用户名: 密码: 验证码:
飞秒激光对透明电介质材料的烧蚀与微加工研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对飞秒激光烧蚀透明电介质材料的特性以及飞秒激光微细加工技术进行了理论和实验研究。论文的主要内容包括:
     (1)总结了飞秒激光与电介质材料相互作用的物理机制,重点讨论了雪崩电离和多光子电离过程,并以熔融石英玻璃材料为例分析了碰撞电离系数和多光子电离系数随着激光入射强度不同的变化情况。对飞秒激光烧蚀电介质材料的烧蚀阈值、烧蚀深度与脉冲宽度和光子能量之间的关系进行了分析。
     (2)实验研究了飞秒激光烧蚀MgAl_2O_4透明陶瓷的机理和损伤规律。理论分析并实验测量了MgAl_2O_4透明陶瓷的单脉冲烧蚀阈值、多脉冲烧蚀阈值和多脉冲烧蚀的累积效应。对于MgAl_2O_4透明陶瓷在飞秒激光作用后的微区结构改变进行了场发射扫描电子显微镜、原子力显微镜和傅立叶变换显微红外/拉曼光谱仪的测试,研究了飞秒激光烧蚀MgAl_2O_4透明陶瓷的形貌特征,重点讨论了飞秒激光烧蚀得到的周期为300 nm,宽度为200 nm的周期性波纹状微纳米结构。对烧蚀后的区域在波数为2500-7000 cm-1范围内的透过率进行了分析,结果表明能流密度在烧蚀阈值附近的飞秒激光辐照MgAl_2O_4透明陶瓷后可以使其红外透过率由82%提高到86%左右。
     (3)实验研究了飞秒激光与LiNbO_3晶体的相互作用。采用不同能量的单脉冲和多脉冲飞秒激光对LiNbO_3晶体进行烧蚀,发现利用单束飞秒激光作用LiNbO_3晶体,只要激光脉冲的能量和数量选择合适,都可以得到小于系统衍射极限的烧蚀点,并对超衍射极限加工的机理进行了分析。研究了不同能流密度的飞秒激光对LiNbO_3晶体拉曼光谱的影响,在激光能流密度较低时,飞秒激光的烧蚀对铌酸锂晶体的结构没有显著影响,较高能流密度的飞秒脉冲烧蚀后可以使铌酸锂晶体的原子平衡键距增大,原子间作用力减弱,平衡键距和键角呈现具有一定宽度的分布,并使铌酸锂形成了非晶化组织。
     (4)选择不同的加工参数,采用飞秒激光直写技术在LiNbO_3晶体上制备了表面衍射光栅,实验和理论分析结果表明,可以通过提高烧蚀速率、降低激光脉冲能量和增大光栅常数来提高飞秒激光加工光栅的衍射效率。采用垂直方式在LiNbO_3晶体内部加工了直线光波导,实验研究了脉冲能量和烧蚀速率对光波导折射率的影响,结果表明利用飞秒激光加工光波导,在不引起烧蚀的情况下,能量较高、加工速率较低可以得到比较好的效果。
In this dissertation, theoretical and experimental studies on the femtosecond laser ablation of dielectrics and fabrication of micro-optics devices based on femtosecond laser micromachining are presented. The main contents are classified as follows.
     (1) The ionization processes of multi-photon ionization and avalanche ionization in laser-induced damage are studied. The changes of avalanche ionization rate and multi-photon ionization rate with the changes of laser intensity are investigated by taking the silica glass as an example. The relation between damage threshold and laser pulse duration, photon energy is studied.
     (2) Microstructural modifications of MgAl_2O_4 transparent ceramic induced by femtosecond laser pulse with a wavelength of 800 nm have been investigated by experiments. The ablation thresholds of MgAl_2O_4 transparent ceramic for single-pulse and multiple-pulse are studied. It was found that the periodic ripples about 200 nm in width and 300 nm in neighbouring ripples distance are formed on the bottom surfaces of ablation holes. The ablated spot under optimized energy pulses (near the damage threshold energy) can improve the IR transmission from 82% to 86% in the band of 2500-7000 cm-1 for MgAl_2O_4 transparent ceramic. When the pulses energy exceeds the threshold energy, the transmission of MATC decreases rapidly.
     (3) The morphology of structural changes of lithium niobate (LiNbO_3) single crystal ablated by a femtosecond laser pulse has been investigated. Sub-wavelength spots in LiNbO_3 crystal ablated by femtosecond laser focused with 20×(NA=0.5) microscope objective have been achieved. The spot-size is about 400 nm and 800 nm with 170 nJ single-pulse and 100 nJ, 17 pulses ablation, respectively. Raman analysis indicates some loss of crystallinity of the material after ablation with femtosecond laser. This indicates that LiNbO_3 suffers some change in chemical structure at the superficial layer, but remains largely unchanged in the bulk.
