用户名: 密码: 验证码:
高性能镍氢电池及其新型正极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的工作重点集中于高性能镍氢电池及其新型正极材料的研究。
     对于高性能镍氢电池,本文以球型β-Ni(OH)_2、AB5型贮氢合金作为正、负极活性材料,成功研制出AA2300mAh高容量镍氢电池,其放电容量2330mAh,具有较高的充放电循环寿命;对比了6种隔膜的物理性能,深入分析了隔膜特性对动力型镍氢电池电化学性能的影响,对镍氢电池用隔膜的评价方法也进行了总结、归纳;研究了LiOH、NaOH、Na_2WO_4等电解液添加剂对镍氢电池电化学性能的影响,发现5wt%Na_2WO_4能够在短期内有效地提高镍氢电池70℃时的放电性能;根据电池爆炸后钢壳的表面及断口形貌,初步探讨了高容量镍氢电池的钢壳爆炸问题,认为钢壳表面镍镀层中的微裂纹、氢脆、充电时H+的迁移以及充电内压p的协同作用是产生电池爆炸的原因。
     对于新型Ni(OH)_2正极材料,本文采用沉淀转化法制备出微尺度球型Ni(OH)_2,并将其与普通球型Ni(OH)_2以3wt%比例混合后可使镍电极的充电电位降低、放电比容量提高20mAh/g;升高加热温度,以尿素热解产生的NH3·H_2O作为沉淀剂,采用均相沉淀法制备的非掺杂及Al~(3+)、Zn~(2+)、Mn~(2+)、Fe~(3+)、Co~(2+)、Mg~(2+)、Cr~(3+)单元掺杂Ni(OH)_2均属于紊态α-Ni(OH)_2结构,晶粒尺寸较小、晶格缺陷较多,均具有较高的电化学循环稳定性;相对而言,Al~(3+)掺杂α-Ni(OH)_2的放电平台较高、循环稳定性较好,具有最高的放电容量和充放电效率,其微观结构由纳米级Ni(OH)_2纤维束团聚组成,化学式为Ni_(0.70)Al_(0.18)(OH)_(1.6)(CO_3)_(0.1)(SO_4)_(0.07)·(H_2O)_(0.6) ;与25℃相比, 60℃时Al~(3+)掺杂α-Ni(OH)_2的放电比容量降低10mAh/g,晶型结构稳定性较好,电化学循环95次后仍是晶态α型结构,且具有较高的倍率放电性能。
     本文首次对固相球磨法制备Ni(OH)_2电极材料进行了全面系统的研究,对比测试了非掺杂及Al~(3+)、Zn~(2+)、Mn~(2+)、Fe~(3+)、Co~(2+)、Mg~(2+)、Cr~(3+)单元掺杂球磨Ni(OH)_2的相结构、电化学性能,考察了初始原料中的Ni:Al比例、球磨转速、球磨时间、球料比等工艺因素对Al~(3+)掺杂球磨Ni(OH)_2的结构及电化学性能的影响,分析了优化球磨Al~(3+)Zn~(2+)、Al~(3+)Zn~(2+)Co~(2+)多元掺杂Ni(OH)_2的相结构、热稳定性及其电化学性能。结果表明,采用行星式球磨机对苛性碱、镍盐、金属阳离子添加剂和阴离子稳定剂等直接进行固相球磨,所得产物经去离子水洗涤、离心分离、真空干燥后即可获得在碱液中稳定存在的Ni(OH)_2电极材料;Fe~(3+)、Al~(3+)掺杂球磨Ni(OH)_2属于紊态α-Ni(OH)_2,空白球磨、Zn~(2+)、Mn~(2+)、Co~(2+)、Mg~(2+)、Cr~(3+)掺杂球磨Ni(OH)_2属于β-Ni(OH)_2或以β-Ni(OH)_2结构为主;固相球磨Ni(OH)_2电极材料晶粒尺寸较小、结晶度较低、存在较多的晶型缺陷,具有较高的电化学循环寿命和结构稳定性;其中,Al~(3+)掺杂球磨α-Ni(OH)_2微观结构由纳米晶纤维束构成,表面团聚现象显著,具有较高的室温电化学性能和60℃放电循环稳定性;与Y_2O_3相比,Na_2WO_4显著提高了60℃时Al~(3+)掺杂球磨α-Ni(OH)_2的倍率放电性能;随着初始原料中Al~(3+)含量的降低, Al~(3+)掺杂球磨Ni(OH)_2经历了α-Ni(OH)_2→α/β-Ni(OH)_2→β-Ni(OH)_2的晶型结构变化,而改变球磨转速、球磨时间、球料比则不会影响Al~(3+)掺杂球磨α-Ni(OH)_2的晶型结构;在实验所考察的范围内,Al~(3+)掺杂球磨Ni(OH)_2的最佳工艺参数为:初始原料Ni:Al比例5:1、球磨转速200r/min、球磨时间90min、球料比30:1;Al~(3+)Zn~(2+)、Al~(3+)Zn~(2+)Co~(2+)多元掺杂球磨Ni(OH)_2属于紊态α-Ni(OH)_2结构,与Al~(3+)掺杂球磨α-Ni(OH)_2相比,Al~(3+)Zn~(2+)、Al~(3+)Zn~(2+)Co~(2+)多元掺杂的放电容量降低,循环稳定性提高,活化性能增强。
The emphasis of this dissertation was focused on the research of high performance Ni-MH battery and its new positive materials.
