用户名: 密码: 验证码:
金属硫蛋白的表面增强拉曼光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属硫蛋白(MT)是一类低分子量、高半胱氨酸含量、能结合大量金属离子的蛋白质。近年来,MT在医学上的应用受到越来越多的重视。人们认识到MT可能与多种疾病密切相关,特别是Alzheimer's疾病等一些神经退化性疾病。因此,研究金属硫蛋白与不同金属结合的机理及其构型上的变化,对于研究某些疾病的病理和治疗方法有着重大的意义。
     表面增强拉曼光谱(SERS)具有极高的检测表面物种的灵敏度,能从分子水平上获得物质详细的结构和化学组成信息。应用SERS技术,可望从分子水平上探究MT复杂的生理活性。但是,MT分子拉曼散射截面小,易受激光影响碳化分解,杂质影响严重。因此,选择合适的SERS基底和实验条件,得到重现性好、可信的SERS谱,进而从分子水平上研究MT生理特性引起空间结构的变化是一个极具挑战的课题。
     本论文的工作和获得成果主要有:
     1.探索了几种获取MT分子的SERS谱的方法。实验表明,自组装Au纳米粒子尽管可以制备出SERS活性高、重现性好的SERS基底,但是杂质会严重干扰MT的信号。粗糙金电极表面干净,可获得可信和有意义的SERS谱图。通过EDC/NHS交联反应将MT固定在修饰了MUA的粗糙金表面的方法,使MUA的信号得到了最大增强,但却得不到明显的MT的信号,不适合应用于MT的SERS研究。
     2.研究了直接吸附在粗糙金表面的金属硫蛋白的SERS谱。结果表明,MT通过氨基与金作用;apo-MT与金的作用位点受制备方法影响:在溶液中预制的apo-MT通过半胱氨酸残基的巯基与金结合,在金表面制备的apo-MT通过氨基和巯基与金结合。从Cd_7-MT(Ⅱ),Cu_(12)-MT(Ⅱ),Cu_(20)-MT(Ⅱ)到Hg_7-MT(Ⅱ),随着金属-S键的逐渐增强,SERS基底上Au-S键的成分逐渐减少,基底对蛋白质二级结构的破坏减弱。
Metallothionein (MT) is a type of metalloproteins characterized by a large number of cysteine residues, low molecular weight and a remarkable ability to coordinate a large number of transition metal ions in the form of metal-thiolate clusters. In recent yeas, metallothionein draws more attention in medical application. It is recognized that MT may be closely related to many diseases, particularly Alzheimer's disease and other neurodegenerative diseases. Therefore, the studies of different metal-binding mechanisms and the structural changes of metallothionein are of great significances to the pathology of certain diseases.
     SERS is an ultrasensitive analytical method to probe the surface species and can provide detailed information of the structure and chemical composition of the species on the molecular level. It is well-known that enhancement effect of SERS is closely connected with the suitable nanoscale roughness of the substrates or nanoparticles. And SERS can be used to understand the complicated physiological activities of protein on the molecular level. However, MT has small Raman scattering section, and easily become catbonaceous decomposition products by the laser. Impurities also confuse SERS spectra of MT. Therefore, it is a challenge to choose suitable SERS substrate and the experimental conditions to obtain credible SERS spectra with good reproducibility, and then to study the structural changes of MT caused by physiological characteristics on the molecular level.
     The major works and results in the thesis are outlined as follows:
     1. Several methods have been explored to obtain the SERS of metallothionein. Results showed that SERS substrates prepared by self-assembly nanoparticles usually had higher SERS-active and good reproducibility whereas the impurities seriously covered the signal of MT. Roughened Au substrate was clean to obtain reliable SERS signal. To obtain the enhanced SERS signal of MT, a direct immobilization of MT molecules onto roughened Au substrate was performed.
     2. The SERS spectra of MT absorbed directly on roughened Au surfaces was studied. The results indicated that MT was adsorbed via -NH_2 group on roughened gold surfaces. The adsorption site of apo-MT on Au was determined by the preparation method of apo-MT. The apo-MT prepared in solution was adsorbed via the -SH group on Au whereas that prepared on the Au surface was adsorbed via -SH and -NH_2. Apo-MT immobilized on the SERS substrate could be easily decomposed into carbonaceous products under the laser beam whereas MT kept a stable composition. With the enhanced binding between the metal ions and the cysteine residues, the deformed secondary structure of MT was reduced.
引文
[1]Carrell R W,Lomas D A.Conformational disease.Lancet,1997,350:134-138.
    [2]Carrell R W,Lomas D A.Alphal-antitrypsin deficiency:a model for conformational diseases.N.Engl.J.Med.,2002,346(45-53).
    [3]Crowther D C.Familial conformational diseases and dementias.Hum.Murat.,2002,20:1-14.
    [4]Margoshes M,Vallee B L.A cadmium protein from equine kidney cortex.J.Am.Chem.Soc.,1957,79:4813-4814.
    [5]Stillman M J,Shaw Ⅲ C F,Suzuki K T.Metallothioneins.New York:VCH Publishers.1992.1.
    [6]Hunziker P E,Kagi J H R.Metallothionein,Part 2.London:The Macmillan Press.1985.149-181.
    [7]Stillman M J.Metallothioneins.Coordin.Chem.Rev.,1995,144:461-511.
    [8]Fowle D A,Stillman M J,Biomol J.Comparison of the structures of the metal-thiolate binding site in Zn(Ⅱ)-,Cd(Ⅱ)-,and Hg(Ⅱ)-metallothioneins using molecular modeling techniques.Struct.Dyn.,1997,14:393-406.
    [9]Presta P A,Fowle D A,Stillman M J.Structural model of rabbit liver copper metallothionein.J.Chem.Soc.Dalton Trans.,1997:977-984.
    [10]Otvos J D,Armitage I M.Structure of the metal clusters in rabbit liver metallothionein.Proc.Natl.Acad.Sci.USA,1980,77(12):7094-7098.
    [11]Frey M H,et al.Polypeptide-metal cluster connectivities in metallothionein 2by novel proton-cadmium-113 heteronuclear two-dimensional NMR experiments.J.Am.Chem.Soc.,1985,107(24):6847-6851.
    [12]Arseniev A,et al.Three-dimensional structure of rabbit liver [Cd_7]metallothionein-2a in aqueous solution determined by nuclear magnetic resonance.J.Mol.Biol.,1988,201:637.
    [13]Robbins A H,et al.Refined crystal structure of cadmium-zinc metallothionein at A resolution.J.Mol.Biol.,1991,221:1269-1293.
    [14]Braun W,et al.Comparison of the NMR solution structure and the x-ray crystal structure of rat metallothionein-2.Proc.Natl.Acad.Sci.USA,1992,89:10124.
    [15]Rigby K E,Stillman M J.Structural studies of metal-free metallothionein.Biochemical and Biophysical Research Communications,2004,325:1271-1278.
    [16]Amesano F,et al.Solution Structure of the Cu(Ⅰ)and Apo Forms of the Yeast Metallochaperone,Atxl.Biochemistry,2001,40:1528.
    [17]Helmut S.Metal Ions in Biological Systems:Concepts of Metal Ion Toxicity.Vol.20.New York:Dekker.1986.68.
    [18]Averill B A.Metal Clusters in Proteins(Chapter 13).Washington,DC:ACS Books.1988.259.
    [19]Quaife C J,et al.Induction of a new metallothionein isoform(MT-Ⅳ)occurs during differentiation of stratified squamous epithelia.Biochemistry,1994,33:7250-7259.
    [20]Weser U,Rupp H.The Chemistry,Biochemistry,and Biology of Cadmium,ed.M Webb.Amsterdam:North Holland.1979.267-283.
    [21]Shi Y B,Fang J L,Liu X Y.Fourier transform IR and Fourier transform Raman spectroscopy studies of metallothionein-Ⅲ:Amide Ⅰ band assignments and secondary structural comparison with metallothioneins-Ⅰ and -Ⅱ.Biopolymers,2002,65(2):81-88.
    [22]Domeneeh J T A,Capdevila M.Structural study of the zinc and cadmium complexes of a type 2 plant(Quercus suber)metallothionein:Insights by vibrational spectroscopy.Biopolymers,2007,86(3):240-248.
    [23]Olafson R W,Sim R G.An electrochemical app roach to quantitation and characterization of metallothioneins.Analytical Biochemistry,1979,100:343-351.
    [24]Stillman M J,Cai W,Zelazowski A J.Cadimium binding to metallothionein.Biol.chem.,1987,262:4358-4548.
    [25]Hong S H,Maret W.A fluorescence resonate energy transfer sensor for the β-domain of metallothionein.Proe.Natl.Acad.Sci.USA,2003,100(5):2255-2260.
    [26]Saber R,Piskin E.Investigation of complexation of immobilized metallothionein with Zn(Ⅱ)and Cd(Ⅱ)ions using piezoelectric crystals.Biosens.Bioelectron.,2003,18(8):1039-1046.
    [27]Wu C M,LIn L Y.Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance.Biosens.Bioelectron.,2004,20(4):864-871.
    [28]Matet W,et al.The ATP/Metallothionein Interaction:NMR and STM.Biochemistry,2002,41:1689-1694.
    [29]Smekal A.The quantum theory of dispersion.Naturwissenschaften,1923,11:873-875.
    [30]Raman C V,Krishnan K S.A change of wave length in light scattering.Nature,1928,121:619.
    [31]Chantry G W.The Raman Effect,ed.A Anderson.New York:Marcel Dekker,Inc.,1971.49-93.
    [32]Long D A.Raman Spectroscopy.New York:McGraw-hill.1977.
    [33]Behringer J,Brand-muller J.The resonance-Raman effect,with special emphasis on recent Russian work.Z.Elektrochem,1956,60:643-679.
    [34]Brike R L,Lombardi J R.Spectroelectrochemistry -Theory and Paractice,ed.R J Gale.New York:Plenum Press.1988.
    [35]Fleischman M,Hendra P J,McQuillan A J.Raman spectra of pyridine adsorbed at a silver electrode.Chem.Phys.Lett.,1974,26:123-166.
    [36]任斌,田中群.电化学催化中的激光拉曼光谱法.石油化工,2002,31:488-499.
    [37]江天籁.共振拉曼光谱学在化学中的应用.光谱学与光谱分析,1984,3:7.
    [38]Singh G P,et al.The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy.J.Raman Spectrosc.,2006,37(8):858-864.
    [39]Matthaus C,et al.Raman and infrared microspectral imaging of mitotic cells.Appl.Spectrosc.,2006,60(1):1-8.
    [40]Krafft C,et al.Studies on Stress-Induced Changes at the Subcellular Level by Raman Microspectroscopic Mapping.Anal.Chem.,2006,78(13):4424-4429.
    [41]Jeanmaire D L,Van Duyne R P.Surface Raman spectroelectrochemistry,Part Ⅰ:Heterocyclic,aromatic and amines adsorbed on the anodized silver electrode.J.Electroanal.Chem.,1977,84:1-20.
    [42]Campion A,Kambhampati P.Surface-enhanced Raman scattering Chem.Soc.Rev.,1998,27:241-250.
    [43]Moskovits M.Surface-enhanced spectroscopy.Rev.Mod.Phys.,1985,57:783-826.
    [44]Otto A,et al.Model of electronically enhanced Raman scattering from adsorbates on cold-deposited silver.Surf.Sci.,1989,210:363-386.
    [45]Gersten J I,Nitzan A.Electromagnic theory of enhanced Raman scattering by molecules absorbed on rough surfaces.J.Chem.Phys.,1980,73:3023-3037.
    [46]Yao J L,et al.Surface enhanced Raman scattering from transition metal nano-wire array and the theoretical consideration.Surf.Sci.,2002,514:108-116.
    [47]Grand J,et al.Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays.Phys.Rev.B:Conden.Matt.Mater.Phys.,2005,72:033407/1-033407/4.
    [48]Chang R K,Futak T E.Surface enhanced Raman Scattering.New York:Plenum Press.1982.
    [49]Sanda P N,et al.Surface-enhanced Raman scattering from pyridine on silver(111).Phys.Rev.Lett.,1980,45(18):1519-1523.
    [50]Burstein E,Chen C Y,Lundquist S.Light Scattering in Solids,ed.J L Birman.New York:Plenum.1979.479.
    [51]Demuth J E,Christmann K,Sanda P N.The vibrations and structure of pyridine chemisorbed on silver(111):the occurrence of a compressional phase transformation.Chem.Phys.Lett.,1980,76(2):201.
    [52]Chang R K,Bunsenges B.Surface enhanced Raman scattering at electrodes:a status report.Phys.Chem.,1987,91(4):296-305.
    [53]Tian Z Q,Ren B.Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy.Annu.Rev.Phys.Chem.,2004,55:197-229.
    [54]Tian Z Q,Ren B,Wu D Y.Surface-enhanced Raman scattering:from noble to transition metals and from surfaces to ordered nanostrutures.J.Phys.Chem.B,2002,106:9463-9483.
    [55]Moskovitz M.Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals.J.Chem.Phys.,1978,69:1459-4161.
    [56]Emory R,Haskins W E,Nie S.Direct observation of size-dependent optical enhancement in single metal nanopartilces.J.Am.Chem.Soc.,1998,120:8009-8010.
    [57]Tian Z Q.表面增强拉曼光谱学中的纳米科学问题.China Basic Science,2001,3:4-10.
    [58]Gao P,Gosztola D,Leung L W.Surface-enhanced Raman scattering at gold electrodes:dependence on electrochemical pretreatment conditions and comparisons with silver.J.Electroanal.Chem.Interfacial.Electrochem.,1987,233:211-222.
    [59]姚建林.新型纳米级粗糙基底的表面增强拉曼光谱研究:[博士学位论文].厦门:厦门大学,2001.
    [60]Nie S M,Emory S R.Probing single molecules and single nanoparticles by surface-enhanced Raman scattering.Science,1997,275(5303):1102-1106.
    [61]Mengoli G,et al.Enhanced Raman scattering from iron electrodes.Electrochim.Acta,1987,32(8):1239-1245.
    [62]Fleischmann M,Tian Z Q,Li L J.The effects of the underpotential and overpotential deposition of lead and thallium on silver on the Raman spectra of adsorbates.J.Electroanal.Chem.,1987,217:385.
    [63]Feng Q,Cotton,Therese M.A surface-enhanced resonance Raman study of the photoreduction of methylviologen on a p-indium phosphide semiconductor electrode.J.Phys.Chem.,1986,90(6):983-987.
    [64]Zhang Y,Weaver M J.Langrnuir,Application of surface-enhanced Raman spectroscopy to organic electrocatalytic systems:decomposition and electrooxidation of methanol and formic acid on gold and platinum-film electrodes.Langmuir,1993,9:1397-1403.
    [65]Zhang Y,Weaver M J.The electro-oxidation of carbon monoxide on noble metal catalysts as revisited by real-time surface-enhanced Raman spectroscopy.J.Electroanal.Chem.,1993,354:173-188.
    [66]Nabiev I,Chpurpa I,Manfait M.Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine.J.Raman Spectrosc.,1994,25:13-23.
    [67]Fabian H,Anzenbacher P.New developments in Raman spectros.copy of biological systems.Vib Spectrosc.,1993,4:125-148.
    [68]Cotton T M.The application of surface-enhanced Raman scattering to biochemical systems.Adv.Spectrosc.,1988,16:91-153.