     (4) Diffraction gratings were written at the surface of LiNbO_3 single crystal under irradiation with femtosecond laser pulses. The experimental and theoretical results show that the diffraction efficiencies of gratings can be improved by increase of ablation speed and grating constant or decrease of pulse energy. The waveguide structure was fabricated with different parameters by vertical illumination method in LiNbO_3 single crystal. The influences of refractive index on laser intensity and ablation rate are investigated by experiments.
引文
[1] I.S.Ruddock, D.J.Bradley. Bandwidth-limited subpicosecond pulse generation in modelocked cw dye laser. Appl. Phys. Lett., 1976, 29: 296~297
    [2] R.Ell, U.Morgner, F.X.Kaartner et al. Generation of 5-fs pulses and octave- spanning spectra directly from a Ti:sapphire laser. Opt. Lett., 2001, 26: 373~375
    [3] U.Keller. Recent developments in compact ultrafast lasers. Nature, 2003, 424: 831~838
    [4] V.V.Lozhkarev, G.I.Freidman, V.N.Ginzburg et al. 200 TW 45 fs laser based on optical parametric chirped pulse amplification. Opt. Express, 2006, 14: 446~454
    [5] T.Tajima, G.Mourou. Zettawatt-exawatt lasers and their applications in ultrastrong-field physics. Phys. Rev. Special Topics-Accelerators and Beams, 2002, 5: 03130121~ 03130129
    [6] T.Detsch. Mode-locking effects in an internally. modulated ruby laser. Appl. Phys. Lett., 1965, 7: 80~81
    [7] E.S.Bliss, J.T.Hunt, P.A.Renard. Effects of Nonlinear Propagation on Laser Focusing Properties. IEEE J.Quantum Electron., 1976, QE-12: 402~406
    [8] R.L.Fork, B.I.Green, C.V.Shank. Generation of Optical Pulses Shorter than 0.1 psec by Colliding Pulse Mode Locking. Appl. Phys. Lett., 1981, 38: 671~672
    [9] J.A.Valdmains,R.L.Fork, J.P.Gordon. Generation of optical pulses as short as 27 femtosecond directly from a laser balancing self-phase modulation, group-velocity dispersion ,saturable absorption, and saturable gain. Opt. Lett., 1985, 10: 131~133
    [10] R.Roy, P.A.Schulz, A.Walther. Acousto-optic modulator as an electronically selectable unidirectional device in a ring laser. Opt. Lett., 1987, 12: 672~674
    [11] N.Sarukura, Y.Ishida, H.Nakano et al. CW passive mode locking of a Ti:sapphire laser. Appl. Phys. Lett., 1990, 56: 814~815
    [12] P.M.W.French, S.M.J.Kelly, J.R.Taylor. Mode locking of a continuous-wave titanium-doped sapphire laser using a linear external cavity. Opt. Lett., 1990, 15: 378~380
    [13] K.Naganuma, K.Mogi. 50-fs pulse generation directly fron a colliding-pulsemode-locked Ti:sapphire laser using an antiresonant ring mirror. Opt. Lett., 1991, 16: 738~740
    [14] D.E.Spence, P.N.Kean, W.Sibbett. 60-fsec pulse generation from a self-mode- locked Ti:sapphire laser. Opt. Lett., 1991,16:42~44
    [15] H.A.Haus, J.G.Fujimoto, E.P.Ippen. Structures for additive pulse mode locking. J. Opt. Soc. Am. B, 1991, 8: 2068~2076
    [16] A.Stingl, M.Lenzner, C.Spielmann et al. Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser. Opt. Lett., 1995, 20:602~604
    [17] I.D.Jung, F.X.Kartner, N.Matuschek et al. Self-starting 6.5 fs from a KLM Ti:sapphire laser. Opt. Lett., 1997, 22: 1009~1011
    [18] K.Yamane, Z.G.Zhang, K.Oka et al. Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation. Opt. Lett., 2003, 28: 2258~2260
    [19] E.Matsubara, K.Yamane, T.Sekikawa et al. Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber. J. Opt. Soc. Am. B, 2007, 24: 985~989
    [20] U.Keller, D.A.B.Miller, G.D.Boyd et al. Solid-state low-loss in tracavity saturable absorber for Nd:YLF lasers: An antiresonant semiconductor Fabry-Perot saturable absorber. Opt. Lett., 1992, 17: 505~507
    [21] V.L.Kalashnikov, D.O.Krimer, I.G.Poloyko. Soliton generation and picosecond collapse in solid-state lasers with semiconductor saturable absorbers. J. Opt. Soc. Am. B, 2000, 17: 519~523