     For the research of high performance Ni-MH battery, one of the findings was that AA2300mAh high capacity Ni-MH battery was successfully manufactured with sphericalβ-Ni(OH)_2 and AB5 hydrogen storage alloy serving as positive and negative materials respectively. The experimental Ni-MH battery could provide a capacity of 2330mAh and preferable cyclic performance. The physical characters of 6 kinds of separators were compared with each other as well as their influence on the electrochemical performance of dynamical Ni-MH batteries. The evaluating methods of Ni-MH separators were also summarized. The effects of electrolyte additives, such as LiOH, NaOH and Na_2WO_4, on the electrochemical performance of Ni-MH batteries were investigated and it was concluded that 5wt%Na_2WO_4 was more effective for improving short-dated electrochemical properties of Ni-MH batteries at 70℃. Based on the surface morphologies and fractographies of exploded steel shell, the explosion problem of high capacity Ni-MH batteries was primarily discussed. It could be generalized that the occurrence of battery explosion could be ascribed to the combined actions of micro-fissures of nickel coating, hydrogen embrittlement, H+ transportation and internal pressure p in the charging process.
     For the study of new positive materials, smaller size spherical Ni(OH)_2 particles, prepared by precipitation conversion, could reduce the charging potential of nickel electrode and release a capacity of 20mAh/g more than nominal value, when it was mechanically mixed with common spherical Ni(OH)_2 powders at a 3wt% weight ratio. Non-doped and Al~(3+), Zn~(2+), Mn~(2+), Fe~(3+), Co~(2+), Mg~(2+), Cr~(3+) doped Ni(OH)_2 powders were synthesized individually by homogeneous precipitation with a higher heating temperature and NH3·H_2O, generated from the thermal decomposition of urea, as precipitant. All the prepared Ni(OH)_2, which had smaller grain sizes and more lattice defects, belong to turbostraticα-Ni(OH)_2 structure and displayed high electrochemical cyclic stability. Compared with each other, Al~(3+) dopedα-Ni(OH)_2, with a chemical formula of Ni_(0.70)Al_(0.18)(OH)_(1.6)(CO_3)_(0.1)(SO4)_(0.07)·(H_2O)_(0.6), showed higher discharging plateau and more stable cyclic performance. It had the highest special capacity and charging-discharging efficiency. Its microstructure was composed of agglomerated nanocrystal fibrous bundles. Furthermore, Al~(3+) dopedα-Ni(OH)_2 represented an excellent electrochemical stability, high rate discharging ability at 60℃and a capacity of 10mAh/g lower than that at 25℃. After charged and discharged for 95 cycles, the experimental electrode materials remainedαphase.
