.
引文
蔡立国,刘和甫。四川前陆褶皱-冲断带构造样式与特征。石油试验地质,1997,19(2):115-120。
    陈海泓,孙枢,李继亮,等。雪峰山大地构造的基本特征初探。地质科学,1993,2(3):201-209。
    陈家义,杨永成,李荣社,等。汉中-碧口地区的造山结构和构造。陕西地质,1997,15(1):12-19。
    邓明森。米仓山区盖层褶皱构造变形分析。矿物岩石,1997,17(增):132-142。
    地质部陕西省地质局区域地质测量大队十二分队测制。中华人民共和国 1:20 万紫阳幅区域地质测量报告,1959。
    地质部陕西省地质局秦岭区域地质测量大队十八分队。中华人民共和国 1:20 万汉中幅区域地质测量报告,1965。
    地质部四川省地质局第二区域地质测量队一分队测制。中华人民共和国 1:20 万南江幅区域地质测量报告,1965。
    地质部四川省地质局第二区域地质测量队四分队测制。中华人民共和国 1:20 万镇巴幅区域地质测量报告,1970。
    董崇光。四川盆地构造演化与油气聚集。北京:地质出版社,1992。
    杜思清,魏显贵,刘援朝,等。汉南-米仓山区北东向构造及龙门山推覆构造外缘带。矿物岩石,1997,17(增):123-131。
    杜思清,魏显贵,刘援朝,等。汉南-米仓山区叠加东西向隆坳的北东向推覆构造。成都理工学院学报,1998,25(3):369-374。
    冯庆来,刘本培,叶玫。中国南方古特提斯阶段的构造古地理格局。地质科技情报,1996,15(3):1-6。
    高长林,刘光祥,张玉箴,等。东秦岭-大巴山逆冲推覆构造与油气远景。试验石油地质,2003,25(增):523-531。
    郭华,吴正文,刘红旭,等。燕山板内造山带逆冲推覆构造格局。现代地质,2002,16(4):339-346。
    郭正吾,邓康龄,韩永辉,等。四川盆地形成与演化。北京:地质出版社,1996。
    郝杰,刘小汉。桐柏-大别碰撞造山带大型推覆-滑脱构造及其演化。地质科学,1988,23(1):1-9。
    何登发,赵文智。中国西北地区沉积盆地动力学演化与含油气系统旋回。北京:石油工业出版社,1999。
    何建坤,卢华复,张庆龙,等。南大巴山冲断构造及其剪切挤压动力学机制。高校地质学报,1997,3(4):319-428。
    胡修棉,吴德超。米仓山南缘基底断裂带上两段有限应变和形成条件。成都理工学院学报,2000,27(3):232-236。
    黄汲清。中国主要大地构造单位。北京:地质出版社,1954。
    黄继钧。纵弯叠加褶皱地区应力场研究-以川东北地区为例。地质科学,2000,35(2):140-150。
    黄懿。陕西牟家坝、新集一带之前震旦纪结晶岩。地质论评,1948,13。
    姜春发等。秦岭地槽马蹄型构造。中国及邻区大地构造论文集,1981。
    姜春发等。秦岭地槽马蹄型构造。中国及邻区大地构造论文集,1981。
    姜春发,王宗起,李锦轶,等。中央造山带开合构造。北京:地质出版社,2000。
    江为为,刘伊克,郝天珧,等。四川盆地综合地质、地球物理研究。地球物理学进展,2001,16(1):11-23。
    赖绍聪,张国伟,杨永成,等。南秦岭-勉略结合带变质火山岩岩石地球化学特征。岩石学报,1997,13(4): 561-573。
    赖绍聪,张国伟,董云鹏,等。秦岭-大别勉略构造带蛇绿岩与相关火山岩性质及其时空分布。中国科学(D),2003,33(12):1174-1183。
    乐光禹。大巴山造山带及其前陆盆地的构造特征和构造演化。矿物岩石,1998,18(增):8-15。
    李春昱,刘仰文,朱宝清,等。秦岭及祁连的构造发展史。国际交流地质学学术论文集(一)。地质出版社,1987,174-185。
    李三忠,张国伟,李亚林,等。勉县地区勉略带内麻粒岩的发现及构造意义。岩石学报,2000,16(2):220-226。
    李三忠,赖绍聪,张国伟,等。秦岭勉(县)-略(阳)缝合带及南秦岭地块的变质动力学研究。地质科学,2003,38(2):137-154。
    李曙光,孙卫东。南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学-古生代洋盆及其闭合时代的证据。中国科学(D),1996,26(3):223-230。
    李勇,曾允孚,等。龙门山前陆盆地沉积及构造演化。成都:成都科技大学出版社, 1995。
    李勇。论龙门山前陆盆地与龙门山造山带的耦合关系。矿物岩石地球化学通报,1998,17(2):77-81。
    李勇,孙爱珍。龙门山造山带构造地层学研究。地层学杂志,2000,24(3):201-206。
    李忠权,潘懋,萧德铭,等。四川盆地拉张-挤压构造环境探讨。北京大学学报(自然科学版),2001,37(1):87-93。
    林茂炳,吴山。龙门山推覆构造变形特征。见:罗志立,赵银奎,刘树根,等编,龙门山造山带的崛起和四川盆地的形成与演化。成都:成都科技大学出版社,1994,179-187。
    刘宝珺,曾云孚。岩相古地理基础和工作方法。北京:地质出版社,1985。
    刘和甫,梁慧社,蔡立国,等。川西龙门山冲断席构造样式与前陆盆地演化。地质学报,1994,68(2):101-118。
    刘和甫,梁慧社,蔡立国,等。天山两侧前陆冲断席构造样式与前陆盆地演化。地球科学,1994,19(6):727-741。
    刘和甫。前陆盆地类型及褶皱-冲断层样式。地学前缘,1995,2(3-4):59-68。
    刘和甫,汪泽成,熊保贤,等。中国中西部中、新生代前陆盆地与挤压造山带耦合分析。地学前缘,2000,7(3):55-72。
    刘少峰。前陆盆地挠曲过程模拟的理论模型。地学前缘,1995,2(3-4):69-77。
    刘树根。龙门山冲断带与川西前陆盆地的形成演化。成都:成都科技大学出版社,1993。
    卢华复,阎吉柱,李鹏兴,等。四川前龙门山中南段推覆构造及其与天然气藏关系。南京大学学报(地球科学),1993,5(2):141-147。
    卢华复,陈楚铭,刘志宏,等。库车再生前陆逆冲带的构造特征与成因。石油学报,2000,21(3):18-24。
    卢衍毫。大巴山西段几个地质问题。地质论评,1943,8。
    罗志立,赵锡奎,刘树根,等。龙门山造山带的崛起和四川盆地的形成和演化。成都:成都科技大学出版社,1994。
    孟庆任,张国伟,于在平,等。秦岭南缘晚古生代裂谷-有限洋盆沉积作用及构造演化。中国科学,1996,26(增刊):28-33。
    莫源富,茹锦文。含油区一种复合环形构造的模式识别。中国岩溶,1996,15(1-2):183-187。
    曲国胜,Joseph Canerot,王宗起,等。造山带弧形构造西昆仑-帕米尔弧及其预测。地质科学,1996,31(4):313-326。
    曲国胜,陈杰,许建东,等。阿图什-八盘水磨塔里木盆地反冲构造系统研究。地震地质,2001,23(1): 1-14。
    曲国胜,李亦刚,陈杰,等。柯坪塔格推覆构造几何学、运动学及其构造演化。地学前缘,2003,10(特刊):142-152。
    曲国胜,李亦纲,张宁,等。塔里木西南(齐姆根弧)前陆构造及形成机理。地质论评,2004,50(6):567-576。
    曲国胜,张宁,刘杰,等。.塔北隆起-库车坳陷区中新生代基底-盖层构造变形机理。地质通报,2004,23(2):113-119。
    曲国胜,李亦纲,李岩峰,等。塔里木盆地西南构造分段及其成因。中国科学(D),2005,35(3):193-202。
    舒良树,马瑞士,郭令智,等。天山东段推覆构造研究。地质科学,1997,32(3):337-350。
    四川省地质矿产局。四川省区域地质志。北京:地质出版社,1991。
    孙树林。米仓山及其南缘薄皮构造初步研究。河海大学学报,1994,22(1):53-57。
    陶晓凤。龙门山南段推覆构造与前陆盆地演化。成都理工学院学报,1999,26(1):73-77。
    汪集旸,汪缉安。我国大中型气田今、古地温特征与天然气形成和分布。中国科学院地质研究所“八五”国家重点科技攻关项目,1995。
    王根宝,李三忠。论秦岭佛坪地区隆-滑构造。长春科技大学学报,1998,28(1):23-29。
    魏国齐,贾承造,施央申,等。塔里木新生代复合再生前陆盆地构造特征与油气。地质学报,2000,74(2):123-133。
    魏显贵,杜思清,刘援朝,等。米仓山推覆构造的结构样式及演化特征。矿物岩石,1997,17(增):114-122。
    文德华。龙门山北段断裂活动特征。四川地震,1994,1:53-57。
    吴德超,魏显贵,杜思清,等。米仓山叠加型推覆构造几何结构及演化。矿物岩石,1998,18(增):16-20。
    吴运高,李继亮,樊敬亮。造山带逆冲推覆构造研究的主要新进展。地球科学进展,2000,15(4):426-433。
    吴正文,柴育成,黄万夫,等。秦岭造山带的推覆构造格局。见:叶连俊,钱祥麟,张国伟主编。西安:西北大学出版社,1991,111-120。
    徐树桐,董树文,周海渊,等。大别山东段(安徽)大别杂岩中的断层构造岩和推覆构造。科学通报,1983,29(5):298-301。
    许志琴,卢一伦,汤耀庆,等。东秦岭造山带的变形特征及构造演化。地质学报,1986,3:237-247。
    杨敬之,谷德振。四川南江、旺苍间火成岩体侵入时代。地质论评,1945,10。
    张春生,刘春,石军,等。汉中与安康盆地地震活动特征。华北地震科学,2004,22(2):18-22。
    张国伟,孟庆任,赖绍聪。秦岭造山带的结果构造。中国科学(B),1995,25(9):994-1003。
    张国伟,孟庆任,于在平,等。秦岭造山带的造山过程及其动力学特征。中国科学(D),1996,26(3):193-2000。
    张国伟,董云鹏,姚平安。秦岭造山带基本组成与结构及其演化。陕西地质,1997,15(2):1-14。
    张国伟。秦岭造山带的形成与演化。西安:西北大学出版社,1988。
    张国伟,张本仁,袁学诚,等。秦岭造山带与大陆动力学。北京:科学出版社,2001。
    张国伟,董云鹏,赖绍聪,等。秦岭-大别造山带南缘勉略构造带与勉略缝合带。中国科学(D),2003,33(12):1121-1135。
    张庆龙,卢华复,何建坤,等。大巴山前缘含油气构造条件。天然气工业,1995,15(4):6-9。
    赵亚曾。Geological Notes in Szechuan。 Bull. Geol. Soc. China,1929,Vol. VIII,No. 2。
    赵亚曾,黄汲清。秦岭山及四川之地质研究。前中央地质调查所专报,甲种,第九号,1931。
    中华人民解放军 00 九三一部队测制。中华人民共和国 1:20 万通江幅区域水文地质测量报告,1980。
    朱志澄。逆冲推覆构造研究进展和今后探索趋向。地学前缘,1995,2(1-2):51-58。
    Armstrong F C, Oriel S S. Tectonic development of Idaho Wyoming thrust belt. American Association of Petroleum Geologists Bulletin, 1965, 49, 1847-1866.
    Bachman G H. Exploration in a classic thrust belts and its foreland: Bavarian Alps, Geomany. AAPG Bulletin, 1982, 7: 2529-2542.
    Bally A W, Gordy P L, Steward G A. Structure, seismic data and orogenic evolution of southern Rocky Mountains. Bulletin of Canadian Petroleum Geology, 1966, 14: 337-381.
    Bally A W, Gordy P L, Stewart G A. Structure, seismic data and orogenic evolution of the southern Canadian Rockies. Canadian Petroleum Geology Bulletin, 1966, 14: 337-381.
    Bates M. Palaeomagnetic evidence for rotations and deformation in the Nogueras Zone, Central Southern Pyrenees. Journal of the Geological Society. London: 1989,146: 459-476.
    Bitterli T. The kinematic evolution of a classical Jura fold: a reinterpretation based on 3-dimensional balancing techniques(Weissenstein Anticline, Jura Mountains, Switzerland). Eclgae Geologicae Helvetiae, 1990, 83: 493-511.
    Boyer S E, Elliott D. Thrust systems. AAPG Bulletin, 1982, 66: 1196-1230.
    Boyer S E. Styles of folding within thrust sheets: examples from the Appalachian and Rocky Mountains of the USA and Canada. Journal of Structural Geology, 1986, 8, 325-339.
    Boyer S E. Geometric evidence for synchronous thrusting in the southern Alberta and northeast Montana thrust belts. In: McClay K R, ed. Thrust Tectonics. London: Chapman and Hall, 1992, 377-390.
    Brunet M F. The influence of the evolution of the Pyrenees on adjacement basins. Tectonophysics, 1986, 129, 343-354.
    Burbank D W, Beck R A, Mulder T. The Himalayan foreland basin. In: The Tectonic Evolution of Asia(Ed. By Yin A, Harrison T M), pp. 149-188. Cambridge University Press, Cambridge. 1996.
    Butler R W H. The geometry of crustal shortening in the western Alps. In: Sengor, A M C, ed. Tectonic evolution of the Tethyan Region. Proceedings of NATO Advanced Study Institute, 1989, C239,43-76.
    Butler R W H. The influence of pre-existing basin structure on thrust system evolution in the western Alps. In: Williams, G D, Cooper M A, eds. Inversion Tectonics. Geological Society of London Special Publication, 1989, 44, 105-22.
    Butler R W H. Structural evolution of the western Charteuse fold and thrust system, NW French Subalpine chains. In: McClay K R, ed. Thrust Tectonics. London: Chapman and Hall, 1992, 287-298.
    Castle J W. Appalachian basin stratigraphic response to convergent-margin structural evolution. Basin Research, 2001, 13, 397-418.
    Chapple W M. Mechanics of thin-skinned fold-and-thrust belts. AAPG Bulletin, 1978, 89: 1189-1198.
    Christopher A Hedlund. Fault-propagation, ductile strain, and displacement-distance relationships. Journal of Structural Geology, 1997, 19(3-4): 249-256.
    Cook F A, Varsek J L.Orogen-scale decollements. Reviews of Geophysics, 1994, 32(1): 37-60.
    Covey M. The evolution of foreland basins to steady state: evidence from the western Taiwan foreland basins, Foreland Basin . Spec publs. Int A ss Sediment, 1986.
    Dahlen F A, Suppe J, Davis D. Mechanics of fold-and-thrust belts and accretionary wedges: Cohesive Coulomb theory. Journal of Geophysical Research, 1984, 89: 10087-10101.
    Dahlen F A, Suppe J. Mechanics, growth and erosion of mountain belts. Geological Society of America Special paper, 1988, 218: 161-178.
    Dahlen F A. Critical taper model of fold-and-thrust belts and accretionary wedges. Annual Review of Earth and Planetary Sciences, 1990, 18: 55-99.
    Dahlstrom C D A. Balanced cross sections. Canadian Journal of Sciences, 1966, 6: 743-757.
    Dahlstrom C D A. Structural geology in the eastern margin of the Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geology, 1970, 18: 332-406.
    David A McConnell, Simon A Kattenhorn, Lisa M Benner. Distribution of fault slip in outcrop-scale fault-related folds, Appalachian Mountains. Journal of Structural Geology, 1997, 19(3-4): 256-267.
    Davis D, Suppe J, Dahlen F A. Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research, 1983, 88: 1153-1172.
    Decelles G, Gilest. Foreland basin systems. Basin Research, 1996, 8: 105-123.
    Dickison. Plate tectonics and sedimentation. In: Dickinson. Tectonics and Sedimentation. Oklahoma: Spec. publ, 1974,1-27.
    Dinares J, McClelland E, Santanach P. Contrasting rotations within thrust sheets and kinematics of thrust tectonics as derived from palaeomagnetic data: an example from the Southern Pyrenees. In: McClay K R, ed. Thrust Tectonics. London: Chapman and Hall, 1992, 265-275.
    ECORS Pyrenees team. The ECORS deep reflection seismic survey across the Pyrenees. Nature, 1988, 331,508-511.
    Elliott D E. The energy balance and deformation mechanisms of thrust sheets. Philosophical Transactions of the Royal Society of London, 1976, 283: 289-312.
    Elliott D E. The construction of balanced cross-sections. Journal of Structural Geology, 1983, 5: 98-101.
    Escher A, Masson H, Steak A. Nappe geometry in the Western Swill Alps. Journal of Structural Geology, 1993, 15(3-5): 501-509.
    Escher A, Beaumont C. Formation, Burial and exhumation of basement nappes at crustal scale: a geometric model based on the Western Swill-Italian Alps. Journal of Structural Geology, 1997, 19(7): 955-974.
    Escher A, Hunziker J, Marthaler M, et al. Geologic framework and structural evolution of the Western Swiss-Italian Alps. In: Pfiffner O A, Lehner P, Heitzmann P, et al eds. Deep Structure of the Swiss Alps Results of the National Research Program 20(NRP 20). Basel: Birkhauser, 1997, 205-222.
    Fischer M P, Woodward N B. The geometric evolution of foreland thrust systems. In: McClay K R, ed. Thrust Tectonics. London: Chapman and Hall, 1992, 181-189.
    Fischer M W. Thrust tectonics in the North Pyrenees. Journal of Structural Geology, 1984, 6: 721-726.
    Flemings P B, Jordan T E. Stratigraphic modeling of foreland basin: Interpreting thrust deformation and litho sphere rheology . Geology, 1990, 18.
    Homza T X, Wallace W K. Geometric and kinematic models for detachment folds with fixed and variable detachment depth. Journal of Structural Geology, 1995, 17(4):525-588.
    Jadoon I A K, Lillie R J, Humayon M, Lawrence R D, Ali S M, Cheema A. Mechanism of deformation and the nature of the crust underneath the Himalayan foreland fold-and-thrust belts in Pakistan. EOS. Transaction, American Geophysical Union, 1989, 70, 1372-1373.
    Jadoon I A K, Lawrence R D, Lillie R J. Balanced and retrodeformed geological cross-section from the frontal Sulaiman Lobe, Pasistan: Duplex development in thick strata along the western margin of the Indian Plate. In: McClay K R, ed. Thrust Tectonics. London: Chapman and Hall, 1992, 343-356.
    Jamison W R. Geometric analyses of fold development in overthrust terranes. Journal of structural Geology, 1987, 9: 207-219.
    Jaume S C, Lillie R J. Mechanics of the Salt Range-Potwar Plateau, Pakistan. A fold and thrust belt underlain by evaporates. Tectonics, 1988, 57-71.
    Jordan T E. Thrust loads and foreland basin evolution, Cretaceous, western United States. American Association of Petroleum Geologists Bulletin, 1981, 65 (12).
    L.Yong, Allen P A, Densmore A L, X. Qiang. Evolution of the Longmen Shan Foreland Basin (Western Sichuan, China) During the Late Triassic Indosinian Orogeny. Basin Research, 2003,15,117-138.
    Laubscher H P. A north hinge zone of the western Alps. Eclogae Geologicae Helvetiae,1982, 75, 233-246.
    Laubscher H P. Detachment, shear and compression in the Central Alps. Geological Society of America Memoir, 1983, 158, 191-211.
    Laubscher H P. The kinematic puzzle of the Neogene Northern Andes. In: Schaer J P, Rodgers J, eds. The Anatomy of Mountain Ranges. Princeton: Princeton University Press, 1987, 211-277.
    Laubscher H P. Material balance in Alpine orogeny. Geological Society of America Bulletin,1988, 100, 1313-1328.
    Laubscher H P. The tectonics of the southern Alps and the Austroalpine nappes: a comparison. In: Coward, M P, Dietrich, D G, eds. Geological Society of London Special Publication, 1989, 45, 229-242.
    Laubscher H P. The problem of the deep structure of the Southern Alps: 3-D material balance considerations and regional consequences. Tectonophysics, 1990, 176, 103-121.
    Laubscher H P. The Alps-a transpressive pile of peels. In: McClay K R, ed. Thrust Tectonics. London: Chapman and Hall, 1992, 277-284.
    Lillie R J, Johnson G G, Yousaf M, Zamin, A S H, Yeats R S. Structural development within the Himalayan foreland fold-and-thrust belt of Pakistan. In: Beaumont C , Tankand A J, eds. Sedimentary basins and basin-forming mechanisms. Canadian Society of Petroleum Geologists Memoir, 1987, 12, 379-392.
    Lillie R J, Lawrence R D, Humayon M, Jadoon I A K. The Sulaiman thrust lobe of Pakistan: Early stage underthrusting of the Mesozoic rifted margin of the Indian subcontinent. Geological Society of America, 1989, Abstract with program, 318.
    Lu H F, Jia D, Chen C M, et al. Evidence for growth fault-bend folds in the Tarim Basin and its implications for fault slip rate in the Mesozoic and Cenozoic. Proc 30th Inter Geol Congr. Beijing, 1997, 14: 253-262.
    Marchant R, Steck A, Escher A, et al. An interpretion of the deep seismic lines from the Penninic Alps of Valais(Switzerland). Bull Soc Geol Fr, 1993, 164: 81-100.
    Marchant R. The underground of the Western Alps. Mem Geol Lausanne, 1993, 15: 1-137.
    McClay K R, Price N J, ed. Thrust and nappe tectonics. London: Blackwell Scientific Publications, 1981, 539.
    McClay K R, Insley M W. Duplex structures in the lewis thrust sheet, Crowsnest Pass, Rocky Mountains, Alberta, Canada, Journal of Structural Geology, 1986, 8: 911-922.
    McClay K R, ed. Thrust Tectonics. London: Chapman and Hall, 1992, 447.
    Mitra S. Duplex structures and imbricate thrust systems: Geometry, structural position, and hydrocarbon potential. AAPG Bulletin, 1986, 70: 1087-1112.
    Mitra S, Namson J. Equal-area balancing. American Journal of Science, 1989, 289: 563-599.
    Mitra S. Fault-propagation folds: geometry, kinematic evolution and hydrocarbon traps. AAPG Bulletin, 1990,74: 921-945.
    Morley C K. A classification of thrust fronts. AAPG Bulletin, 1986, 1:12-25.
    Mosar J, Suppe J. Role of shear in fault-propagation folding. In: McClay K R, ed. Thrust Tectonics. London: Chapman and Hall, 1992, 123-132.
    Munoz J A, Martinez A, Verges J. Thrust sequences in the eastern Spanish Pyrenees. Journal of Structural Geology, 1986, 8, 399-405.
    Munoz J A. Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. In: McClay K R, ed. Thrust Tectonics. London: Chapman and Hall, 1992, 235-246.
    Muraoka H, Kamata H. Displacement distribution along minor fault traces. Journal of Structural Geology, 1983, 5: 395-483.
    Paul D. Howell, Ben A, Van der Pluijm. Structural sequences and styles of subsidence in the Michigan basin, GSA Bulletin, 1999, 111(7): 974-991.
    Pavelic D. Tectonostratigraphic model for the north Croatian and north Bosnian sector of the Miocene Pannonian basin system. Basin Research, 2001, 12, 359-376.
    Platt J P, Coward M P, Deramond J, et al. Thrusting and deformation. Journal of Structural Geology, 1986, 8: 215-483.
    Poblet J, Hardy S. Reverse modeling of detachment folds application to the Pico del Agulia anticline in the South Central Pyrenees(Spain). Journal of Structural Geology, 1995, 17(12): 1707-1724.
    Poblet J, McClay K, Storti F, et al. Geometries of syntectonic sediments associated with single-layer detachment folds. Journal of Structural Geology, 1997, 17(3-4): 369-381.
    Price R A. Large scale gravitation flow of supracrustal rocks, southern Canadian Rockies. In: Gravity and tectonics. Newyork: Wiley, 1973, 491-502.
    Price R A. The Cordilleran foreland thrust and fold belt in the southern Canadian Rockies. In McClay K R, Price J eds. Thrust and Nappe Tectonics. London: Blackwell Scientific Publication, 1981, 427-448.
    Puigdefabregas C, Munoz J A, Marzo M. Thrust belt development in the Eastern Pyrenees and related depositional sequences in the southern foreland basin. In: Allen P A, Homewood P, ed. Foreland basins. Special Publication of the International Association of Sedimentologists, 1986, 8, 229-246.
    Puigdefabregas C, Souquet P. Tectosedimentary cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees. Tectonophysics, 1986, 129, 173-203.
    Puigdefaregas C, et al. Thrust belt development in the eastern Pyrenees and related depositional sequences in the southern foreland basin. In P. A. Allen and P. Homewood, eds: Foreland basin , International Association of Sedimentologists Special Publication, 1986, 8: 229- 246.
    Puigdefabregas C, Munoz J A, Verges J. Thrusting and foreland basin evolution in the Southern
    Pyrenees. In: McClay K R, ed. Thrust Tectonics. London: Chapman and Hall, 1992, 247-254.
    Rich J L. Mechanics of low-angle overthrust faulting as illustrated by Cumberland thrust block, Virginia, Kentucky and Tennessee. AAPG Bulletin, 1934, 18: 1584-1596.
    Schultz R A. Understanding the process of faulting: selected challenges and opportunities at the edge of the 21st century. Journal of Structural Geology, 1999, 21: 985-993.
    Stewart A. Geometry of thin-skinned tectonic systems in relation detachment larger thickness in sedimentary basins. Tectonics, 1999,18(4): 719-732.
    Suppe J. Geometry and kinematics of fault-bend folding. Amer Jour of Sci, 1983, 283: 648-721.
    Suppe J, Medwedeff D A. Fault-propagation folding. Geological Society of America Bulletin, 1984, 16: 670.
    Suppe J. Principle of Structural Geology. New Jersey: Englewood Cliffs, Prentice-Hall, 1985, 537.
    Suppe J, Medwedeff D A. Geometry and kinematics of fault-propagation folding. Ecologae Geol Helv, 1990, 83(3):409-454.
    Suppe J, Chou G T, Hook S C. Rates of folding and faulting determined from growth strata. In: McClay K R, ed. Thrust Tectonics. London: Chapman and Hall, 1992, 105-121.
    Tankard A J. On the depositional response to thrusting and lithospheric flexure: Examples from the Appalachian and Rocky Mountain basin, Foreland Basin . Spec Publs. int. A ss. Sediment, 1986.
    Treloar P J, Coward M P, Chambers A F, Izatt C N, Jackson K C. Thrust geometries, interferences and rotations in the Northwest Himalaya. In: McClay K R, ed. Thrust Tectonics. London: Chapman and Hall, 1992, 325-342.
    Vail P R, Mitchum R W, Thompson S. Seismic stratigraphy and global changes of sea level. Part4: Global cycles of relative changes of sea level. In: C.E. Payton(Editor), Seismic Stratigraphy-Applications to Hydrocarbon Exploration, AAPG Memoir26, 1977, 83-98.
    Vail P R, et al. The stratigraphic signature of tectonics, eustasy and sedimentology-an overview. In: Einsele et al. (Editors), Cycles and Events in Stratigraphy. Springer-Verlag, 1991.
    Vann I R, Graham R H, Hayward A B. The structure of mountain fronts. Journal of Structural Geology, 1986, 8(3):215-227.
    Verges J, Munoz J A, Martinez. South Pyrenean fold and thrust belt: The role of foreland evaporitic levels in thrust geometry. In: McClay K R, ed. Thrust Tectonics. London: Chapman and Hall, 1992, 255-264.
    Willett S D. Dynamic and kinematic growth and change of a Coulomb wedge. In: McClay K R, ed. Thrust Tectonics. London: Chapman and Hall, 1992.
    Williams G, Chapman T. Strains developed in the hanging-walls of thrust due to their slip/propagation rate: a dislocation model. Journal of Structural Geology, 1983, 5(6): 563-571.
    Williams G D, Fischer M W. A balanced section across the Pyrenean orogenic belt. Tectonics, 1984, 3: 733-780.
    Williams G D. Thrust tectonics in the south central Pyrenees. Journal of Structural Geology, 1985, 7: 11-17.
    Woodward N B. Thrust fault geometry of the Snake Range. Idaho and Wyoming. Geological Soceity of American Bulletin, 1986, 2: 178-193.
    Woodward N B. Geological applicability of critical-wedge thrust belt models. Geological Society of America Bulletin, 1987, 99: 827-832.
    Woodward N B, Boyer S E, Suppe J. Balanced Geological Cross-sections and Essential Technique in Geological Research and Exploration. American Geophysical Union, 1989.
    Woodward N B, Boyer S E, Suppe J. Balanced Geological Cross-Sections. American Geophysical Union Short Course in Geology, 1989, 6: 132.
    Yani Najman, Kit Johnson, Nicola White and Grahame Oliver. Evolution of the Himalayan foreland basin, NW India. Basin Research, 2004, 16, 1-24.
    Yeats R S, Khan S H, Akhtar M. Late Quaternary deformation of the Salt Range of Pakistan. Geological Society of America Bulletin, 1984, 95, 958-966.
    Yeats R S, Hussain A. Timing of structural events in the Himalayan foothills of northwestern Pakistan. Geological Society of America Bulletin, 1987, 99, 161-176.
    Yeats R S. Folds and blind thrusts in the sub-Himalaya and 1905 Kangra earthquake(M=8). EOS Transactions, American Geophysical Union, 1989, 70,1368.
    Zapata T R, Allmendinger R W. Growth strata records of instantaneous and progressive limb rotation in the Precordillera thrust belt and Bermejo basin, Argentina. Tectonics, 1996, 15(5): 1065-1083.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700