    [22] I.T.Sorokina, E.Sorokin, E.Wintner et al. 14-fs generation in Kerr-lens mode- locked prism less Cr:LiSGaF and Cr:LiSAF lasers:observation of pulse self-frequency shift. Opt. Lett., 1997, 22 :1716~1718
    [23] Z.Zhang, K.Torizuka, T.Itatani et al. Femtosecond Cr:forsterite laser with modelocking initiated by a quantum-well saturable absorber. IEEE J.Quantum Electron. 1997, QE233: 1851~1861
    [24] Y.Ishita, K.Naganuma. Characteristics of femtosecond pulsed near 1.5μm in a self-mode-locked Cr4+:YAG laser. Opt. Lett., 1994, 19: 2003~2005
    [25] M.E.Fermann. Ultrashort-pulse sources based on single-mode rare-earth-doped fibers. Appl. Phys. B., 1994, 58: 197~209
    [26] F.R?ser, J.Rothhard, B.Ortac et al. 131 W 220 fs fiber laser system. Opt. Lett., 2005, 30: 2754~2756
    [27] D.Strickland, G.Mourou. Compression of amplified chirped optical pulses. Opt. Comm., 1985, 56: 219~221
    [28] A.Sullivan, H.Hamster, H.C.Kapteyn et al. Multiterawatt, 100-fs laser. Opt. Lett., 1991, 16: 1406~1408
    [29] K.Yamakawa, M.Aoyama, S.Matsuoka et al. 100-TW sub-20-fs Ti:sapphire laser system operating at a 10-Hz repetition rate. Opt. Lett., 1998, 23: 1468~1470
    [30] G.Y.Liu, D.J.Toncich, E.C.Harvey. Evaluation of excimer laser ablation of thin Cr film on glass substrate by analyzing acoustic emission. Opt. and Lasers in Eng., 2004, 42: 639~651
    [31] S.K.Lee, S.J.Na. KrF excimer laser ablation of thin Cr film on glass substrate. Appl. Phys. A, 1999, 68: 417~423
    [32] D.Von der Linde, K. Sokolowski-Tinten, J. Bialkowski. Laser-solid interaction in the femtosecond time regime. Appl. Surf. Sci., 1997, 109~110: 1~10
    [33] J.R.Goldman, J.A.Prybyla. Ultrafast dynamics of laser-excited electron distribution in silicon. Phys. Rev. Lett., 1994, 72: 1364~1367
    [34] S.Jeon, V.Malyarchuk, J.A.Rogers. Fabricating three dimensional nanostructures using two photon lithography in a single exposure step. Opt. Express, 2006,14: 2300~2308
    [35] B.N.Chichkov, C.Momma, S.Nolte et al. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A, 1996, 63: 109~115
    [36] S.Maruo, K.Ikuta, H.Korogi. Submicron manipulation tools driven by light in a liquid. Appl. Phys. Lett., 2003, 82:133~135
    [37] K.Furusawa, K.Takahashi, H.Kumagai et al. Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser. Appl. Phys. A, 1999, 69: S359~S366
    [38]赵全忠,邱建荣,姜雄伟等.飞秒激光诱导金属功能微结构的机理与应用.激光与光电子学进展, 2004, 41: 46~50
    [39] S.Kawata, H.B.Sun, T.Tanaka et al. Finer features for functional microdevices.Nature, 2001, 412: 697~698
    [40] J. Serbin, A. Egbert, A. Ostendorf et al. Femtosecond laser induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics. Opt. Lett., 2003, 28: 301~303
    [41] T.W.Lim, S.H.Park, D.Y.Yang. Contour offset algorithm for precise patterning in two-photon polymerization. Microelectronic Engineering, 2007, 77: 382~388
    [42] M.Deube, G.Von Freymann, M.Wegener et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature Mater., 2004, 3: 444~447
    [43] A.Borowiec, H.K.Haugen. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett., 2003, 82: 4462~4464
    [44] R.A.Myers, R.Farrell, A.M.Karger et al. Enhancing near-infrared avalanche photodiode performance by femtosecond laser microstructuring. Appl. Opt., 2006, 45: 8825~8831
    [45] N.B?rsch, K.K?rber, A.Ostendorf et al. Ablation and cutting of planar silicon devices using femtosecond laser pulses. Appl. Phys. A, 2003, 77: 237~242
    [46] E.N.Glezer, E.Mazur. Ultrafast-laser driven micro-explosions in transparent materials, Appl. Phys. Lett., 1997, 71: 882~884
    [47] E.N.Glezer, M.Milosavljevic, L Huang et al. Three-dimensional optical storage inside transparent materials. Opt. Lett., 1996, 21: 2023~2025
    [48] S.Juodkazis, M.Sudzius, V.Mizeikis et al. Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3. Appl. Phys. Lett., 2006, 89: 062903
    [49] T.Siebert, O.Sbanski, M.Schmitt et al. The mechanism of light storage in spherical microcavities explored on a femtosecond time scale. Opt. Comm., 2003, 216: 321~327
    [50] C.D.Li, D.L.Wang, L.Luo et al. Feasibility of femtosecond laser writing multi-Layered bit planes in fused silica for three-dimensional optical data storage. Chin. Phys. Lett., 2001, 18: 541~543
    [51] Y.Li, W.Watanabe, K.Itoh et al. Holographic data storage on nonphotosensitive glass with a single femtosecond laser pulse. Appl. Phys. Lett., 2002, 81: 1952~1954
    [52] J.Lim, M.Lee, E.Kim. Three-dimensional optical memory using photoluminescence change in Sm-doped sodium borate glass. Appl. Phys. Lett., 2005, 86: 191105
    [53] G.H.Cheng, Y.Wang, J.D.White et al. Demonstration of high-density three- dimensional storage in fused silica by femtosecond laser pulses. J. Appl. Phys., 2003, 94: 1304~1307
    [54] K.Miura, J.R.Qiu, S.Fujiwara et al. Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions. Appl. Phys. Lett., 2002, 80: 2263~2265
    [55] N.Zhavoronkov, V.Petrov, F.Noack. Transient excited-state absorption measurements in chromium-doped forsterite. Phys. Rev. B, 2000, 61:1866~1870
    [56] K.Hirao, K.Miura. Writing waveguides and gratings in silica and related materials by a femtosecond laser. J. Non-Crystalline Solids, 1998, 239: 91~95
    [57] Z.L.Li, D.K.Y.Low, M.K.Ho et al. Fabrication of waveguides in foturan by femtosecond laser. J. Laser Appl., 2006, 18: 320~324
    [58] J. Siegel, J. M. Fernández-Navarro, A. García-Navarro et al. Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold. Appl. Phys. Lett., 2005, 86: 121109
    [59] M.Hughes, W.Yang, D.Hewak. Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass. Appl. Phys. Lett., 2007,90: 131113
    [60] K.Miura, J.Qiu, H.Inouye et al. Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett., 1997, 71: 3329~3331
    [61] C.B.Schaffer, A.Brodeur, J.F.Garcia. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt. Lett., 2001, 26: 93~95
    [62] M.Will, S.Nolte, B.N.Chichkov et al. Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses. Appl. Opt., 2002, 41: 4360~4364
    [63] J.W.Chan, T.R.Huser, S.H.Risbud et al. Waveguide fabrication in phosphate glasses using femtosecond laser pulses. Appl. Phys. Lett., 2003, 82: 2371~2373
    [64] H.B.Zhang, S.M.Eaton, J.Z.Li et al. Type II high-strength Bragg grating waveguides photowritten with ultrashort laser pulses. Opt. Express, 2007,15: 4182~4191
    [65] S.Lee, S.Nikumb. Characteristics of filament induced Dammann gratings fabricated using femtosecond laser. Opt. & Laser Tech. 2007, 39: 1328~1333
    [66] M.Bernier, D.Faucher, R.Vallée et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm. Opt. Lett., 2007, 32: 454~456
    [67] J.J.Zheng, C.H.Zhou, E.W.Dai. Double-line-density gratings structure for compression and generation of double femtosecond laser pulses. J. Opt. Soc. Am. B, 2007, 24: 979~984
    [68] Y.H.Li, P.X.Lu, N.L.Dai et al. Surface relief diffraction gratings written onβ-BaB2O4 crystal by femtosecond pulses. Appl. Phys. B, 2007, 88: 227~230
    [69] L.Sudrie, M.Franco, B.Prade et al. Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses. Opt. Comm., 1999, 171: 279~284
    [70] S.Cho, H.Kumagai, K.Midorikawa. Fabrication of internal diraction gratings in planar silica plates using low-density plasma formation induced by a femtosecond laser. Nuclear Instruments and Methods in Physics Research B, 2002,197: 73~82
    [71] T.Nakaya, J.R.Qiu, C.H.Zhou et al. Fabrication of dammann gratings inside glasses by a femtosecond laser. Chin. Phys. Lett., 2004, 21: 1061~1063
    [72] P.G.Kryukov, Yu.V.Larionov, A.A.Rybaltovskii et al. Long-period fibre grating fabrication with femtosecond pulse radiation at different wavelengths. Microelectronic Eng., 2003, 69: 248~255
    [73] B.L.Yu, A.B.Bykov, T.Qiu et al. Femtosecond optical Kerr shutter using lead-bismuth-gallium oxide glass. Opt. Comm., 2003, 215: 407~411
    [74] Y.Cheng, K.Sugioka, K.Midorikawa et al. Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser. Opt. Lett., 2003, 28: 1144~1146
    [75] S. Juodkazis, S. Matsuo, H. Misawa et al. Application of femtosecond laser pulses for microfabrication of transparent media. Appl. Surf. Sci., 2002, 197~198: 705~709
    [76] Y. Cheng, H. L. Tsai, K. Sugioka et al. Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining. Appl. Phys. A, 2006, 85: 11~14
    [77]姜雄伟,朱从善,干福熹等.光学玻璃在皮秒与飞秒脉冲激光作用下的暗化现象.中国激光, 2001, 28: 603~606
    [78] J.R.Qiu, K.Miura, H.Inouye et al. Femtosecond laser-induced three-dimensionalbright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions. Appl. Phys. Lett., 1998, 73: 1763~1765
    [79] J.R.Qiu, M.Shirai, T.Nkaya et al. Space-selective precipitation of metal nanoparticles inside glasses. Appl. Phys. Lett., 2002, 81: 3040~3042
    [80] J.R.Qiu, C.S.Zhu, T.Nakaya et al. Space-selective valence state manipulation of transition metal ions inside glasses by a femtasecond laser. Appl. Phys. Lett., 2001, 79: 3567~3569
    [81] M. Efimov, K. Gabel, S.V. Garnov et al. Color-center generation in silicate glasses exposed to infrared femtosecond pulses. J. Opt. Soc. Am. B, 1998, 15: 193~199
    [82] X.Liu, D.Du, G.Mourou. Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Quantum Electron., 1997, 33: 1706~1716
    [83] A.Kaiser, B.Rethfeld, M.Vicanek et al. Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses. Phys. Rev. B, 2000, 61: 11437~11450
    [84] F.Ladieu, P.Martin, S.Guizard. Measuring thermal effects in femtosecond laser-induced breakdown of dielectrics. Appl. Phys. Lett., 2002, 81: 957~959
    [85] L.Petit, N.Carlie, T.Anderson et al. Effect of IR femtosecond laser irradiation on the structure of new sulfo-selenide glasses. Opt. Mater., 2007, 29:1075~1083
    [86] S.Juodkazis, K.Nishimura, H.Misawa. In-bulk and surface structuring of sapphire by femtosecond pulses. Appl. Surf. Sci., 2007, 253: 6539~6544
    [87] O.G. Kosareva, T.Nguyen, N.Anov et al. Array of femtosecond plasma channels in fused silica. Opt. Comm., 2006, 267:511~523
    [88] A.Saliminia, N.T.Nguyen, S.L.Chin et al. The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses. Opt. Comm., 2004, 241:529~538
    [89] M.Y.Shen, C.H.Crouch, J.E.Carey et al. Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask. Appl. Phys. Lett., 2003, 82: 1715~1717
    [90] A.Ben-Yakar, R.L.Byer, A.Harkin et al. Morphology of femtosecond laser-ablated borosilicate glass surfaces. Appl. Phys. Lett., 2003, 83: 3030~3032
    [91] C.B.Schaffer, A.O.Jamison, E.Mazur. Morphology of femtosecond laser-induced structural changes in bulk transparent materials. Appl. Phys. Lett., 2004, 84:1441~1443
    [92] J.W.Chen, T.R.Huser, S.H.Risbud et al. Waveguide fabrication in phosphate glasses using femtosecond laser pulses. Appl. Phys. Lett., 2003, 82: 2371~2733
    [93] U.Natura, T.Feurer, D.Ehrt. Kinetics of UV laser radiation defects in high performance glasses. Nuclear Instruments and Methods in Physics Research B, 2000, 166~167: 470~475
    [94] K.Miura, J.Qiu, T.Mitsuyu, et al. Preparation and optical properties of fluoride glass waveguides induced by laser pulses. J. Non-Crystalline Solids, 1999, 256&257: 212~219
    [95] C.Y.Jiang, G.Q.Zhou, J.Xu et al. Femtosecond laser irradiation on YAG and sapphire crystals. J. Crystal Growth, 2004, 260: 181~185
    [96] K.M.Davis, K.Miura, N.Sugimoto et al. Writing waveguide in glass with a femtosecond laser. Opt. Lett., 1996, 21:172 ~173
    [97] E.N.Glezer, E. Mazur. Ultrafast-laser driver micro-explosions in transparent materials. Appl. Phys. Lett., 1997, 71: 882~884
    [98] D.H.Schneider, M.A. Briere, J.McDonald et al. Ion surface interaction studies with highly charged ions. Radiation effects and defects in solids, 1993, 127: 113~136
    [99] I.S.Bitenskii, M.N.Murakhmetov, E.S.Parilis. Sputtering of nonmetals by intermediate-energy multiply charged ions through a Coulomb explosion. Sov. Phys. Tech., 1979, 24: 618~620
    [100] H.P.Cheng, J.D.Gillaspy. Nanoscale modification of silicon surfaces via Coulomb explosion. Phys. Rev. B, 1997, 55: 2628~2636
    [101] M.Henyk, R.Mitzner, D.Wolfframm et al. Laser-induced ion emission from dielectrics. Appl. Surf. Sci., 2000, 154~155: 249~255
    [102] M.Henyk, D.Wolfframm, J.Reif. Ultrashort laser pulse induced charged particle emission from wide bandgap crystals. Appl. Surf. Sci., 2000, 168: 263~266
    [103] E.Vanagas, I.Kudryashov, D.Tuzhilin et al. Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses. Appl. Phys. Lett., 2003, 82: 2901~ 2903
    [104] E.Yablonovitch, N.Bloembergen. Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media. Phys. Rev. Lett., 1972, 29: 907~910
    [105] P.P.Pronko, S.K.Dutta, D.Du et al. Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses. J. Appl. Phys., 1995, 78: 6233~6240
    [106] D.P.Hand, P.St.J.Russell. Photoinduced refractive-index changes in germanosilicate glass. Opt. Lett., 1990, 15: 102~104
    [107] J.P.Bernardin, N.M.Lawandy. Dynamics of the formation of Bragg gratings in germanosilicate optical fibers. Opt. Comm., 1990, 79: 194~199
    [108] E.Mevel, P.Breger, R.Trainhan et al. Atoms in strong optical fields: evolution from multiphoton to tunnel ionization. Phys. Rev. Lett., 1993, 70: 406~409
    [109] A.Tien, S.Backus, H.Kapteyn et al. Short-pulse laser damage in transparent materials as a function of pulse duration. Phys. Rev. Lett., 1999, 82: 3883~3886
    [110] M.D.Perry, B.C.Stuart, P.S.Banks et al. Ultrashortpulse laser machining of dielectric materials. J. Appl. Phys., 1999, 85: 6803~6810
    [111] C.B.Schaffer, A.Brodeur, E.Mazur. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Tech., 2001, 12: 1784~1794
    [112] K.K.Thornber, Applications of scaling to problems in high-field electronic transport, J. Appl. Phys., 1981, 52: 279~290
    [113] L.V.Keldysh. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP, 1965, 20: 1307~1314
    [114] B.C.Stuart, M.D.Feit, A.M.Rubenchik et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett., 1995, 74: 2248~ 2251
    [115] M.Li, S.Menon, J.P.Nibarger et al. Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics. Phys. Rev. Lett., 1999, 82: 2394~2397
    [116] N.Bloembergen. Laser-induced electricbreakdown in solids. IEEE J. Quantum Electron., 1974, QE-10: 375~386
    [117] E.G.Gamaly, A.V.Rode, B.Luther-Davies et al. Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics. Phys. of Plas., 2002, 9: 949~957
    [118] P.P.Pronko, P.VanRompay, A.Horvath et al. Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses. Phys. Rev. B, 1998, 58: 2387~2390
    [119] M.V.Exter, A.Lagendijk. Ultrashort surface-plasmon and phonon dynamics. Phys. Rev. Lett., 1988, 60: 49~52
    [120] C.W.Carr, H.B.Radousky, A.M.Rubenchik et al. Localized dynamics during laser-induced damage in optical materials. Phys. Rev. Lett., 2004, 92: 087401
    [121] M.Sparks, D.L.Mills, R.Warren et al. Theory of electron-avalanche breakdown in solids. Phys. Rev. B, 1981, 24: 3519~3536