     In this paper, the preparation of Ni(OH)_2 active materials by solid state ball milling method was firstly synthetically studied. The phase structure and electrochemical performance of non-doped and Al~(3+), Zn~(2+), Mn~(2+), Fe~(3+), Co~(2+), Mg~(2+), Cr~(3+) doped Ni(OH)_2 powders were investigated individually. The contributions of Ni:Al ration in the reaction reagents, rotating speed, ball milling periods and ball-mass ratio to the structure and electrochemical properties of Al~(3+) doped Ni(OH)_2 were also researched. Moreover, the phase structure, thermal stability, and electrochemical properties of Al~(3+)Zn~(2+), Al~(3+)Zn~(2+)Co~(2+) multiple doped Ni(OH)_2 synthesized by optimum technique was explored too. The results showed that stable Ni(OH)_2 powders could be made in the following process: directly ball milling the mixture of caustic alkali, nickel salt, metallic ion additive and anion stabilizing agent, and then cleaning, centrifugalizing and vacuum drying the milling products. Non-doped, Zn~(2+), Mn~(2+), Co~(2+), Mg~(2+), Cr~(3+) doped milling products wereβ-Ni(OH)_2 or mainlyβ-Ni(OH)_2, while Fe~(3+), Al~(3+) doped outgrowth belong toα-Ni(OH)_2. Solid state ball milling Ni(OH)_2 had smaller grain sizes, lower crystallinity and more lattice defects. However, they all exhibited high electrochemical cyclic performance and structural stability. The microstructure of Al~(3+) dopedα-Ni(OH)_2 was made up of nanocrystal fibrous bundles with a high agglomerated appearance. It showed a high ambient electrochemical properties and discharging cyclic stability at 60℃. Compared with Y_2O_3, Na_2WO_4 greatly improve 60℃discharge ability of Al~(3+) dopedα-Ni(OH)_2. With the reduction of Al~(3+) content in the starting reagents, the phase structure of Al~(3+) dopedα-Ni(OH)_2 transformed fromα-Ni(OH)_2 toα/β-Ni(OH)_2 and then toβ-Ni(OH)_2. However, rotating speed, ball milling periods and ball-mass ratio would never change the crystal structure of Al~(3+) dopedα-Ni(OH)_2. In the ranges of experimental conditions, the best ball milling technology for Al~(3+) doped Ni(OH)_2 was that a 5:1 ratio of nickel to aluminum in the reactive agents combined with a 200r/min rotating speed, a 90min milling period and 30:1 ball-mass ratio. The Al~(3+)Zn~(2+), Al~(3+)Zn~(2+)Co~(2+) multiple doped outputs were bothα-Ni(OH)_2 structure with a lower capacity, higher cyclic stability, and enhanced activity.
引文
[1]尹树峰,李全安,文九巴,MH-Ni 电池的发展,上海有色金属,2003,24(4):191~196
    [2]穆举国,韩连发,张文宽,金属氢化物镍蓄电池的应用,电池工业,2003,8(1):28~30
    [3]杨忠敏,车用镍-氢电池及其应用,汽车电器,2004,12:1~3
    [4]张勇,胡信国,张翠芬,新型化学电源的电极反应原理,电池工业,2004,9(1):33~36
    [5]李景虹,先进电池材料,北京:化学工业出版社,2004,115~128
    [6]HALPERT G, Past development and the future of nickel electrode cell technology, Journal of Power Sources, 1984, 12:177~192
    [7]倪佩,覃奇贤,NiOOH/Ni(OH)2 电极的发展历程及前景,电池,1996,26(1):35~37