    [69]Nabiev I R,Sokolov K K,Manfait M.Biomolecular Spectroscopy.Vol.21.Chichester:Wiley.1993.267-278.
    [70]Cotton T M.Spectroscopy of Surfaces.Chichester:Wiley.1988.91.
    [71]Brown K R,Natan M J.Hydroxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surfaces.Langrnuir,1998,14:726.
    [72]Link S,Wang Z L,El-Sayed M A.Alloy Formation of Gold-Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition.J.Phys.C.B,1999,103(18):3529-3533.
    [73]Edyta P,Yukihiro O,Leonard M P.Part Ⅲ:Surface-enhanced Raman scattering of amino acids and their homodipeptide monolayers deposited onto colloidal gold surface.Appl.Spectrosc.,2005,59:1516-1526.
    [74]Mrozek M F,Zhang D,Ben-Amotz D.Oligosaccharide identification and mixture quantification using Raman spectroscopy and chemometric analysis.Carbohydr.Res.,2004,339(1):141-145.
    [75]Habuchi S,et al.Single-molecule surface enhanced resonance Raman spectroscopy of the enhanced green fluorescent protein.J.Am.Chem.Soc.,2003,125(28):8446.
    [76]Alex S,Dupuis P.FT-IR and Raman investigation of cadmium binding by DNA Inorg.Chimica Acta.,1989,157:271-281.
    [77]Kornilova S V,Miskovsky P,Tomkova A.Vibrational spectroscopic studies of the divalent metal ion effect on DNA structural transitions.J.Mol.Struc.,1997,408/409:219-233.
    [78]Ke W Z,Yu D W,Wu J Z.Raman spectroscopic study of the influence on herring sperm DNA of heat treatment and ultraviolet radiation.Spectrochim.Acta,Part A,1999,55:1081-1090.
    [79]Kneipp K,Flemming J.Surface enhanced Raman scattering(SERS)of nucleic acids adsrobed on colloidal silver particles.J.Mol.Struc.,1986,145:173-179.
    [80]Sequaris J M,Koglin E,Valenta P.Surface-enhanced Raman scattering(SERS)spectroscopy of nucleic acids.Ber.Bunsenges.Phys.Chem.,1981,85:512-513.
    [81]Suh J S,Moskovits M.Surface-enhanced Raman spectroscopy of amino acids and nucleotide bases adsorbed on silver.J.Am.Chem.Soc.,1986,108:4711-4718.
    [82]Kneipp K,et al.Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles.Appl.Spectrosc.,2002,56:150-154.
    [83]Kneipp J,et al.In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates.Nano Lett.,2006,6:2225-2231.
    [84]Kim J H,et al.Nanoparticle Probes with Surface Enhanced Raman Spectroscopic Tags for Cellular Cancer Targeting..Anal.Chem.,2006,78(19):6967-6973.
    [85]Lee S,et al.Biological imaging of HEK293 cells expressing PLCgammal using surface-enhanced Raman microscopy.Anal.Chem.,2007,79(3):916-922.
    [86]Hu Q Y,et al.Mammalian Cell Surface Imaging with Nitrile-Functionalized Nanoprobes:Biophysical Characterization of Aggregation and Polarization Anisotropy in SERS Imaging.J.Am.Chem.Soc.,2007,129(1):14-15.
    [87]Jarvis R M,Goodacre R.Discrimination of bacteria using surface-enhanced Raman spectroscopy.Anal.Chem.,2004,76(1):40-47.
    [88]Xu H,Bjerneld E J,Kall M.Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering.Phys.Rev.Lett.,1999,83:4357-4360.
    [89]胡建强.金属纳米粒子的尺寸和形状可控合成及其表征:[博士学位论文].厦门:厦门大学,2003.
    [90]林旭锋.铑电极的表面增强拉曼光谱:从可见光到紫外光:[硕士学位论文].厦门:厦门大学,2003.
    [91]Tian Z Q,Ren B.Raman spectroscopy of electrode surfaces.Encyclopedia of Electrochemistry,2003,3:572.
    [92]Frens G.Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions.Nature,1973,241(105):20.
    [93]Tian Z Q,Ren B,Mao B W.Extending surface Raman spectroscopy to transition metal surfaces for practical applications.1.Vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces.J.Phys.Chem.B,1997,101:1338-1346.
    [94]Huang E,Zhou F,Deng L.Studies of surface coverage and orientation of DNA molecules immobilized onto preformed alkanethiol self-assembled monolayers.Langmuir,2000,16:3272-3280.
    [95]Blatchford C G,Campbell J R,Creighton J A.Plasma resonance-enhanced Raman scattering by adsorbates on gold colloids:the effects of aggregation.Surf.Sci.,1982,120:435.
    [96]Creighton J A,Blatchfood C G,Alrecht M G.Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength.J.Phys.Chem.Soc.Faraday Ⅱ,1979,75:790.
    [97]Otto A.Raman spectra of cyanide ion adsorbed at a silver surface.Surf.Sci.,1978,75(2):L392-L396.
    [98]Schultz S G,Janik-Czachor M,Van Duyne R P.Surface-enhanced Raman spectroscopy:a re-examination of the role of surface roughness and electrochemical anodization.Surf.Sci.,1981,104:419.
    [99]Haynes C L,Van Duyne R P.Nanosphere lithography:A versatile nanofabrication tool for studies of size-dependent nanoparticle optics.J.Phys. Chem. B, 2001, 105:5599-5611.
    [100] Haynes C L, Van Duyne R P. Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B, 2003, 107: 7426-7433.
    [101] Li X L, et al. Self-assembled metal colloid films: two approaches for preparing new SERS active substrates. Langmuir, 2004,20: 1298-1304.
    [102] Tian Z Q, et al. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem.Comm., 2007, 34: 3514-3534.
    [103] Ren B, Lin X F, Yang Z L. Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes. J. Am. Chem. Soc, 2003, 125: 9598-9599.
    [104] Cao P G, Yao J L, Ren B. Surface-enhanced Raman scattering spectra of thiourea adsorbed at an iron electrode in NaClO_4 solution. J. Phys. Chem. B, 2002, 106: 10150-10156.
    [105] Ren B, Lin X F, Yan J W. Electrochemically roughened rhodium electrode as a substrate for surface-enhanced Raman spectroscopy. J. Phys. Chem. B, 2003, 107: 899-902.
    [106] Huang Q J, et al. An investigation of the adsorption of pyrazine on nickel electrodes by in situ surface-enhanced Raman spectroscopy. J. Electroanal. Chem., 2004, 563: 121-131.
    [107] Chan J, et al. Studies of metal binding reactions in metallothioneins by spectroscopic, molecular biology, and molecular modeling techniques. Coordin. Chem. Rev., 2002,233-234: 319-399.
    [108] Casero E, et al. Immobilization of metallothionein on gold/mica surfaces: Relationship between surface morphology and protein-substrate interaction. Langmuir, 2002, 18: 5909-5920.
    [109] Burstein E, Chen W P, Chen Y J. Surface polaritons-propagating electromagnetic modes at interfaces. J. Vac. Sci. Technol., 1974,11: 1004.
    [110] Knobloch H, et al. Probing the evanescent field of propagating plasmon surface polaritons by fluorescence and Raman spectroscopies. J. Chem. Phys., 1993,98: 10093-10095.
    [111] Jang N H. The Coordination Chemistry of DNA Nucleosides on Gold Nanoparticles as a Probe by SERS Bull. Korean Chem. Soc, 2002, 23: 1790-1800.
    [112] Felice R D, Selloni A. Adsorption modes of cysteine on Au(111). Thiolate, amino-thiolate,disulfide.J.Chem.Phys.,2004,120(10):4906-4914.
    [113]Domke K F,Zhang D,Pettinger B.Enhanced Raman Spectroscopy:Single Molecules or Carbon? J.Phys.Chem.C,2007,111:8611-8616.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700