    [122] I.M.Azzouz. Investigation of photoionization processes in ultrashort laser induced damage in optical materials. J. Phys. B: At. Mol. Opt. Phys., 2004, 37: 3259~3264
    [123] D.Du, X.Liu, G.Korn et al. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs. Appl. Phys. Lett., 1994, 64: 3071~3073
    [124] M.Sparks, D.L.Mills, R.Warren et al. Theory of electron-avalanche breakdown in solids. Phys. Rev. B, 1981, 24: 3519~3536
    [125] J.H.Sun, R.B.Zhang, Q.Y.Wang et al. High-average-power self-starting mode-locked Ti:sapphire laser with a broadband semiconductor saturable absorber mirror. 2001, Appl. Opt., 40: 3539~3541
    [126] S.M.Saltiel, K.A.Stankov, P.D.Yankov et al. Realization of a diffraction- grating autocorrelator for single-short measurement of ultrashort light pulse duration. Appl. Phys. B, 1986, 40: 25~27
    [127] D.J.Kane, R.Trebino. Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating. Opt. Lett., 1993, 18: 823~825
    [128] H.R.Lange, M.A.France, J.F.Ripoche et al. Reconstruction of the time profile of femtosecond laser pulses through cross-phase modulation. IEEE J. of Selected Topics in Quantum Electron., 1998, 4: 295~300
    [129] V.V.Laguta, M.D.Glinchuk, A.M.Slipenyuk et al. Light-Induced Intrinsic Defects in PLZT Ceramics. Physics of the Solid State, 2000, 42: 2258~2264
    [130] J.Manara, R.Caps, F.Raether et al. Characterization of the pore structure of alumina ceramics by diffuse radiation propagation in the near infrared. Opt. Comm., 1999, 168: 237~250
    [131] J.Kim, H.Berberoglu, X.F.Xu. Fabrication of microstructures in photoetchable glass ceramics using excimer and femtosecond lasers. J. Microlith. Microfab. Microsyst.,2004, 3: 478~485
    [132] W.Perrie, A.Rushton, M.Gill et al. Femtosecond laser micro-structuring of alumina ceramic. Appl. Surf. Sci., 2005, 248: 213~217
    [133] N.B?rsch, K.Werelius, S.Barcikowski et al. Femtosecond laser microstructuring of hot-isostatically pressed zirconia ceramic. J. Laser Appl., 2007, 19: 107~115
    [134] P.Rudolph, K.W.Brzezinka, R.Wasche et al. Physical chemistry of the femtosecond and nanosecond laser-material interaction with SiC and a SiC-TiC-TiB2 composite ceramic ompound. Appl. Surf. Sci., 2003, 208~209: 285~291
    [135] J.W.Yang, C.J.Sun, Q.Chen et al. High quality GaN-InGaN heterostructures grown on (111) silicon substrates, Appl. Phys. Lett., 1996, 69: 3566~3568
    [136]李晓溪,贾天卿,冯东海等.超短脉冲激光照射下氧化铝的烧蚀机理.物理学报, 2004, 53: 2154~2158
    [137] M.Lenzner, J.Kruger, S.Sartania et al. Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett., 1998, 80: 4076~4079
    [138]倪晓昌.飞秒激光微精细加工理论与实验研究[博士学位论文].天津:天津大学图书馆, 2003
    [139] J.M.Liu. Simple technique for measurement of pulsed Gaussian-beam spot sizes. Opt. Lett., 1982, 23: 792~794
    [140] V.V.Laguta, M.D.Glinchuk, A.M.Slipenyuk et al. Light-induced intrinsic defects in PLZT ceramics. Physics of the Solid State, 2000, 42: 2258~2264
    [141] Y.Jee, M.F.Becker, R.M.Walser. Laser-induced damage on single-crystal metal surfaces. J. Opt. Soc. Am. B, 1988, 5: 648~659
    [142] S.Baudach, J.Bonse, J.Krüger et al. Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate. Appl. Surf. Sci., 2000, 154~155: 555~560
    [143] W.Kautek, J.Kruger, M.Lenzner et al. Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps. Appl. Phys. Lett., 1996, 69: 3146~3148
    [144] D.Ashkenasi, M.Lorenz, R.Stoian et al. Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation. Appl. Surf. Sci., 1999, 150: 101~106
    [145]姜本学,赵志伟,潘守夔等.飞秒激光与晶体和玻璃的相互作用.量子电子学报, 2005, 22: 135~141
    [146] L.Jiang, H.L.Tsai. Prediction of crater shape in femtosecond laser ablation of dielectrics. J. Phys. D: Appl. Phys., 2004, 37: 1492~1496
    [147] K.Furusawa, K.Takahashi, S.H.Cho et al. Femtosecond laser micromachining of TiO2 crystal surface for robust optical catalyst. Appl. Phys., 2000, 87: 1604~1607
    [148] M.Birnbaum. Semiconductor surface damage produced by ruby laser. J. Appl. Phys., 1965, 36: 3688~3689
    [149] Y.Dong, P.Molian. Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser. Appl. Phys. Lett., 2004, 84: 10~12
    [150] Y.Shimotsuma, P.G.Kazansky, J.R.Qiu et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett., 2003, 91: 247405
    [151] V.R.Bhardwaj, E.Simova, P.P.Rajeev et al. Optically Produced Arrays of Planar Nanostructures inside Fused Silica. Phys. Rev. Lett., 2006, 96: 057404
    [152] T.Q.Jia, F.L.Zhao, M.Huang et al. Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams, Appl. Phys. Lett., 2006, 88: 111117
    [153]吉亚明,蒋丹宇,冯涛等.透明陶瓷材料现状与发展.无机材料学报, 2004, 19: 275~282
    [154]何捷,林理彬,卢勇等.γ辐射及退火MgAl2O4透明陶瓷光谱特性研究,人工晶体学报, 2002, 31: 63~66
    [155] G.Y.Zhou, M.Gua. Anisotropic properties of ultrafast laser-driven microexplosions in lithium niobate crystal. Appl. Phys. Lett., 2005, 87: 241107
    [156] J.Burghoff, C.Grebing, S.Nolte et al. Efficient frequency doubling in femtosecond laser written waveguides in lithium niobate. Appl. Phys. Lett., 2006, 89: 081108
    [157] R.Osellame, M.Lobino, N.Chiodo et al. Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient. Appl. Phys. Lett., 2007, 90: 241107
    [158]孔勇发,许京军,张光寅等.多功能光电材料.北京:科学出版社, 2005年
    [159]彭江得.光电子技术基础.北京:清华大学出版社, 1988年
    [160] A.Ashkin, G.Boyd, J.M.Dziedzic et al. Optically-induced Refractive Index Inhomogeneities in LiNbO3. Appl.Phys. Lett., 1966: 72~74
    [161]高磊.近化学计量比铌酸锂晶体生长与性质研究[博士学位论文].济南:山东大学图书馆, 2006
    [162]邓蕴沛,贾天卿,冷雨欣等.飞秒激光烧蚀石英玻璃的实验与理论研究.物理学报, 2004, 53: 2216~2220
    [163] W.H.Teh, U.Durig, G.Salis et al. SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication. Appl. Phys. Lett., 2004, 84: 4095~ 4097
    [164] C.Liguda, G.Bottger, A.Kuligk et al. Polymer photonic crystal slab waveguides. Appl. Phys. Lett., 2001, 78: 2434~2436
    [165] D.C.Deshpande, A.P.Malshe, E.A.Stach et al. Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate. J. Appl. Phys., 2005, 97: 074316
    [166] Y.F.Kong, J.J.Xu, X.J.Chen et al. Ilmenite like stacking defect in non-stoichiometric lithium niobate. crystals investigated by Raman scattering spectra. J. Appl. Phys., 2000, 87: 4410~4413
    [167]仇怀利,王爱华,尤静林等.铌酸锂晶体高温拉曼光谱研究.人工晶体学报, 2004, 33: 177~179
    [168] H.O.Jeschke, M.E.Garcia, M.Lenzner et al. Laser ablation t hresholds of silicon for different pulse durations:theory and experiment. Appl. Surf. Sci., 2002, 197~198: 839~844
    [169] P.Galinetto, D.Ballarini, D.Grando et al. Microstructural modification of LiNbO3 crystals induced by femtosecond laser irradiation. Appl. Surf. Sci., 2005, 248: 291~294
    [170] A.Ródenas, J.A.Sanz García, D.Jaque et al. Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals. J.Appl. Phys., 2006, 100: 033521
    [171]胡晓,赵全忠,姜雄伟等.飞秒激光烧蚀玻璃基质金属薄膜直写衍射光栅.中国激光, 2006, 33: 17~20
    [172]杨家敏,易荣清,陈正林等.透射光栅对软X射线衍射效率的研究.物理学报,1998, 47: 613~618
    [173] M.Hughes, W.Yang, D.Hewak. Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass. Appl. Phys. Lett., 2007, 90: 131113
    [174] P.Nandi, G.Jose, C.Jayakrishnan et al. Femtosecond laser written channel waveguides in tellurite glass. Opt. Express, 2006, 14: 12145~12150
    [175] D.K.Y.Low, H.Xie, Z.Xiong et al. Femtosecond laser direct writing of embedded optical waveguides in aluminosilicate glass, Appl. Phys. A, 2005, 81: 1633~ 1638
    [176] D.Homoelle, S.Wielandy, A.L.Gaeta et al. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses. Opt. Lett., 1999, 24: 1311~1313
    [177] A.Saliminia, N.T.Nguyen, M.-C.Nadeau et al. Writing optical waveguides in fused silica using 1 kHz femtosecond. J. Appl. Phys., 2003, 93: 3724

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700