    [8]朱文化,张登君,碱性二次电池中新型镍电极,电池,1994,24(3):127~130
    [9]奚正平,张健,毋录建,MH-Ni电池用新型镍纤维阳极材料的制备及性能,稀有金属材料与工程,1999,28(6):371~374
    [10]赵平,郝建军,王颖,纤维镍电极基板电化学浸渍镍正极的研究,表面技术,2002,31(1):37~39
    [11]谢德明,刘昭林,MHNi 电池用泡沫式镍正极的进展,电池,1998,28(3):135~138
    [12]袁安保,张鉴清,曹楚南,镍电极研究进展,电源技术,2001,25(1):53~59
    [13]BODE H, DEHMELT K, WITTE J. Zur kenntnis der nickel hydroxide electrode(I) Uber das nickel(II)-hydroxidhydrat, Electrochimica Acta, 1966, 11:1079~1087
    [14]杨长春,陈鹏磊,电池用 Ni(OH)2 及其电化学行为的研究现状,电源技术,1999,23(1):37~42
    [15]CORNILSEN B C, SHAN X, LOYSELLEP. L, Structural comparison of nickel electrodes and precursor phases, Journal of Power Sources, 1990, 29:453~458
    [16]L. Indira, Mridula Dixit, P. Vishnu Kamath, Electrosynthesis of layered double hydroxides of nickel with trivalent cations. Journal of Power Sources, 1994, 52(1):93~97
    [17]查全性,电极过程动力学导论(第 3 版),北京:科学出版社,2002:400
    [18]姜长印,万春荣,张全荣等,高密度高活性球形氢氧化镍的制备与性能控制,电源技术,1997,21(1):243~247
    [19]范祥清,修荣,范自力等,高活性Ni(OH)2的制备及电极性能,电池,1995,25(2):55~58
    [20]夏熙,魏莹,纳米级β-Ni(OH)2的制备和放电性能,无机材料学报,1998,13(5):674~678
    [21]魏莹,夏熙,纳米级电极材料的制备及其电化学性质研究(IV):纳米级β-Ni(OH)2正极材料的研究,电源技术,1998,22(4):139~141
    [22]杨长春,李祥杰,陈鹏磊等,电解法制备球型氢氧化镍工艺研究,电源技术,2000,24(5):288~291
    [23]刘敏,韩恩山,朱令之等,氢氧化镍的制备及其电化学行为研究进展,电源技术,2002,26(3):172~175
    [24]申勇峰,影响球形氢氧化镍质量的因素分析与控制,湿法冶金,2002,21(2):76~80
    [25]郭建忠,赵丽华,李志萍等,氢氧化镍超微粉的制备研究及微观结构分析,陶瓷学报,2003,24(3):160~163
    [26]沈湘黔,彭美,危亚辉等,β-球型氢氧化镍的微结构与热分解特征,电源技术,2004,28(1):10~13
    [27]刘煦,纳米材料在电池中的应用,电池,2003,33(2):119~120
    [28]Reisner D E, Xiao T D, Strutt P R, Nickel Hydroxide and Other Nanophase Cathode Materials for Rechargeable Batteries, Journal of Power Sources, 1997, (65):231~233
    [29]周根陶,刘双怀,郑永正,沉淀转化法制备不同形状的氢氧化镍及氧化镍超微粉的研究,无机化学学报,1997,13(1):43~47
    [30]彭成红,刘澧浦,李祖鑫,纳米氢氧化镍的研制,电池,2001,31(4):175~177
    [31]张秀英,胡志国,赵春霞,离子交换树脂法制备氢氧化镍和氧化镍超细微粒,功能材料,2000,31(1):109~110
    [32]刘洪成,褚莹,刘莹莹,反胶束法制备纳米 Ni(OH)2,应用化学,2003,20(3):302~304
    [33]赵. 力,张翠芬,周德瑞,干燥温度对纳米 β-氢氧化镍团聚程度和循环伏安性能的影响,中国有色金属学报,2003,13(5):1125~1129
    [34]周震,阎杰,Ni(OH)2 超微粉的制备及电化学性能,应用化学,1998,15(2):40~43
    [35]赵力,周德瑞,碱性电池用纳米氢氧化镍的研制,电池,2000,30(6):244~245
    [36]韩喜江,徐崇泉,周德瑞等,纳米 β-Ni(OH)2 与球型 Ni(OH)2 的热性能比较研究,压电与声光,2002,24(5):418~420
    [37]丁海洋,景晓燕,张密林,纳米 Ni(OH)2 的制备与研究,应用科技,2004,31(3):60~62
    [38]夏熙,龚玉良,纳米 β-NiOOH 的固相合成及其性能,电池,2002,32(1):6~9
    [39]韩喜江,徐崇泉,周德瑞等,不同镍盐合成纳米 Ni(OH)2 的形貌和放电性能研究,国际网上化学学报,2002,4(5):25
    [40]赵力,张翠芬,周德瑞等,洗涤时 pH 值对纳米级 β-Ni(OH)2 的团聚程度和电化学性能的影响,无机化学学报,2002,18(6):619~622
    [41]尹筱莉,李娟,符继红等,Co 取代 Ni(OH)2 纳米粉体的制备、表征及电化学性能研究,化学研究与应用,2002,14(4):100~103
    [42]刘长久,叶乃清,刁汉明,纳米级 β-Ni(OH)2 掺杂 Al(OH)3 的电化学性能,应用化学,2002,19(5):468~470
    [43]Roco M.C., Williams R.S., Alivisatos P., Nanotechnology Research Directions: IWGN(Interagency Working Group on Nanoscience, Engineering and Technology). Workshop Report: Vision for Nanotechnology R&D in the Next Decade, 1999, 9:121~142.
    [44]周根陶,刘双怀,郑永飞,一种新的制备超微粉末的方法-沉淀转化法,科学通报,1996,41(4):321~323
    [45]韩喜江,谢小美,徐崇泉等,混合纳米氢氧化镍的球镍电极材料的电化学性能,无机化学学报,2003,19(3):247~251
    [46]赵力,周德瑞,张翠芬,纳米氢氧化镍的研制及其电化学性能,化学通报,2001,(8):513~515
    [47]张红兵,浦坦,李道火,纳米混合氢氧化镍电极研究,电源技术,2001,25(3):146~147
    [48]Liu Xiaohong, Yu Lan, Influence of Nanosized Ni(OH)2 Addition on the Electrochemical Performance of Nickel Hydroxide Electrode, Journal of Power Sources, 2004,128(2):326~330
    [49]周震,阎杰,张允什等,Ni(OH)2 超微粉的制备及其电化学性能,应用化学,1998,15(2):40~43
    [50]周震,阎杰,林进等,纳米 Ni(OH)2 的质子扩散行为研究,电源技术,1999,23(6):319~321
    [51]毕道治,21世纪电池技术展望,电池工业,2002,7(3-4):205~210
    [52]杨书廷,尹艳红,丁玉珍等,MH/Ni 电池正负极材料研究进展(I)—正极材料,河南师范大学学报,2000,28(1):106~109
    [53]应皆荣,万春荣,姜长印,以球形 α-Ni0.8Co0.2(OH)2 制备锂离子电池正极材料LiNi0.8Co0.2O2,无机材料学报,2001,16(5):821~826
    [54]吴芳芳,王建明,陈惠等,不同相结构 NiOOH 的制备及其物理化学性能,电源技术,2004,28(11):700~703
    [55]张红兵,高性能纳米氢氧化镍电极材料研究:[博士学位论文],合肥:中国科学院安徽光学精密机械研究所,2001
    [56]王占良,唐致远,雷荣,稳定的 α-Ni(OH)2 研究进展,辽宁化工,2001,30(2):57~61
    [57]T. N. Ramesh, R. S. Jayashree, P. Vishnu Kamath, The Effect of the Moisture Content on the Reversible Discharge Capacity of Nickel Hydroxide, Journal of Electrochemistry Society, 2003, 150:A520~524
    [58]Michael Rajamathi, P. Vishnu Kamath, On the relationship between α-nickel hydroxide and the basic salts of nickel, Journal of Power Sources, 1998, 70:118~121
    [59]周勤俭,袁庆文,覃事彪等,正极材料α-Ni(OH)2的研究进展,电池,2003,33(2):93~95
    [60]Mridula Dixit, P. Vishnu Kamath, J. Gopalakrishnan, Zinc-Substituted α-Nickel Hydroxide as an Electrode Material for Alkaline Secondary Cells, Journal of Electrochemistry Society, 1999, 146:A79~82
    [61]Delahaye-Vidal A, Figlarz M, Textural and structural studies on nickel hydroxide electrodes(II) Turbostratic nickel(II) hydroxide submitted to electrochemical redox cycling, Journal of Applied Electrochemistry, 1987, 17:589~599
    [62]M.C. Bernard, P. Bernard, M.Keddam et al, Characterisation of New Nickel Hydroxides During The Transformation of α-Ni (OH)2 to β-Ni (OH)2 by Ageing, Electrochimica Acta, 1996, 41(1):91~93
    [63]R. S. JAYASHREE, P. VISHNU KAMATH, Factors governing the electrochemical synthesis of α-nickel (II) hydroxide, Journal of Applied Electrochemistry, 1999, 29:A449~A454
    [64]T. Subbaiah, R. Mohapatra, S. Mallick et al, Characterization of nickel hydroxide precipitated from solutions containing Ni2+ complexing agents, Hydrometallurgy, 2003, 68:151~157
    [65]王晓峰,王大志,梁吉,超细氢氧化亚镍的溶胶凝胶法制备及其准电容特性,物理化学学报,2005,21(2):117~122
    [66]G. H. ANNAL THERESE, P. VISHNU KAMATH, Cathodic reduction of different metal salt solutions Part I: synthesis of metal hydroxides byelectrogeneration of base, Journal of Applied Electrochemistry, 1998, 28:539~543
    [67]L. Demourgues-Guerlou, C. Delmas, Structure and properties of precipitated nickel-iron hydroxides, Journal of Power Sources, 1993, 45(3):281~289
    [68]L. Indira, Mridula Dixit, P. Vishnu Kamath, Electrosynthesis of layered double hydroxides of nickel with trivalent cations, Journal of Power Sources, 1994, 52(1):93~97
    [69]Akiko Sugimoto, Shintaro Ishida, Kenzo Hanawa, Preparation and Characterization of Ni/Al-Layered Double Hydroxide, Journal of Electrochemistry Society, 1999, 146:A1251~A1255
    [70]B. LIU, X.Y. WANG, H.T. YUAN et al, Physical and electrochemical characteristics of aluminium-substituted nickel hydroxide,. Journal of Applied Electrochemistry, 1999, 29:855~860
    [71]Liu Bing, Yuan Huatang, