用户名: 密码: 验证码:
银山铅锌矿酸性矿坑水微生物群落结构分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿物开采导致地表水和地下水的污染,其原因主要是由于矿物的暴露,使得硫化物加速溶解导致金属离子含量丰富的酸性水的产生,这些污染水通常被称为酸性矿坑水(AMD)。酸性矿坑水通常含有高浓度的金属离子如铁,铜,锌,镁及非金属离子如硫,砷等。虽然AMD是一种高酸性,热的,含有高浓度的硫酸盐和有毒金属离子的极端环境,但是许多微生物生存在这种环境中,这些微生物的活动促进AMD的形成并导致环境污染。同时,AMD环境中生存的微生物对金属的生物浸出也具有重要的意义。金属浸出现在被认为是主要是由铁离子和质子执行浸出反应的一个化学过程。微生物的作用是产生浸出化学物质和为浸出反应发生提供空间,当微生物附着在矿物表面时能够产生胞外多聚物(EPS),生物氧化反应在EPS层比溶液中反应更为迅速有效,EPS层是生物氧化反应场所。因此,研究酸性矿坑水中的微生物群落结构及其功能活动具有重要的意义。本文利用16SrRNA和gyrB基因作为分子标记的RFLP技术对江西银山铅锌矿的微生物群落结构进行了研究,并比较了两种分子标记分析结果的差异,同时还利用本实验室构建的寡核苷酸基因芯片对江西德兴铜矿和银山铅锌矿的微生物群落结构及微生物功能活动以及环境变量对其产生的影响进行了研究。
     首先利用16S rRNA作为分子标记分析了银山铅锌矿中AMD样品的微生物群落结构。结果显示,所有的克隆都分布在7个不同的系统发育分支上(Cyanidium caldarium,Alpha-Proteobacteria,Gamma-Proteobacteria,Delta-Proteobacteria,Acidobacteria,Actinobacteria,Nitrospira),3个样点的微生物均存在较高的多样性,其中C.caldarium是一种能耐受高浓度金属离子的红藻,只存在于YSK1中,而Delta-Proteobacteria则只在YSK2中存在,而且在这个矿区的样品中只检测到少量的Acidithiobacillus ferrooxidans,通常这种细菌在AMD微生物群落中为优势种群,并且在YSK1中完全检测不到,这可能是由于受该样点的低pH值影响。化学分析结果显示YSK2和YSK3具有相似的环境因子但他们与YSK1具有较大的区别,系统发育分析结果表明YSK2和YSK3相对于YSK1具有更高的群落相似性,这一结果表明微生物群落结构受地理化学参数,特别是铁,硫浓度和pH值有较大影响。同时我们还发现3个样点中微生物群落结构的差异与其生存环境之间存在着一定的相关关系。进一步利用gyrB基因作为分子标记分析了银山铅锌矿AMD样品的微生物群落组成,并与16S rRNA的分析结果进行了比较。结果显示,两种分子标记分析的微生物群落结构在整体上的组成虽然很相似,但是以gyrB基因为分子标记从微生物群落中所发现的OTU数目(68个)明显高于16S rRNA为分子标记的OTU数量(52个),而且gyrB基因的多样性指数也明显高于16S rRNA的多样性指数。建立在AMD样品的系统发育树分析显示,gyrB基因代表了更高水平的遗传多样性。结果表明gyrB基因能够更好的区分一些16S rRNA无法辨别的近亲菌株,具有比16S rRNA更好的辨别力,其丰度更高,可能更适合于微生物群落的多样性分析。
     基因芯片技术因其独特的优势已被广泛应用于微生物群落结构与功能的研究中,本研究利用实验室自行构建并评估了的寡核苷酸基因芯片对德兴铜矿6个样点和银山铅锌矿3个样点的酸性浸矿水样品进行了分析。并使用除趋势对应分析(DCA),典范对应分析(CCA),偏典范对应分析(Partial CCA),Mantel测试等统计学方法来研究样品地球化学性质对微生物群落结构和功能活动的动力学影响,总共检测到373个16S rRNA和功能基因信号,对这些杂交结果的分析表明酸性矿坑水样品中存在着高度的多样性和异质性,其微生物群落主要由Acidithiobacillus ferrooxidans、Leptospirillum sp.、Acidithiobacillusthiooxidans、Acidothermus cellulolyticum、Thermoplasmataceaearchaeon、Sulfolobus sp.、Sulfobacillus sp.、Thiomonas sp.、Hydrogenobacter acidophilus、Alicyclobacillus herbarius、Acidianussp.、Actinobyces naeslundii、Microthrix parvicella、Acidobacteria、Desulfobibrio longus、Acidiphilum spp.、Holophaga sp.、Thermomicrobium roseum和Metallosphaera sp.等19个不同的种和属组成。统计学方法和基因聚类分析表明微生物群落结构和功能活动受环境变量(主要是pH,Fe,Ca,Cu和S)的高度影响,具有相似环境变量的样品也具有相似的微生物群落结构以及微生物功能活动。
Deep mining and surface mining of metal ores results in the contamination of ground and/or surface waters. The most well documented type of water pollution associated with mining is that which results from the accelerated oxidative dissolution of exposed minerals, principally sulfides, giving rise to acidic, metal-enriched waters generally referred to as "acid mine drainage" (AMD). Usually the acid mine drainage have a high concentrations of metal ions such as iron, copper, zinc and some nonmetal such as sulfur and arsenic. Despite the extreme acidity, heat, and high concentrations of sulfate and toxic metals, a diverse range of microorganisms populate AMD environments. These microorganisms can accellerate the generations of AMD, and result in the pollutions of environment. Also the microorganisms thrived in AMD that have a important significance in bioleaching, they can used to process the mineral and as a new source of bio-molecular in industry. So, study the microbial community and their functional activity of acid mine drainage have a great importance. In present study, we use RFLP technology based on the 16S rRNA and gyrB gene as the molecular marker to study the microbial compositions of Yinshan lead-zinc mine, Jiangxi province. And compared the difference of analysis result of two molecular marker. We also use the microarray that have been constructed and evaluated by our laboratory to detect the microbial community compositions and functional activities of Dexing copper mine and Yinshan lead-zinc mine and study the environmental factors how to influence the microbial community.
     Firstly, 16S rRNA genes were used as molecular marker to evaluate the diversity of microbial communities from three different AMD site in Yinshan lead-zinc mine. The result showed that the predominant microorganism in Yinshan mine were Cyanidium caldarium, Alpha-Proteobacteria, Gamma-Proteobacteria, Delta-Proteobacteria, Acidobacteria, Actinobacteria, Nitrospira. All three site have the high community diversity, C. caldarium is a red alga that can tolerate higher metal ions, it only presented in site YSK1, and Delta-Proteobacteria only presented in YSK2. Also we can only detected few Acidithiobacillus ferrooxidans which usually is the dominant populations in AMD, maybe this effected by the lower pH value. YSK2 and YSK3 have the similar environment factors and have a large different with YSK1 from chemical analysis result. From the phylogenetic analysis results both based on 16S rRNA gene, it suggested there are higher community similarity between YSK2 and YSK3 than with YSK1, this show that the distribution of the microbial communities was influenced by geochemical parameters, especially controlled by the iron, sulfur ions and pH values. And then we use the gyrB gene as molecular marker to carry out the diversity research and compare the analysis result by 16S rRNA. Dispite the microbial compositions have a similarity, we found the OUT number resulted from gyrB gene higher than 16S rRNA. The diversity index of gyrB gene also larger than 16S rRNA, but the microbial community abundance acquired from gyrB analysis was extremely higher than obtained through 16S rRNA analysis in terms of Shannon diversity index. Through gyrB gene, we will be able to differentiate closely related microorganisms in phylogenetic analysis, the result revealed that gyrB shows better performance in research concerning the correlation between community structure and geographic chemical parameters.
     Microarray technology has been widely used in researches concerning the function and structure of microbial community due to its unique advantages. We use the microarray that have been constructed and evaluated by our laboratory to detect the microbial community compositions and functional activities of the nine acid mine drainage samples of Dexing copper mine and Yinshan lead-zinc mine. At the same time we use the statistical methods such as detrended correspondence analysis (DCA), canonical correspondence analysis (CCA) and Partial CCAs to detect the dynamic influence of environmental factors to microbial community compositions and functional activity. A total of 373 genes (including 16S and functional genes) showed significant hybridization with at least one of the nine samples. These result indicated there have higher diversity and heterogeneity in AMD. These community composed by 19 different genus or species, including Acidithiobacillus ferrooxidans, Leptospirillum sp., Acidithiobacillus thiooxidans, Acidothermus cellulolyticum, Thermoplasmataceae archaeon, Sulfolobus, Sulfobacillus sp., Thiomonas sp., Hydrogenobacter acidophilus, Alicyclobacillus herbarius, Acidianus sp., Actinobyces naeslundii, Microthrix parvicella, Acidobacteria, Desulfobibrio longus, Acidiphilum spp., Holophaga sp., Thermomicrobium roseum and Metallosphaera sp.. The result by statistical and cluster analysis revealed the microbial community and funtion high influenced by the environmental factors(mainly are pH, Fe, Ca, Cu and S) .
引文
[1] Johnson, D.B., Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water Air Soil Pollut, 2003, Focus 3: 47- 66.
    [2] Nordstrom, D.K., Advances in the hydrogeochemistry and microbiology of acid mine waters. Int. Geol. Rev., 2000,42: 499-515.
    [3] Johnson, D.B., Kevin, B. and Hallberg K.B., The microbiology of acidic mine waters. Research in Microbiology, 2003, 154: 466- 473.
    [4] Silverman, M.P. and Ehrlich, H.L., Microbial formation and degradation of minerals. In: Advances in Applied Microbiology (Umbreit, W.W., Ed.), 1964, 6: 153-206. Academic Press, NewYork.
    [5] Rawlings, D.E., Heavy metal mining using microbes. Annu. Rev. Microbiol., 2002, 56:65-91.
    [6] Rawlings, D.E., Dew, D. and Plessis, C., Biomineralization of metal containing ores and concentrates. Trends Biotechnol, 2003, 21: 38- 44.
    [7] Boon, M. and Heijnen, J.J., Mechanisms and rate limiting steps in bioleaching of sphalerite, chalcopyrite, and pyrite with Thiobacillus ferrooxidans. In: Biohydrometallurgy Technologies (Torma, A.E., Wey, J.I. and Lakshmanan, V.L., Eds.), Vol. Bioleaching Processes, 1993 , p.217.
    [8] Baker, B.J. and Banfield, J.F., Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 2004,4: 139-52.
    [9] Leduc, L.G.and Ferroni, G.D., The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol., 1994, 14: 103-120.
    [10] Pronk, J.T., Meijer, W.M., Hazeu, W., et al., Growth of Thiobacillus ferrooxidanson formic acid. Appl. Environ. Microbiol., 1991, 57: 2057-2062.
    
    [11] Johnson, D.B., Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiology Ecology, 1998, 27: 307-317.
    
    [12] Gyure, R.A., Konopka, A., Brooks, A., et al., Algal and bacterial activities in acidic (pH 3) strip mine lakes. Appl. Environ. Microbiol., 1987, 53: 2069-2076.
    
    [13] Lopez-Archilla, A.I., Marin, I. and Amils, R., Microbialecology of an acidic river : biotechnological applications. In: Biohydrometallurgical Processing II (Vargas, T., Jerez, C.A., Wiertz, J.V. and Toledo, H., Eds.), 1995, pp. 63-74.University of Chile, Santiago.
    [14] Brock, T.D., Thermophilic Microorganisms and Life at High Temperatures, 1978, 465 pp. Springer-Verlag, New York, NY.
    [15] Schleper, C., Puehler, G., Kuhlmorgen, B., et al., Life at extremely low pH. Nature, 1995,375:741-742.
    
    [16] Norris, P.R., University of Warwick, UK, personal communication.
    [17] Johnson, D.B. and Rang, L., Ejects of acidophilic protozoa on populations of metal-mobilising bacteria during the leaching of pyritic coal. J. Gen. Microbiol., 1993,139:1417-1423.
    [18] Johnson, D.B. and Roberto, F.F., Heterotrophic acidophiles and their roles in the bioleaching of sulfide minerals. In: Biomining: Theory, Microbes and Industrial Processes (Rawlings, D.E., Ed.), 1997, pp.259-280. Springer-Verlag/Landes Bioscience, Georgetown, TX.
    [19] Dufresne, S., Bousquet, J., Boissinot, M., et al., Sulfobacillus disulfidooxidans sp. nov., a new acidophilic, disulfide-oxidizing, Gram-positive, spore-forming bacterium. Int. J. Syst. Bacteriol, 1996,46: 1056-1064.
    [20] Berthelot, D., Leduc, L.G.and Ferroni, G.D., The absence of psychrophilic Thiobacillus ferrooxidans and acidophilic heterotrophic bacteria in cold tailings efluents from a uranium mine. Can. J. Microbiol., 1994,40: 60-63.
    [21] Brock, T.D. and Gustafson, J., Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl. Environ. Microbiol., 1976, 32: 567-571.
    [22] Gyure, R.A., Konopka, A., Brooks, A., et al., Microbial sulfate reduction in acidic (pH 3) stripmine lakes. FEMS Microbiol. Ecol., 1990, 73: 193-202.
    [23] Segerer, A.H., Neuner, A., Kristjansson, J.K., et al., Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb, nov.: facultatively aerobic, extremely acidophilic, thermophilic sulfur-metabolizing archaebacteria. Int. J. Syst. Bacteriol., 1986, 36: 559-564.
    [24] Segerer, A.H., Langworthy, T.A. and Stetter, K.O., Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatarafields. Syst. Appl. Microbiol., 1988,10: 161-171.
    [25] Segerer, A.H., Trincone, A., Gahrtz, M., et al., Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. Int. J. Syst. Bacteriol., 1991, 41: 495-501.
    [26] Cox, J.C., Nicholls, D.G. and Ingledew, W.J., Transmembrane electrical potential and transmembrane pH gradient in the acidophile Thiobacillus ferrooxidans. Biochem. J., 1979, 178: 195-200.
    
    [27] Brassuer, G., Brusella, P., Bonnefoy, V., et al., The bc1 complex of the iron-grown acdiphilic chemolithorophic bacterium Acidithiobacillus ferrooxidans functions in the reverse but not in the forward direction. Is there a second bcl complex? Biochim. Biophys. Acta., 2002,1555: 37- 43.
    
    [28] Elbehti, A., Brasseur, G., Lemesle-Meunier, D., First evidence for existence of an uphill electron transfer through the bcl and NADH-Q oxidoreductase complexes of the acidophilic obligate chemolithotrophic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans. J. Bacteriol., 2000, 182: 3602-3606.
    
    [29] Norris, P.R., Barr, D.W. and Hinson, D., Iron and mineral oxidation by acidophilic bacteria: affinities for iron and attachment to pyrite. In: Biohydrometallurgy: Proceedings of the International Symposium, Warwick 1987 (Norris, P.R. and Kelly, D.P., Eds.), 1988, pp.43-59. Science and Technology Letters, Kew, UK.
    
    [30] Schrenk, M.O., Edwards, K.J., Goodman, R.M., et al., Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science, 1998,279: 1519-1521.
    
    [31] Johnson, D.B., Biological desulfurization of coal using mixed populations of mesophilic and moderately thermophilic acidophilic bacteria. In: Processing and Utilization of High Sulfur Coals (Dugan, P.R., Quigley, D.R. and Attia, Y.A., Eds.), 1991, pp. 567-580. Elsevier, Amsterdam.
    
    [32] McGinness, S. and Johnson, D.B., Grazing of acidophilic bacteria by a (?)agellate protozoan. Microbiol. Ecol., 1992,23:75-86.
    
    [33] Hallmann, R., Friedrich, A., Koops, H. P., et al., Physiological characteristics of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans and physicochemical factors in(?)uence microbial metal leaching. Geomicrobiol. J., 1992,10: 193-206.
    
    [34] Norris, P.R., Acidophilic bacteria and their activity in mineral sulfide oxidation. In: Microbial Mineral Recovery (Ehrlich, H.L. and Brierley, C.L., Eds.), 1990, pp.3-27. McGraw Hill, New York, NY
    
    [35] Clark, D.A. and Norris, P.R., Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology, 1996,141:785-790.
    
    [36] Rawlings, D.E., Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microbial Cell Factories, 2005, 4: 13.
    [37] Appia-Ayme, C., Guiliani, N., Ratouchniak, J., et al., Characteri-zation of an operon encoding two c-type cytochromes an aa3-type cytochrome Oxidase, and rusticyanin in Acidithiobacillus ferrooxidans ATCC33020. Appl. Environ. Microbiol, 1999, 65: 4781-4787.
    [38] Yarzabal, A., Brasseur, G., Appia-Ayme, C., et al., The high molecular weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J. Bacteriol, 2002, 184: 313-317.
    [39] Yarzabal, A., Brasseur, G. and Bonnefoy, V., Cytochromes c of Acidithiobacillus ferroxidans. FEMS Microbiol. Lett, 2002, 209: 189-195.
    [40] Cox, J.C. and Boxer, D.H., The purification and some properties of rusticyanin, a blue copper protein involved in iron (II) oxidation from Thiobacillus ferroxidans. Biochem. J, 1978,174: 497-502.
    [41] Rohwerder, T. and Sand, W., The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp.. Microbiology, 2003,149: 1699-1709.
    [42] Kusano, T., Takeshima, T., Sugawara, K., et al. Molecular cloning of the gene encoding Thiobacillus ferrooxidans Fe(II) Oxidase. J. Biol. Chem, 1992, 267: 11242-11247.
    [43] Blake, R.C., Schute, E.A., Waskovsky, J., et al. Respiratory components in acidophilic bacteria that respire on iron. Geomicrobiol. J, 1992,10: 173-192.
    [44] Blake, R.C., Schute, E.A., Greenwood, M.M., et al. Enzymes of aerobic respiration on iron. FEMS Microbiol. Rev, 1993,11: 9-18.
    [45] Boon, M., Brasser, H.J., Hansford, G.S., et al. Comparison of the oxidation kinetics of different pyrites in the presence of Thiobacillus ferrooxidans or Leptospirillum ferroxidans. Hydrometallurgy, 1999, 53: 57-72.
    [46] Hansford, G.S., Recent developments in modeling the kinetics of bioleaching. In Biomining: Theory, Microbes and Industrial Processes Edited by: Rawlings DE. Berlin: Springer-Velag, 1997: 153-175.
    [47] Rawlings, D.E., Tributsch, H. and Hansford, G.S., Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology, 1999, 145: 5-13.
    [48] Pronk, J.T., Meulenberg, R., Hazeu, W., et al., Oxidation of reduced inorganic sulfur compounds by acidophilic thiobacilli. FEMS Microbiol. Rev., 1990, 75: 293-306.
    [49] Schippers, A., Rohwerder, T. and Sand, W., Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal. Appl. Microbiol. Biotechnol., 1999, 52:104-110.
    [50] Ramrez, P., Guiliani, N., Valenzuela, L., et al., Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds or metal sulphides. Appl. Environ. Microbiol., 2004, 70: 4491-4498.
    
    [51] Brassuer, G., Levican, G., Bonnefoy, V., et al., Apparent redundancy of electron transfer pathways via bc1 complexes and terminal oxidases in the extremely acidophilic chemoautotrophic Acidithiobacillus ferrooxidans. Biochim. Biophys. Acta., 2004, 1656: 114-126.
    [52] Wakai, S., Kikumoto, M., Kanao, T., et al., Involvement of sulfide quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. Biosci. Biotechnol. Biochem., 2004, 68: 2519-2528.
    [53] Friedrich, C.G., Rother, D., Bardischewsky, F., et al., Oxidation of reduced inorganic sulfur compounds by bacteria: Emergence of a common mechanism? Appl. Environ. Microbiol., 2001, 67: 2873-288
    [54] Lewis, A.J. and Miller, J.D.A., Stannous and cuprous ion oxidation by Thiobacillus ferrooxidans. Can. J. Microbiol., 1977,23: 319-324.
    [55] Nielsen, A.M. and Beck, J.V., Chalcocite oxidation coupled to carbon dioxide fixation by Thiobacillus ferrooxidans. Science, 1972,175: 1124-1126.
    [56] DiSpirito, A.A. and Tuovinen, O.H., Uranous ion oxidation and carbon dioxide fixation by Thiobacillus ferrooxidans. Arch. Microbiol., 1982, 133: 28-32.
    [57] Sugio, T., Hirayama, K. and Inagaki, K., Molybdenum oxidation by Thiobacillus ferrooxidans. Appl. Environ. Microbiol., 1992, 58: 1768-1771.
    [58] Silver, S. and Phung, L.T., Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl. Environ. Microbiol., 2005,71: 599-608.
    [59] Yarzabal, A., Brasseur, G. and Bonnefoy, V., Cytochromes c of Acidithiobacillus ferroxidans. FEMS Microbiol. Lett., 2002, 209: 189-195.
    [60] Drobner, E., Huber, H. and Stetter, K.O., Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl. Environ. Microbiol., 1990, 56: 2922-2923.
    [61] Ohmura, N., Sasaki, K., Matsumoto, N., et al., Anaerobic respiration ising Fe3+, S0, and H2 in the chemoautotrophic bacterium Acidithiobacillus ferrooxidans. J. Bacteriol., 2002,184: 2081-2087.
    [62] Rawlings, D.E., Microbially assisted dissolution of minerals and its use in the mining industry. Pure Appl. Chem. 76, 2004, 4: 847-859,.
    [63] Sand, W., Gehrke, T., Hallmann, R., et al., Sulfur chemistry, biofilm, and the (in) direct attack mechanism - critical evaluation of bacterial leaching. Appl. Microbiol. Biotechnol., 1995,43: 961-966.
    [64] Devasia, P., Natarajan, K.A., Sathyanarayana, D.N., et al., Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surfaces. Appl. Environ. Microbiol., 1993, 59: 4051-4055.
    [65] Gehrke, T., Telegdi, J., Thierry, D., et al., Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl. Environ. Microbiol., 1998,64: 2743-2747.
    [66] Rohwerder, T., Gehrke, T., Kinzler, K., et al., Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol., 2003, 63: 239-248.
    [67] Tributsch, H., Direct vs indirect bioleaching. Hydrometallurgy, 2001, 59: 177-185.
    [68] Schippers, A, and Sand, W., Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl. Environ. Microbiol, 1999,65:319-321.
    
    [69] Brierley, C.L., Microbiological mining. Sci. Am, 1982, 247(2): 42-51.
    [70] Schnell, H.A., Bioleaching of copper. In Biomining: Theory, Microbes and Industrial Processes Edited by: Rawlings DE. Berlin: Springer-Verlag,1997: 21-43.
    [71] Dew, D.W., Lawson, E.N. and Broadhurst, J.L., The BIOX . process for biooxidation of gold-bearing ores or concentrates. In Biomining Theory, Microbes and Industrial Processes Edited by: Rawlings DE. Berlin: Springer-Verlag; 1997: 45-80.
    [72] Van Aswegen, P.C., Godfrey, M.W., Miller, D.M., et al. Developments and innovations in bacterial oxidation of refractory ores. Miner Metallurg Processing 1991,8:188-192.
    [73] Rawlings, D.E., Biomining: Theory, Microbes and Industrial Processes Berlin: Springer-Verlag; 1997.
    
    [74] Amann R.I. and Ludwig Schleifer K.H., Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev., 1995, 59: 143-169.
    [75] Dunbar J., White S., Forney L.J. et al, Genetic diversity through the looking glass: effect of enrichment bias, Appl. Environ. Microbiol, 1997, 63: 1326-1331.
    [76] Amann, R., Who is out there? Microbial aspects of biodiversity. Syst. Appl. Microbiol., 2000,23: 1-8.
    [77] Tiedje, J.M., Asuming-Brempong, S., Nusslein, K., et al., Opening the black box of soil microbial diversity. Appl. Soil Ecol., 1999, 13: 109-122.
    [78] Nusslein, K. and Tiedje, J.M., Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl. Environ. Microbiol., 1999, 65: 3622-3626.
    [79] Clegg, C.D., Ritz, K. and Griffiths, B.S., %G+C profiling and cross hybridisation of microbial DNA reveals great variation in below-ground community structure in UK upland grasslands. Appl. Soil Ecol., 2000,14: 125-134.
    [80] Theron, J. and Cloete, T.E., Molecular techniques for determining microbial diversity and community structure in natural environments. Crit. Rev. Microbiol., 2000, 26: 37-57.
    [81] Gonzalez, J.M. and Moran, M.A., Numerical dominance of the class proteobacteria in coastal sea water, Appl. Eviron. Microbiol., 1997, 63: 4237-4242.
    [82] Stach J.E.M., Bathe S., Clapp J.P., et al., PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods. FEMS Microbiol. Ecol., 2001, 36: 139-151.
    [83] Liu, W.T., Marsh T., Cheng H., et al, Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA, Appl. Eviron. Microbiol., 1997, 63:4516-4522.
    [84] Sekiguchi H., Tomioka N., T.N, et al., A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis. Biotechnol. Lett., 2001, 23: 1205-1208
    [85] Kirka, J.K., Beaudettea, L.A., Hart, M., et al., Methods of studying soil microbial diversity. Journal of Microbiological Methods, 2004, 58: 169-188.
    [86] Sykes P.J., Neoh S.H., et al, Quantification of targets for PCR by use of limiting dilution, Bio. Techniques, 1992,13: 444-449.
    
    [87] Siebert, P.D. and Larrick, J.W., Competitive PCR. Nature ,1992, 359: 557-558.
    [88] Gilliland, G., Perrin, S., Blanchard, K., et al., Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc. Natl. Acad. Sci. USA, 1990, 87: 2725-2729.
    [89] Lee, S.Y., Bollinger, J., Bezdicek, D., et al., Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method. Appl. Environ. Microbiol., 1996,62: 3787-3793.
    [90] Leser, T.D., Boye, M. and Hendriksen., N.B., Survival and activity of Pseudomonas sp. strain B13 (FR1) in a marine microcosm determined by quantitative PCR and an rRNA-targeting probe and its effect on the indigenous bacterioplankton. Appl. Environ. Microbiol., 1990, 61: 1201-1207.
    [91] Becker, K., Pan, D. and Whitely, C.B., Real-time quantitative polymerase chain reaction to assess gene transfer. Hum. Gene Ther., 1999,10: 2559-2566.
    [92] Higgis, J.A., et al., 5' nuclease PCR assay to detect Yersinia pesits. J. Clin. Microbiol, 1998, 36: 2284-2288.
    [93] Zhou, J., Microarrays for bacterial detection and microbial community analysis Current Opinion in Microbiology, 2003, 6: 288-294
    [94] Wei, Y., Lee, J.M., Richmond, C., et al, High-density microarray-mediated gene expression profiling of Escherichia coli. J. Bacteriol., 2001, 183: 545-556.
    [95] Ye, R.W., Tao, W., Bedzyk, L., et al., Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions, J. Bacteriol., 2000,182: 4458-4465.
    [96] Zhou, J. and Thompson, D.K., Challenges in applying microarrays to environmental studies. Curr. Opin. Biotechnol., 2002, 13: 204-207.
    [97] Zhou, J. and Thompson, D.K., Microarrays: applications in environmental microbiology. In Encyclopedia of Environmental Microbiology, Edited by Bitton G. New Youk: John Wiley & Sons, 2002,14: 1968-1979.
    [98] Wu, L., Thompson, D.K., Li, G., et al. Development and evalution of functional gene arrays for detection of selected genes in the environmental studies in microbiology. Appl. Environ. Microbiol, 2001, 67: 5780-5790.
    [99] Maidak, B.L., Olsen, G.J., Larsen, N., et al, The RDP(Ribosomal Database Project). Nucleic Acids Res., 1997,25: 109-111.
    [100] Cho, J.C. and James, M.T., Quantitative detection of microbial genes by using DNA microarrays. Appl Environ. Microbiol, 2002, 68(3): 1425-1430.
    [101] Kemp, W.M., Sampoo, P., Garber, J., et al., Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: Roles of benthic and planctonic respiration and physical exchange processes. Mar. Ecol. Prog. Ser.,1992, 85: 137-152.
    [102] Small, J., Call, D.R., Brockman, F.J., et al.,Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays. Appl. Environ. Microbiol., 2001, 67:4708-4716.
    [103] Bavykin, S.G., Akowski, J.P., Zakhariev, V.M., et al., Portable system for microbial sample preparation and oligonucleotide microarray analysis. Appl. Environ. Microbiol., 2001, 67: 922-928.
    [104] Urakawa, H., Noble, P.A., EI Fantroussi, S., et al., Single-base-pair discrimination of terminal mismatches by using oligonucleotide microarrays and neural network analyses. Appl. Environ. Microbiol., 2002, 68: 235-244.
    [105] Wu, L., Thompson, D.K., Liu, X., et al., Microarray-based whole-genome hybridization reveals species-/strain-specific differentiation and relatedness, 102th American Society for Microbiology General Meeting, Salt Lake City, UT, U.S.A
    [106] Fawcett, P., Eichenberger, P., Losick, R., et al., The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci., USA, 2000, 97: 8063-8068.
    [107] Rudi, K., Skulberg, O.M., Skulberg, R., et al., Application of sequence-specific labeled 16S rRNA gene oligonucleotide probes for genetic profiling of cyanobacterial abundance and diversity by array hybridization, Appl. Environ. Microbiol., 2000 , 66: 4004-4011.
    [108] Gao, H., Yang, Z.K., Gentry, T.Z., et al., Microarray-Based Analysis of Microbial Community RNAs by Whole-Community RNA Amplification. Appl. Environ, microbiol., 2007, 73: 563-571.
    [109] Wu, L., Liu, X., Schadt, C.W., et al., Microarray-Based Analysis of Subnanogram Quantities of Microbial Community DNAs by Using Whole-Community Genome Amplification. Appl. Environ. microbiol., 2006, 72: 4931-4941.
    [110] Quatrini, R., Jedlecki, E. and Holmes, D.S., Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. J Ind. Microbiol. Biotechnol., 2005, 32: 606-614.
    [111] Nannipieri, P., Ascher, J., Ceccherini, M.T., et al., Microbial diversity and soil functions. European Journal of Soil Science, 2003, 54: 655-670.
    [112] Liu, X.D., Bagwell, C.E., Wu, L.Y., et al., Molecular Diversity of Sulfate-Reducing Bacteria from Two Different Continental Margin Habitats. Appl. Environ, microbiol., 2003, p.6073-6081.
    [113] Massol-Deya, A.A., Odelson, D.A., Hickey, R.F., et al., Bacterial community fingerprinting of amplified 16S and 16S-23S ribosomal DNA gene sequences and restriction endonuclease analysis (ARDRA). In: Akkermans, A.D.L., van-Elsas, J.D., de-Bruijn, F.J. (Eds.), Molecular Microbial Ecology Manual. Kluwer Academic Publishing, Boston, 1995, p.3321 -3328.
    [114] Pace, N.R., New perspective on the natural microbial world: molecular microbial ecology. ASM News, 1996, 62: 463- 470.
    [115] Eckburg, P.B., Bik, E.M., Bernstein, C.N., et al., Diversity of the human intestinal microbial flora. Science, 2005, 308: 1635-1638.
    [116] Flies, C.B., Jonkers, H.M., Beer, D., et al., Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms. FEMS microbiology ecology, 2005, 52: 185.
    [117] Hurt, R.A., Qiu, X.Y., Wu, L.Y., et al., Simultaneous recovery of RNA and DNA from soils and sediments. Appl. Environ, microbiol., 2001,67: 4495-4503.
    [118] Zhou, J.Z., Bruns, M.A. and Tiedje J.M., DNA Recovery from soils of diverse composition. Appl. Environ, microbiol., 1996, 62: 316-322.
    [119] Marchesi, J.R., Sato, T., Weightman, A.J., et al., Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ, microbiol., 1998, 64: 23-33.
    
    [120] Nagasakal, S., Nishizawa, N.K., Mori, S., et al. Metal metabolism in the red alga Cyanidium caldarium and its relationship to metal tolerance. Bio. Metals, 2004,17: 177-181.
    [121] Bond, P.L., Smriga, S.P. and Banfield J.F., Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl. Environ, microbiol., 2004, 66: 3842-3849.
    [122] Bridge, T.A.M. and Johnson, D.B., Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl. Environ, microbiol., 1998, 64: 2181-2186.
    [123] Hallberg, K.B. andJohnson, D.B., Biodiversity of acidophilic prokaryotes. Adv. Appl. Microbio., 2001,149: 37-84.
    [124] Mark, D., Baker-Austin, C. and Koppineedi, P. R., Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology , 2003, 149: 1959-1970.
    [125] Hallberg, K.B. and Lindstrom, E.B., Characterization of Thiobacillus caldus, sp. nov., a moderately thermophilic acidophile. Microbiology, 1994, 140: 3451-3456.
    [126] Hippe, H., Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). Int. J. Syst. Evol. Microbiol., 2000, 50: 501-503.
    [127] Coram, N.J. and Rawlings, D.E., Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 degrees C. Appl. Environ. Microbiol., 2002, 68: 838-845.
    [128] Johnson, D.B., Selective solid media for isolating and enumerating acidophilic bacteria. Journal of Microbiological Methods, 1995, 23: 205-218.
    [129] Gonzalez-Toril, E., Llobet-Brossa, E., Casamayor, E.O., et al., Microbial ecology of an extreme acidic environment, the Tinto River. Appl. Environ. microbiol., 2003, 69: 4853-4865.
    [130] Harrison, A.P., The acidophilic Thiobacilli and other acidophilic bacteria that share their habitat. Annual Review of Microbiology, 1984, 38: 265-292.
    [131] Edwards, K.J., Goebel, B.M., Rodgers, T.M., et al., Geomicrobiology of pyrite (FeS2) dissolution: Case study at Iron Mountain, California. Geomicrobiology Journal, 1999, 16: 155-179.
    [132] Ahlf, W., Recovery of metals from acid waste water by Cyanidium caldarium. Applied Microbiology and Biotechnology, 1987,10: 512-513.
    [133] Gross, W. and Beevers, H., Subcellular Distribution of Enzymes of Glycolate Metabolism in the Alga Cyanidium caldarium. Plant Physiol, 1989, 90: 799-805.
    [134] Huss, V.A., Ciniglia, L., Cennamo, P., et al., Phylogenetic relationships and taxonomic position of Chlorella-like isolates from low pH environments (pH < 3.0). BMC Evolutionary Biology, 2002,2:13.
    [135] Kura-Hotta, M. and Enami, I., Respiration-Dependent H~+ Efflux from Intact Cells of Cyanidium caldarium. Plant and Cell Physiology, 1984, 25: 1115-1122.
    [136] Schleper, C., Puehler, G., Kuhlmorgen, B., et al., Life at extremely low pH. Nature, 1995, 375: 741-742.
    [137] Huang, W.M., Type II DNA topoisomerase genes, In: Liu, L.F. (Ed.), DNA Topoisomerases: Biochemistry and Molecular Biology. Advances in Pharmacology, 29A. Academic Press, New York, 1994, 201-225.
    [138] Rappe, M.S., Vergin, K. and Giovannoni, S.J., Phylogenetic comparisons of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems. FEMS Microbiol Ecol., 2000, 33: 219-232.
    [139] Harayama, S. and Yamamoto, S., Phylogenetic identification of Pseudomonas strains based on a comparison of gyrB and rpoD sequences, 1996, p.250-258. In T. Nakazawa, K. Furukawa, D. Haas, and S. Silver (ed.), Molecular biology of pseudomonas. ASM Press, Washington, D.C.
    [140] Yamamoto, S. and Harayamam S., Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Int. J. Syst. Bacteriol., 1996,46: 506-511.
    [141] Yamamoto, S., Bouvet, P.J. and Harayama, S., Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA-DNA hybridization. Int. J. Syst. Bacteriol., 1999,49: 87-95.
    [142] Gordon, R.B., Bertram, M. and Graedel, T.E., Metal stocks and sustainability. Proc. Natl. Acad. USA, 2006,103 (5): 1209-1214.
    [143] John, E.T. and Gustavo L., Resources Policy, 2007, 32: 19-23.
    [144] Yin, H.Q., Cao, L.H., Qiu, G.ZH., et al., Development and evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in Acid Mine Drainages and bioleaching systems. J. Microbiol. Methods, 2007, 70: 165-178.
    [145] Xu, D., Li, G.,Wu, L., et al., PRIMEGENS: a computer program for robust and efficient design of gene-specific targets on microarrays. Bioinformatics, 2002, 18: 1432-1437.
    [146] Verdnick, D., Handran, S. and Pickett, S., Key considerations for accurate microarray scanning and image analysis. In: Kamberova, G.(Ed.), DNA Image Analysis: Nuts and Bolts. DNA Press, Salem, Mass, 2002, pp.83-98.
    [147] Loy, A., Lehner, A., Lee, N., et al., Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol., 2002, 68: 5064-5081.
    [148] Franke-Whittle, I.H., Klammer, S.H. and Insam, H., Design and application of an oligonucleotide microarray for the investigation of compost microbial communities. J. Microbiol. Methods, 2005, 62: 37-56.
    [149] Eisen,M.B., Spellman, P.T., Brown, P.O., et al., Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. U.S.A., 1998, 95: 14863-14868.
    [150] Smouse, P.E., Long, J.C. and Sokal, R.R., Multiple regression and correlation extensions of the mantel test of matrix correspondence. Systematic Zoology, 1986, 35(4): 627-632.
    [151] Rousset, F., Partial mantel tests: reply to castellano and balletto. Evolution, 2002, 56(9): 1874-1875.
    [152] Okland, R.H. and Eilertsen, O., Canonical correspondence analysis weith variation partitioning: some comments and an application. Journal of vegetation science, 1994, 5(1): 117-126.
    [153] Cajo, J.F. and Braak, T., Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 1986, 67(5): 1167-1179.
    [154] Hill, M.O. and Gauch, H.G., Detrended correspondence analysis: an improved ordination technique. Vegetatio, 1980,42: 47-58.
    [155] Borcard, D., Legendre, P. and Drapeau, P., Partialling out the spatial component of ecological variation. Ecology, 1992, 72(3): 1045-1055.
    [156] Walker, I.R., Smol, J.P. and Engstrom, D.R., An assessment of chironomidae as luantitative indicators of past climatic change, Canadian Journal of Fisheries and Aquatic Sciences CJFSDX, 1991,48( 6): 975-987.
    [157] Olson, G.J., Brierley, J.A., Brierley,C.L., Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl. Microbial. Biotechnol., 2003, 63: 249-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700