用户名: 密码: 验证码:
基于消除反应构筑碳碳重键的一锅合成方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳碳重键化合物在有机化学、应用化学及其它相关学科中具有重要地位。因此,探索新的构筑碳碳重键的方法具有重要的理论和实际意义。一锅合成法是一种资源节约和环境友好的方法,它具有过程简化、总产率较高以及经济节省的特点,在各式各样的化合物合成中均受到合成化学家的青睐。本文以消除反应为基本反应,着重从方法学角度首先考察了由几种砜类亲核试剂与醛反应,一锅制备碳碳重键(包括带功能基的碳碳重键)化合物的合成战略,并在此基础上探讨了一些重要的特殊结构碳碳重键化合物的应用。
     本论文主要包括以下内容:
     第1章,综述了构筑碳碳重键化合物所涉及的各种类型的反应,介绍了本文中将利用消除反应一锅合成的重键化合物的用途。
     第2章,在亲核加成、亲核取代、消除等基本反应基础上,提出了合成甲硫芳炔类化合物的一锅合成策略。利用亲核硫型试剂甲硫甲基苯基砜(methylthiomethyl phenyl sulfone, MP-S)与芳香醛进行组合,成功地一锅合成了一系列甲硫芳炔类化合物。还通过对反应中各阶段生成的中间体的捕捉及结构分析,考察了甲硫芳炔类化合物的形成机制。结果表明,一锅合成反应经历了含有两个离去基团中间体的形成和后续的两次消除过程。该方法原料易得,操作简单,可得到较好的产率(>70%)。此外,反应还具有副产物少、容易分离和纯化的优点。
     第3章,本章介绍了一锅法得到的甲硫芳基乙炔类化合物应用方面的扩展,将1-甲硫基-(4-碘)苯乙炔与各种芳炔砌块进行组合,设计并合成了一些几何形状、尺度大小、功能基数目相异以及具有π共轭体系的新颖的多头官能基芳炔硫醚类化合物,在此基础上考察了它们在纳米团簇组装过程中的应用和特殊性能。
     第4章,描述了一种合成1-芳基丙炔的新方法。详细考察了该反应过程中各步骤的反应条件,建立了双消除法一锅制备1-芳基丙炔的合成策略。利用甲基苯基砜与芳香醛进行一锅反应,成功地合成了一系列1-芳基丙炔化合物。该方法具有操作简单、原料易得的优点,而且一些含有卤原子、醚键和杂环的化合物以及含有两个丙炔基的化合物也可以通过此法来合成。
     第5章,提供了制备共轭烯炔类化合物的一种新方法。提出了消除法的一锅合成思想,确立了一锅法的合成路线。在1,3-二甲基-四氢-2-嘧啶酮(DMPU)存在下,利用第4章合成的1-芳基丙炔化合物与醛作用,通过新的离去基的形成,然后经历消除反应成功地制备出了几种共轭芳基烯炔类化合物。对这些化合物进行初步的光谱学考察。
     第6章,描述一种构建碳碳重键的简便方法,以苄基砜为原料,在碱作用下其先发生两分子间亲核取代随之发生消除反应一锅合成出了双键化合物。在此基础上利用该合成方法成功地制备了挑战性螺旋环状化合物。并对该螺旋环状分子结构进行光谱学确证。
     综上所述,本文以消除反应为基本反应,提出了制备一些重要结构重键化合物的一锅合成思想。通过合成路线设定,反应条件探索及中间体捕捉和分析并进一步合成了一些重要的含有重键的化合物。这些为构筑碳碳重键化合物提供的新方法学研究,不仅丰富了有机化学内容,对于重键化合物在材料化学和应用化学中的应用亦具有重要意义。
Carbon-Carbon multiple-bond compounds is playing an important role in organic chemistry, applied chemistry and related fields. So it is academic and practical significance to explored new methods for constructing carbon-carbon multiple-bond. By taking advantage of simplified process, higher total yield and economical operation, one-pot synthesis process acts a procedure with resource-saving and environment friendly, which have caught the eyes of synthesis chemists thus be used to synthesize various compounds. In this dissertation, elimination protocol was employed as a basal route, so a new strategy was developed to construct multiple-bond (including multiple-bond with functional group) via one-pot process by examineing some sulfones reaction with aldehydes. And the application of some Carbon-Carbon multiple-bond compounds with especial structure was explored.
     This dissertation consists of six parts and is described in below contents.
     Chapter 1, Various reactions for construction of multiple-bond compounds and the application of some target moleculars were firstly subjected to review.
     Chapter 2, Based on nucleophilic addition, nucleophilic substitution and elimination reaction, one-pot procedure for synthesizing Methylthio aromatic acetylenes was presented. And reaction with methylthiomethyl phenyl sulfone(MP-S) and aryl aldehyde then through double elimination procedure have furnished an array of methylthio aromatic acetylenes in good yield. By capturing and identifying the structures of intermediates which generated from reaction process, the postulated mechanism of one-pot double elimination protocol was examined. The results showed one-pot procedure contained the formation of intermediate which borne two leaving groups and double elimination process of these two leaving groups. The advantages of present protocol are facile availability of starting materials, easy operation and higher yield, besides of fewer byproduct and efficient purification of the target products.
     Chapter 3, the extended application of several methylthio aromatic acetylenes obtained by one-pot procedure was discussed here. Multidentate thioether molecules with different size, shape, functional groups andπ-conjugated bone were designed and synthesized. So their application in the evolution to mediate the assembly with gold nanoparticle and then appeared special property were examined.
     Chapter 4, a new protocol for synthesis of (1-propynyl)arenes was discussed. The synthesis methodology to (1-propynyl)arenes through one-pot double elimination procedure was developed based on detailed exploration of the reaction condition of each step. So reaction with methyl phenyl sulfone and aryl aldehyde then through a double elimination procedure have afforded an array of (1-propynyl)arenes in moderate to excellent yield. The virtues of present protocol are facile available starting materials, easy operation. And some products with a variety of functional groups such as halogen, ether, heteroaromatic and some compounds borne two 1-propynyl groups were synthesized via this protocol.
     Chapter 5, a new process for synthesis of enynes was presented here. Firstly, the idea of one-pot elimination procedure was presented and then the synthesis route to enynes via one-pot elimination procedure was established. Employment of N,N-dimethyl-propyleneurea(DMPU) as additive agent, several enynes have been synthesized via one-pot procedure which consisted of reaction of (1-propynyl)arenes which were obtained in the chart 4 with aldehyde, formation of intermediate of new leaving group and elimination process of the leaving group, and the preliminary spectral examination of these compounds was presented here.
     Chapter 6, a new protocol for construction of double-bond was presented here. Benzyl sulfones undergo the process of intermolecular nucleophilic substitution and elimination reaction to give double-bond compounds. On the basis of this protocol, helical cyclophane was prepared via the designed one-pot protocol. And the structure of helical cyclophane was identified by spectral examination.
     In conclusion, elimination reaction was employed as the basic protocol and the idea of one-pot synthesis procedure to prepare some multiple-bond compounds with important structure. Some important were synthesized via this protocol based on the modification by redesigning synthesis route, exploring reaction conditions and reagents, capturing and identifying the intermediates, so one-pot elimination protocol was developed to construct Carbon-Carbon multiple-bond. This protocol for synthesis of multiple-bond compound will enrich the contents of organic chemistry and it is significance of the application of compounds in material chemistry and applied chemistry.
引文
[1]Stang P J, Diederich F. Mordern Acetylene Chemsity. Weinheim: VCH, 1995
    [2]Diederich F., Tykwinski R R, Stang P J. Acetylene Chemsity. Weinheim: Wiley-VCH, 2005
    [3]Tour J M. Molecular Electronics, Synthesis and Testing of Components. Acc Chem Rev, 2000,33(11):791-804
    [4]Pinto M R, Schanze K S. Conjugated Polyelectrolytes: Synthesis and Applications. Synthsis, 2002,2002(9):1293-1309
    [5]Yamamoto T. Synthesis of π-Conjugated Polymers Bearing Electronic and Optical Functionalities by Organometallic Poly-condensations: Chemical Properties and Applications of the π-Conjugated Polymers. Synlett, 2003,2003(4):425-450
    [6]Kokil A, Shiyanovskaya I, Singer K D, et al. High Charge Carrier Mobility in Conjugated Organometallic Polymer Networks. J Am Chem Soc, 2002,124(34):9978-9979
    [7]Morisaki Y, Chujo Y. Synthesis of Novel Alternating π-Conjugated Copolymers Having [2.2]Paracyclophane and Fluorene Units in the Main Chain Leading to the Blue Light-Emitting Materials. Chem Lett, 2002,31(2):194-194
    [8]Mongin O, Porrès L, Moreaux L, et al. Synthesis and Photophysical Properties of New Conjugated Fluorophores Designed for Two-Photon-Excited Fluorescence. Org lett, 2002,4(5):719-722
    [9]Breen C A, Tischler J R, Bulovic V, et al. Highly Efficient Blue Electroluminescence from Poly(phenylene ethynylene) via Energy Transfer from a Hole-Transport Matrix. Adv Mater, 2005,17(16):1981-1985
    [10]Breen C A, Rifai S, Bulovic V, et al. Blue Electroluminescence from Oxadiazole Grafted Poly(phenylene-ethynylene)s. Nano Lett, 2005,5(8):1597-1601
    [11]Ding L, Lu Z, Egbe D A M, et al. Structure-Morphology Electro-luminescence Relationship for Hybrid Conjugated Polymers. Macromolecules, 2004,37(26):10031-10035
    [12]Remmers M, Neher D, Gruener J, et al. The Optical, Electronic, and Electroluminescent Properties of Novel Poly(p-phenylene)-Related Polymers. Macromolecules, 1996,29(23):7432-7445
    [13]Jeglinski S A, Amir O, Wei X, et al. Symmetric Light Emitting Devices fromPoly(p-diethynylene phrnylene) (p-diphenylene vinylene) Derivatives. Appl Phys Lett, 1995,67(26):3960-3962
    [14]H?ger S, Enkelmann V, Bonrad K, et al. Alkyl-Substituted Shape-Persistent Macrocycles: The First Discotic Liquid Crystal Composed of a Rigid Periphery and a Flexible Core. Angew Chem Int Ed Engl, 2000,39(13):2267-2270
    [15]Lee C-H, Yamamoto T. A New Class of Star-Shaped Discotic Liquid Crystal Containing a 2,4,6-Triphenyl-1,3,5-triazine Unit as a Core. Bull Chem Soc Jpn, 2002,75(3):615-618
    [16]Pesak D J, Moore J S. Columnar Liquid Crystals from Shape-Persistent Dendritic Molecules. Angew Chem Int Ed Engl, 1997,36(15):1636-1639
    [17]Atas E, Peng Z, Kleiman V D, et al. Energy Transfer in Unsymmetrical Phenylene Ethynylene Dendrimers. J Phys Chem B, 2005,109(28):13553-13560
    [18]Zhao Y, Shirai Y, Slepkov A D, et al. Synthesis, Spectroscopic and Nonlinear Optical Properties of Multiple [60]Fullerene-Oligo (p-phenylene ethynylene) Hybrids. Chem Eur J, 2005,11(12):3643-3658
    [19]Goto K, Moore J S. Sequence-Specific Binding of m-Phenylene Ethynylene Foldamers to a Piperazinium Dihydrochloride Salt. Org lett, 2005,7(9):1683-1686
    [20]Bartsch R A, Zavada J. Stereochemical and Base Species Dichotomies in Olefin-forming E2 Eliminations. Chem Rev, 1980,80(6):453-494
    [21]Screttas C G, Smonou I C. Ring-size dependent orientation in dehydration of 1-[(ethoxycarbonyl)methyl]cycloalkanols. J Org Chem, 1988,53(4):893-894
    [22]DePuy C. H., King R. W. Pyrolytic Cis Eliminations. Chem Rev, 1960,60(5): 431-457
    [23]Fletcher S R, Baker R, Chambers R H, et al. Total Synthesis and Determination of the Absolute Configuration of Epibatidine. J Org Chem, 1994,59(7):1771-1778
    [24]Cope A C, Foster T T, Towle P H. Thermal Decomposition of Amine Oxides to Olefins and Dialkylhydroxylamines. J. Am. Chem. Soc.; 1949,71(12):3929-3934
    [25]Matthews D P, Waid P P, Sabol J S, et al. The Synthesis of (1-Fluorovinyl)tributyltin: A Synthetic Equivalent for the 1-Fluoroethene Anion. Tetrahedron Lett, 1994,35(29):5177-5180
    [26]Marschner C, Baumgartner J, Griengl H. Synthesis of All Stereoisomeric Carbapentofuranoses. J Org Chem, 1995,60(16):5224-5235
    [27]Crimmins M T, Jung D K, Gray J L. Synthetic Studies on the Ginkgolides: Total Synthesis of (±)-Bilobalide. J Am Chem Soc, 1993,115(8):3146-3155
    [28]Reich Hans J, Wollowitz S. Preparation of α,β-Unsaturated Carbonyl Compoundsand Nitriles by Selenoxide Elimination. Org reactions, 1993,44(10),1-1
    [29]McMurry J E. Carbonyl-coupling Reactions Using Low-valent Titanium. Chem Rev, 1989,89(7):1513-1524
    [30]McMurry J E, Fleming M P. New Method for the Reductive Coupling of Carbonyls to Olefins, Synthesis of β-Carotene. J Am Chem Soc, 1974,96(14):4708-4709
    [31]Corey E J, Winter R A E. A New, Stereospecific Olefin Synthesis from 1,2-Diols. J Am Chem Soc, 1963,85(17):2677-2678
    [32]Lindlar H, Dubuis R. Palladium Catalyst for Partial Reduction of Acetylenens. Org Synth Coll. 1973, 5(46),880-880
    [33]Henrick C A. the Synthesis of Insect Sex Pheromones. Tetrahedron, 1977,33(15):1845-1889
    [34]Brown H C, Molander G A. Vinylic Organoboranes 2: Improved Procedures for the Protonolysis of Alkenyldialkylboranes Providing a Simplified Stereospecific Synthesis of (Z)-Alkenes. J Org Chem, 1986,51(24):4512-4514
    [35]Blackburn L, Kanno H, Taylor R J K. In situ Alcohol Oxidation-Wittig Reactions Using N-methoxy-N-methyl-2-(triphenylphosphoranylidine)acetamide: Application to the Synthesis of a Novel Analogue of 5-Oxo-eicosatetraenoic Acid. Tetrahedron Lett, 2003,44(1):115-118
    [36]Maryanoff B E, Reitz A B. The Wittig Olefination Reaction and Modifications Involving Phosphoryl-stabilized Carbanions: Stereochemistry, Mechanism, and Selected Synthetic Aspects. Chem Rev, 1989,89(4):863-927
    [37]黄宪, 王彦广, 陈振初. 新编有机合成化学. 北京:化学工业出版社, 2003,73
    [38]Ando K. Highly Selective Synthesis of Z-Unsaturated Esters by Using New Horner-Emmons Reagtents, Ethyl(diarylphosphono) Acetates. J Org Chem, 1997,62(7):1934-1939
    [39]Lattanzi A, Orelli L R, Barone P, et al. Convenient Procedure of Horner-Wadsworth-Emmons Olefination for the Synthesis of Simple and Functionalized α, β-Unsaturated Nitriles. Tetrahedron Lett, 2003,44(7):1333-1337
    [40]Peterson D J. Carbonyl Olefination Reaction Using Silyl-substituted Organometallic Compounds. J Org Chem, 1968,33(2):780-784
    [41]Schrock R R. Olefin Metathesis by Molybdenum Imido Alkylidene Catalysts. Tetrahedron, 1999,55(27):8141-8153
    [42]Schrock R R, Hoveyda A H. Molybdenum and Tungsten Imido Alkylidene Complexes as Efficient Olefin-Metathesis Catalysts. Angew Chem Int Ed, 2003,42(38):4592-4633
    [43]Grubbs R H. Olefin-Metathesis Catalysts for the Preparation of Molecules and Materials (Nobel Lecture). Angew Chem Int Ed Engl, 2006,45(23):3760-3765
    [44]Grubbs R H, Chang S. Recent Advances in Olefin Metathesis and Its Application in Organic Synthesis. Tetrahedron, 1998,54(18):4413-4696
    [45]Grubbs R H, Tumas W. Polymer Synthesis and Organotransition Metal Chemistry. Science, 1989,243(17):907-915
    [46]Grubbs R H, Carr D D, Hoppin C, et al. Consideration of the Mechanism of the Metal Catalyzed Olefin Metathesis Reaction. J Am Chem Soc, 1976,98(12):3478-3483
    [47]Grubbs R H, Burk P L, Carr D D. Mechanism of the Olefin Metathesis Reaction. J Am Chem Soc, 1975,97(11):3265-3267
    [48]Mohr B, Sauvage J P, Grubbs R H. High-Yield Synthesis of [2] Catenanes by Intramolecular Ring-Closing Metathesis. Angew Chem Int Ed Engl, 1997,36(12):1308-1310
    [49]Curn G, Gallo R, Ipsale S, et al. Selective Synthesis of Alkynes by Catalytic Dehydrogenation of Alkenes over Polymer-supported Palladium Acetate in The Liquid Phase. J Chem Soc, Chem Commun, 1985,1985(22):1571-1573
    [50]Abidi S L. Ethylidyne Alkynes from Isopropylidene Olefins. Tetrahedron Lett, 1986,27(3):267-270
    [51]Abidi S L. Direct Conversion of Terpenylalkanolamines to Ethylidyne N-nitroso Compounds. J Org Chem, 1986,51(14):2687-2694
    [52]Larock R C. Comprehensive Organic Transformation. A Guide to Functional Group Preparations. New York: VCH, 1989, 283.
    [53]Reich H J, Willis W W. Organoselenium chemistry: Formation of Acetylenes and Allenes by syn-Elimination of Vinyl Selenoxides. J Am Chem Soc, 1980,102(18):5967-5968
    [54]Corey E J, Wollenberg R H. Nucleophilic Ethynyl Group Equivalent and Its Use in Conjugate Addition to α-, β-Enones. J Am Chem Soc, 1974,96(17):5581-5583
    [55]Shibasaki M, Torisawa Y, Ikegami S. A New Method for the Conversion of Aldehydes (RCH2CHO) to Acetylenes (RC&.tbnd; CH) via 1-Alkenylstannanes, Application to the synthesis of 9(O)-thia-Δ6-PGI1. Tetrahedron Lett, 1982,23(44):4607-4610
    [56]Jones E R H, Eglinton G, Whiting M C. 4-Pentyn-1-ol. Org synth, Coll, 1963,4(45):755.
    [57]Tobe Y, Fujii T, Naemura K. Photochemical Method for Generation of Linear Polyynes: [2 + 2] Cycloreversion of [4.3.2]Propellatrienes Extruding Indan. J Org Chem, 1994,59(6):1236-1237
    [58]Tobe Y, Fujii T, Matsumoto H, et al. A New Entry into Cyclo[n]carbons: [2 + 2] Cycloreversion of Propellane-Annelated Dehydroannulenes. J Am Chem Soc, 1996,118(11):2758-2759
    [59]Negishi E, Baba S. Convenient Method for the Tertiary Alkyl-alkynyl Coupling via Organoalanes. J Am Chem Soc, 1975,97(25):7385-7387
    [60]Normant J F, Bourgain M. Preparation de cetones α acetyleniques a partir d'acetylures cuivreux. Tetrahedron Letters,1970,11(31):2659-2662
    [61]Naruse M. the Reaction of Lithium Trialkyalkenyborate With Methyl Sulphinyl Chloride: a Novel Route to Interal Acetylenes. Tetrahedron Lett, 1973,14(21):1847-1850
    [62]Sonogashira K, Tohda Y, Hagihara N. A Convenient Synthesis of Acetylenes: Catalytic Substitutions of Acetylenic Hydrogen with Bromoalkenes, Iodoarenes and Bromopyridines. Tetrehedron Lett, 1975,16(50):4467-4470
    [63]Tohda Y, Sonogashira K, Hagihara N. A Convenient Synthesis of 1-Alkynyl Ketones and 2-Alkynamides. Synthesis, 1977,1977(11):777-778
    [64]Lu M, Wei Y, Xu B, et al. Hybrid Molecular Dumbbells: Bridging Polyoxometalate Clusters with an Organic π-Conjugated Rod. Angew Chem Int Ed Engl, 2002,41(9):1566-1568
    [65]Pennellar F, Banks R L, Bailey G C. Disproportionation of alkynes. J Chem Soc, Chem Commun, 1968,1968(23):1548-1549
    [66]Mortreux A, Blanchard M. Metathesis of alkynes by a molybdenum hexacarbonyl–resorcinol catalyst. J Chem Soc, Chem Commun, 1974,1974(19):786-787
    [67]Katz T J, McGinnis J. Mechanism of the olefin metathesis reaction. J Am Chem Soc, 1975,97(6):1592-1594
    [68]Wengrovius J H, Sancho J, Schrock R R. Metathesis of acetylenes by tungsten(VI)-alkylidyne complexes. J Am Chem Soc, 1981,103(13):3932-3934
    [69]Sancho J, Schrock R R. Acetylene metathesis by tungsten(VI) alkylidyne complexes. J Mol Catal, 1982,15(1-2):75-79
    [70]Kaneta N, Hirai T, Mori M. Reaction of Alkyne Having Hydroxyphenyl Group with Mo(CO)6. Chem Lett, 1995,24(8):627-629
    [71]Kaneta N, Hikichi K, Asaka S-I, et al. Novel Synthesis of Disubstituted AlkyneUsing Molybdenum Catalyzed Cross-Alkyne Metathesis. Chem Lett, 1995,24(11):1055-1058
    [72]Bunz U H F, Kloppenburg L. Acyclic Diyne Metathesis (ADIMET), an Efficient Route to Poly(phenylene)ethynylenes (PPEs) and Nonconjugated Polyalkynylenes of High Molecular Weight. Angew Chem Int Ed Engl, 1999,38(4):478-481.
    [73]Zhang W, Moore J S. Arylene Ethynylene Macrocycles Prepared by Precipitation-Driven Alkyne Metathesis. J Am Chem Soc, 2004,126(40):12796-12796
    [74]Balakrishnan K, Datar A, Zhang W, et al. Nanofibril Self-Assembly of an Arylene Ethynylene Macrocycle. J Am Chem Soc, 2006,128(20):6576-6577
    [75]Pariya K N, Sarkar J A. Alkene Metathesis: New Developments in Catalyst Design and Application. Coord Chem Rev, 1998,168(1):1-48
    [76]Trnka T M, Grubbs R H. The Development of L2X2Ru=CHR Olefin Metathesis Catalysts: An Organometallic Success Story. Acc Chem Rev, 2001,34(1):18-29
    [77]Nicolaou K C, Bulger P G, Sarlah D. Metathesis Reactions in Total Synthesis. Angew Chem Int Ed Engl, 2005,44(29):4490-4527
    [78]Chauvin Y. Olefin Metathesis: The Early Days (Nobel Lecture). Angew Chem Int Ed Engl, 2006,45(23):3741-3747
    [79]Fürstner A, Mathes C, Lehmann C W. Alkyne Metathesis: Development of a Novel Molybdenum-Based Catalyst System and Its Application to the Total Synthesis of Epothilone A and C. Chem Eur J, 2001,7(24):5299-5317
    [80]Fürstner A, Guth O, Rumbo A, et al. Ring Closing Alkyne Metathesis, Comparative Investigation of Two Different Catalyst Systems and Application to the Stereoselective Synthesis of Olfactory Lactones, Azamacrolides, and the Macrocyclic Perimeter of the Marine Alkaloid Nakadomarin A. J Am Chem Soc, 1999,121(48):11108-11113
    [81]Weiss K, Michel A, Auth E M. et al. Acyclic Diyne Metathesis (ADIMET), an Efficient Route to Poly(phenylene)ethynylenes (PPEs) and Nonconjugated Polyalkynylenes of High Molecular Weight. Angew Chem Int Ed, 1997,36(5):506-509
    [82]Brizius G, Kroth S, Bunz U H F. Alkyne-Bridged Carbazole Polymers by Alkyne Metathesis. Macromolecules, 2002,35(13):5317-5319
    [83]Pschirer N G, Bunz U H F. Alkyne metathesis with simple catalyst systems: High yield dimerization of propynylated aromatics; scope and limitations. TetrahedronLett, 1999,40(13):2481-2484
    [84]Ge P-H, Fu W, Herrmann W A, et al. Structural Characterization of a Cyclohexameric meta-Phenyleneethynylene Made by Alkyne Metathesis with In Situ Catalysts. Angew Chem Int Ed, 2000,39(20):3607-3610
    [85]Miljani? O ?, Vollhardt K P C, Whitener G D. An Alkyne Metathesis-Based Route to ortho-Dehydrobenzannulenes. Synlett, 2003,2003(1):29-34
    [86]An D-L, Nakano T, Orita A, et al. Enantiopure Double-Helical Alkynyl Cyclophanes. Angew Chem Int Ed Engl, 2002, 41(1):171-173
    [87]Posner G H. Multicomponent One-Pot Annulations Forming 3 to 6 Bonds. Chem Rev, 1986,86(5):831-844
    [88]Tietze L F, Beifuss U. Sequential Transformations in Organic Chemistry: A Synthetic Strategy with a Future. Angew Chem Int Ed Engl, 1993,32(2):131-163
    [89]Otera J. Double Elimination Protocol for Aryleneethynylenes. Pure Appl Chem, 2006,78(4):731-748
    [90]Orita A, Yamashita Y, Toh A, et al. Integrated Chemical Process: An Extremely Concise Synthesis of Vitamin A. Angew Chem Int Ed Engl, 1997,36(7):779-780
    [91]Orita A, Yoshioka N, Struwe P, et al. Integrated Chemical Process. One-pot Double Elimination Method for Acetylenes. Chem Eur J, 1999,5(4):1355-1363
    [92]Orita A, Yoshioka N, Otera J. Integrated Chemical Process: One-Pot Preparation of Acetylenes by Peterson-Sulfone Elimination. Chem Lett, 1997,26(10):1023-1024
    [93]Organ M, Winkle D D. Noncascade Tandem Transformations Involving Allylic Silanes. 1. Pericyclic and Ionic Reactions Combined into “One-Pot” Sequences. J Org Chem, 1997,62(6):1881-1885
    [94]Mandai T, Yanagi T, Araki K, et al. Novel Synthesis of Acetylenes and Polyenes via a Desulfonylation Reaction. J Am Chem Soc, 1984,106(12):3670-3672
    [95]Otera J, Misawa H, Sugimono K. Mechanistic Aspects and Profiles of the Double Elimination Reaction of β-Substituted Sulfones. J Org Chem, 1986,51(20):3830-3833
    [96]Orita A, Alonso E, Yaruva J, et al. Integrated Chemical Process, Convergent Strategy for Ortho-phenylene Ethynylene Skeleton by One-pot Double Elimination Method. Synlett, 2000,2000(9):1333-1335
    [97]Orita A, Miyamoto K, Nakashima M, et al. Double Elimination Protocol for Convenient Synthesis of Dihalodiphenylacetylenes: Versatile Building Blocks for Tailor-Made Phenylene-Ethynylenes. AdV Synth Catal, 2004,346(7):767-776
    [98]Orita A, Ye F-G, Doumoto A, et al. Double Elimination Protocol for Access to Unsymmetrical Di(phenylethynyl)benzenes. Chem Lett, 2003,32(1):104-105
    [99]Ye F-G, Orita A, Doumoto A, et al. Double elimination protocol for access to unsymmetrically substituted aromatic polyynes starting from sulfones and aldehydes. Tetrahedron, 2003, 59(30):5635-5643
    [100]Orita A, Ye F-G, Babu G, et al. Double elimination protocol for the synthesis of arylene ethynylenes containing heteroaromatic rings. Can J Chem, 2005, 83(6-7):716-727
    [101]Orita A, Hasegawa D, Nakano T, et al. Double Elimination Protocol for Synthesis of 5,6,11,12-Tetradehydrodibenzo[a,e]cyclooctene. Chem Eur J, 2002,8(9):2000-2004
    [102]Orita A, Nakano T, Yokoyama T, et al. Double Elimination Protocol for Access to Pyridine-containing Arylene–Ethynylenes. Chem Lett, 2004,33(10):1298-1230
    [103]Orita A, Nakano T, An D-L, et al. Metal-assisted Assembly of Pyridine-Containing Arylene Ethynylene Strands to Enantiopure Double Helicates. J Am Chem Soc, 2004,126(33):10389-10396
    [104]Orita A, An D-L, Nakano T, et al. Sulfoximine Version of Double Elimination Protocol for Synthesis of Chiral Acetylenic Cyclophanes. Chem Eur J, 2002,8(9):2005-2010
    [105]Kleijn H, Vermeer P. [(Trimethylsilyl)methyl]copper(I) Species: Versatile Reagents to Prepare Functionally Substituted Allylic Silanes. J Org Chem, 1985,50(25):5143-5148
    [106]Antonio L B, Martins T L C, Silveira C C, et al. Synthesis of Chalcogenol Esters from Chalcogenoacetylenes. Tetrahedron, 2001,57(16):3297-3300
    [107]Barluenga J, Pedro J C, Lopez F, et al. Iodofunctionalization of Alkynylsulfides with Ipy2BF4. Tetrahedron Lett, 1990,31(50):7375-7378
    [108]Riddel N, Tam W. Ruthenium-catalyzed [2+2] Cycloadditions of Alkynyl Sufides and Alkynyl Sulfones. J Org Chem, 1997,62(7):1934-1937
    [109]Brian D G, Catherine M M, Miller J A, et al. Cyclopentenyl Sulphides via (3+2)Cycloaddition. Tetrahedron Lett, 1987,28(6):689-692
    [110]Weck M, Jackiw J J, Rossi R R, et al. Ring-Opening Metathesis Polymerization from Surfaces. J Am Chem Soc, 1999,121(16):4088-4089
    [111]Li H, Luk Y Y, Mrksich M, et al. Catalytic Asymmetric Dihydroxylation by Gold Colloids Functionalized with Self- Assembled Monolayers. Langmuir, 1999,15(15):4957-4959
    [112]Prime K L, Whitesides G M. Adsorption of Proteins Onto Surfaces Containing End-attached Oligo(ethylene oxide): a Model System Using Self-assembled Monolayers. J Am Chem Soc, 1993,115(23):10714-10721
    [113]Deng L, Mrksich M M, Whitesides G, et al. Self-Assembled Monolayers of Alkanethiolates Presenting Tri(propylene sulfoxide) Groups Resist the Adsorption of Protein. J Am Chem Soc, 1996,118(21):5136-5137
    [114]Katz E, Buckmann A F, Willner I. Self-Powered Enzyme-Based Biosensors. J Am Chem Soc, 2001, 123(43):10752-10753
    [115]Hostetler M J, Wingate J E, Zhong C-J, et al. Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size. Langmuir, 1998,14(1):17-30
    [116]Daniel M-C, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem Rev, 2004,104(1):293-346
    [117]Tan Y, Li Y, Zhu D, et al. Fabrication of Gold Nanoparticles Using a Trithiol (Thiocyanuric Acid) as the Capping Agent. Langmuir, 2002,18(8):3392-3395
    [118]Maye M M, Lim I-I, Luo S, et al. Mediator-Template Assembly of Nanoparticles. J Am Chem Soc, 2005,127(5):1519-1529
    [119]Skotheim T A, Elsenbaumer R L, Reynolds J. Handbook of Conducting Polymers, 2nd ed, New York:Marcel Dekker, 1997
    [120]Kraft A, Grimsdale A C, Holmes A B. Electroluminescent Conjugated Polymers - Seeing Polymers in a New Light. Angew Chem Int Ed, 1998,37(4):402-428
    [121]Hide F, Diaz-Garcia M A, Schwartz B J, et al. New Developments in the Photonic Applications of Conjugated Polymers. Acc Chem Res, 1997,30(10):430-436
    [122]Yu G, Gao J C, Hummelen F, et al. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science, 1995,270(15):1789-1791
    [123]Patil N T, Wu H, Kadota I, et al. A Convenient and Efficient Route for the Allylation of Aromatic Amines and α-Aryl Aldehydes with Alkynes in the Presence of a Pd(0)/PhCOOH Combined Catalyst System. J Org Chem, 2004,69(25):8745-8750
    [124]Patil N T, Kadota I, Shibuya A, et al. Allylation of Carbon Pronucleophiles with Alkynes in the Presence of Palladium/Acetic Acid Catalyst. Adv Synth Catal, 2004,346(7):800-804
    [125]Patil N T, Yamamoto Y. Formation of a Quaternary Carbon Center through the Pd(0)/PhCOOH-Catalyzed Allylation of Cyclic β-Keto Esters and 1,3-Diketones with Alkynes. J Org Chem, 2004,69(19):6478-6481
    [126]Zhang W-J, Anthony R H, Margaret C H. Palladium-Catalyzed Coupling of Alkynes with Alcohols and Carboxylic Acids. Tetrahedron Lett, 2002,43(37):6575-6578
    [127]Burrell R C, Daoust K J, Bradley A Z, et al. Strained Cyclic Cumulene Intermediates in Diels-Alder Cycloadditions of Enynes and Diynes. J Am Chem Soc, 1996,118(17):4218-4219
    [128]Saito S, Tsuboya N, Yamamoto Y. First Synthesis of Exomethylene Paracyclophanes and Their Structural Properties. J Org Chem, 1997,62(15):5042-5047
    [129]Weibel D, Gevorgyan V, Yamamoto Y. Synthesis of Polyether Exomethylene Paracyclophanes via an Intramolecular Pd-Catalyzed Bis-Enyne Benzannulation Protocol. J Org Chem, 1998,63(4):1217-1220
    [130]Kawasaki T, Satio S, Yamamoto Y. Synthesis of Phthalides and 3,4-Dihydroisocoumarins Using the Palladium-catalyzed Intramolecular Benzannation Strategy. J Org Chem, 2002,67(8):2653-2658
    [131]Liu Y, Nishiura M, Wang Y, et al. π-Conjugated Aromatic Enynes as a Single-Emitting Component for White Electroluminescence. J Am Chem Soc, 2006,128(17):5592-5593.
    [132]Donhauser Z J, Nantooth B A, Kelly K F, et al. Molecular Engineering of Polarity and Interactions of Molecular Electronic Switches. J Am Chem Soc, 2005,127(49):17421-17426
    [133]Akiba K Y, Tsuchiya T, Inamoto N, et al. The Structure of the 1:1 Adduct of “Hector′s Base” with Arylcyanamides Bond Switch on Hypervalent Sulfur. Chem Lett, 1976,5(7):723-726
    [134]Antonio L B, Comasseto J V, Pdtragnani N. Pyrolysis of α-Thio phosporanes→Thioacetylenes. Tetrahedron Lett, 1984,25(11):1111-1114
    [135]Andzej R, Danian G, Stains W. Cleavage of 1,3-Oxathiol-2-one Rings with n-Butyllithiun a New Route to Alkyl Thiolates. Chemical Monthyl, 1985,116(11):1363-1365
    [136]Anosova S V, Potapov V A, Lasitsa N A. The Reaction of Dimethyl Disulfide with Peynylacetylene under Phase Transfer Catalysis Conditions. Izv Akad Nauk SSSr Ser Khim, 1990,5(5):1188-1189
    [137]Seko S, Miyake K, Kawamurav N. A Convenient Copper-catalyzed Direct Amination of Nitroarenes with O-Alkylhydroxylamines. J Chem Soc, Perkin Trans 1, 1999,(11):1473-1475
    [138]Orita A, Otera J. Elimination Strategy for Aromatic Acetylenes. Chem Rev, 2006,106(12):5387-5412
    [139]Ogura K, Yahata N, Watanabe J, et al. Convenient Preparation of Methyl–thiomethyl p-Tolyl Sulfone Starting from Dimethyl Sulfoxide. Bull Chem Soc Jpn, 1983,56(11):3543-3544
    [140]Pummerer R. The Sulfinate-sulfone Pummerer Rearrangement. Ber Etsch Chem Ges, 1910,43(2):1401-1412
    [141]Bacher H J, Strating J S. Strecher Sulfite Alkylation. Rec Trav Chem Pays-Bas 1953,72(2):813-833
    [142]Meek J S, Fowler J S. Oxygen and Sulfur Methylation of Ambident p- Toluenesulfinate Anion. J Org Chem, 1968,33(9):3422-3424
    [143]Kobayashi M. Organic Sulfur Compounds. VIII. The Formation of Sulfinate Esters by the Alkylation of Sulfinic Acid Salts. Bull Chem Soc Jpn, 1966,39(6):1296-1297
    [144]Ulman A. Formation and Structure of Self-assembled Monolayers. Chem Rev, 1996,96(4):1533-1554
    [145]Huang X H, Huang H Z, Wu N Z, et al. Investigation of Structure and Chemical States of Self-assembked Au Nanoscale Transfer by Angel-resolved X-ray Photoelectron Spectroscopy. Surf Sci, 2000,459(1-2):183-190
    [146]Daniell Lewis Mattern. Direct Aromatic Periodination. J Org Chem, 1984, 49(17):3051-3053
    [147]Fink J, Kiely C J, Bethell D, et al. Self-Organization of Nanosized Gold Particle. Chem Mater,1998,10(3):922-926
    [148]Han L, Daniel D R, Maye M M, et al. Core-Shell Nanostructured Nanoparticle Films as Chemically Sensitive Interfaces. Anal Chem, 2001,73(18): 4441-4449
    [149]Zhong C-J, Maye M M. Core-Shell Assembled Nanoparticles as Catalysts. AdV Mater, 2001, 13(19):1507-1511
    [150]Elghanian R, Storhoff J J, Mucic R C, et al. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science, 1997,277(5329):1078-1081
    [151]Lim I-I S, Ip W, Crew E, et al. Homocysteine-Mediated Reactivity and Assembly of Gold Nanoparticles. Langmuir, 2007,23(2):826-833.
    [152]Frankamp B L, Boal A K, Rotello V M. Controlled Interparticle Spacing through Self-Assembly of Au Nanoparticles and Poly(amidoamine) Dendrimers. J Am Chem Soc, 2002,124(51):15146-15147
    [153]Zubarev E R, Xu J, Sayyad A, et al. Amphiphilicity-driven Organization of Nanoparticles into Discrete Assemblies. J Am Chem Soc, 2006,128(47):15098-15099
    [154]Lim I-I S, Maye M M, Luo J, et al. Kinetic and Thermodynamic Assessments of the Mediator-Template Assembly of Nanoparticles. J Phy Chem B, 2005,109(7):2578-2583
    [155]Hostetler M J, Templeton A C, Murray R W. Dynamics of Place-exchange Reactions on Monolayer-protected Gold Cluster Molecules. Langmuir. 1999;15(11):3782-3789
    [156]Zamborini F P, Hicks J F, Murray R W. Quantized Double Layer Charging of Nanoparticle Films Assembled Using Carboxylate/(Cu2+ or Zn2+)/Carboxylate Bridges J Am Chem Soc, 2000,122(18):4514-4515
    [157]Lim I-I S, Goroleski F, Mott D, et al. Absorption of Cyanine Dyes and Formation of J-Aggregates in the Nanoparticle Assembly. J Phys Chem B, 2006,110(7):6673-6678
    [158]Zheng W-X, Maye M M, Leibowitz F L, et al. Imparting Biomimetic Ion-Gating Recognition Properties to Electrodes with a Hydrogen-Bonding Structured Core-shell Nanoparticle Network. Anal Chem, 2000,72(10):2190-2199
    [159]Hao E, Schatz G C. Electromagnetic fields around silver nanoparticles and dimmers. J Chem Phys, 2004,120(120):357-366
    [160]Campbell K N, O'Connor M J. The Hydrogenation of Substituted Acetylenes with Raney Nickel 1. J Am Chem Soc, 1939,61(10):2897-2900
    [161]Bock H, Rittmeyer P, Stein U. Radikalionen, 71. Oxidative Schwefelung von Acetylenen zu 1,2-Dithiet-und 1,4-Dithiin- Radikalkationen. Chem Ber, 1986,119(12):3766-3781
    [162]Lee C-C, Lin Y-C, Liu Y-H, et al. Rhodium-catalyzed Dimerization of Terminal Alkynes Assisted by MeI. Organometallics, 2005,24(1):136-143
    [163]Weiss H M, Touchette K M, Angell S, et al. The Concerted Addition of HBr to Aryl Alkynes; Orthogonal Pi Bond Selectivity. Org Biomol Chem, 2003,1(12):2152-2156
    [164]Hosoya T, Wakao M, Kondo Y, et al. Rapid Methylation of Terminal Acetylenes by the Stille Coupling of Methyl Iodide with Alkynyltributylstannanes: aGeneral Protocol Potentially Useful for the Synthesis of Short-lived 11CH3-labeled PET Tracers with a 1-Propynyl Group. Org Biomol Chem, 2004,2(1):24-27
    [165]Pelter A, Drake R A. Methyl Group Migration in the Reactions of Alkynyltrialkylborates. Tetrahedron Lett, 1988,29(33):4019-4200
    [166]Kim Y-J, Osakada K, Yamamoto A. Preparation and Properties of Alkylpalladium(II) and -platinum(II) Alkynyl Complexes. J Organomet Chem, 1993,452(1-2):247-250
    [167]Simpkins N S. Sulfones in Organic Synthesis. Oxford: Pergamon Press, 1993, Charpter 2
    [168]Bakuzis P, Bakuzis M L F. Oxidative Functionalization of the β-carbon in α-,β-unsaturated Systems, Preparation of 3-Phenylthio Enones, Acrylates, and Other Vinyl Derivatives. J Org Chem, 1981,46(2):235-239
    [169]Chang K-J, Rayabarapu D K, Cheng C-H. Cobalt-catalyzed Carbocyclization of o-Iodobenzaldehydes and o-Iodophenylketones with Alkynes. Org Lett, 2003,5(21):3963-3966
    [170]Trost B M. Atom Economy - A Challenge for Organic Synthesis: Homogeneous Catalysis Leads the Way. Angew Chem Int Ed Engl, 1995,34(3):259-281
    [171]Nicolaou K C, Dai W-M, Tsay S-C, et al. Designed Enediynes: A New Class of DNA-Cleaving Molecules with Potent and Selective Anticancer Activity. Science, 1992,256(6):1172-1178
    [172]Schaus S E, Cavalieri D, Myers A G. Gene transcription analysis of Saccharomyces cerevisiae exposed to neocarzinostatin protein- chromophore complex reveals evidence of DNA damage, a potential mechanism of resistance, and consequences of prolonged exposure. Proc. Natl Acad Sci U S A, 2001,98(20):11075-11080
    [173]Dziegielewski J, Beerman T A. Cellular Responses to the DNA Strand-scission Enediyne C-1027 Can Be Independent of ATM, ATR, and DNA-PK Kinases. J Biol Chem, 2002,277(23):20549-20554
    [174]Campbell K, Kuehl C J, Ferguson M J, et al. Coordination-Driven Self-Assembly: Solids with Bidirectional Porosity. J Am Chem Soc, 2002,124(25):7266-7267
    [175]Heeres H J, Teuben J H. Catalytic Oligomerization of Terminal Alkynes by Lanthanide Carbyls (.eta.5-C5Me5)2LnCH(SiMe3)2 (Ln = Y, La, Ce). Organometallics, 1991,10(6):1980-1986
    [176]Nishiura M, Hou Z-M. Organolanthanide Catalyzed Regio- and Stereoselective Dimerization of Terminal Alkynes and polymerization of Aromatic Diynes. J Mol Catal A, 2004,213(1):101-106
    [177]Hara R, Liu Y-H, Sun W-H, et al. Highly Substituted Enyne Formation by Coupling Reaction of Alkenylzirconium Compounds with Alkynyl Halides. Tetrahedron Lett, 1997,38(23):4103-4106
    [178]Stang P J, Surber B W, Chen Z-C, et al. Stereoselective Formation of Conjugated Enynes via Coupling of Alkynyliodonium Tosylates and Vinylcopper Reagents. J Am Chem Soc, 1987,109(24):7561-7563
    [179]Rebrovic L, Koser G F. Alkynylaryliodonium Tosylates and Aryl[β-(tosyloxy)vinyl]iodonium Tosylates from Reactions of Terminal Alkynes with [Hydroxy(tosyloxy)iodo]benzene. J Org Chem, 1984,49(24):4700-4702
    [180]Posner G H. An Introuction to Synthesis Using Organocopper Reagents; Wiley: New York, 1980.
    [181]Kang S-K, Yoon S-K, Kim Y-M. Copper-Catalyzed Coupling Reaction of Terminal Alkynes with Aryl- and Alkenyliodonium Salts. Org Lett, 2001,3(17):2697-2699
    [182]Jong R L P D, Brandsma L. Synthesis of 2,3-Disubstituted Thiophens via Metalated Acetylenes and Allenes. J Oranomet Chem, 1982,238(1),C17-C20
    [183]Wakefield B J. Organolithium Methods UK: Academic Press, 1988,32-44
    [184]Eberhardt G G, Butte W A. A Catalytic Telomerization Reaction of Ethylene with Aromatic Hydrocarbons J Org Chem, 1964,29(10):2928-2932
    [185]An D-L, Chen Y-G, Zhang Y-J, et al. Design, Synthesis and Characterization of a New Type of Cyclophane Containing Chiral Binaphthyls as Hinges Units. Acta Chimica Sinica. 2006,64(14):1465-1473(in chinese)
    [186]An D-L, Zhang Y-J, Chen Q, et al. Design, Synthesis and Optical Properties of a New Type of Chiral Molecular Square with Double Helical Structure. Chem J Chin Univ, 2006,27(12):2308-2313(in chinese)
    [187]An D-L, Luo F, Peng Z-H. Synthesis of Intramolecular Double helical Compound Connecting Chiral 2,2’-Substituted 1,1’-Binaphthyl with meta-Pyridine Bridges. Journal of Hunan U niversity (Natural Sciences Edition), 2002,29(3):34-39
    [188]An D-L, Tan X-H, Peng Z-H, et al. Preparation of d1-Dibenzo[c,g] phenznthrene by Using Benzyl-type Binaphthyl Disulfone. Chem J Chin Univ, 2003,24(12):2218-2220 (in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700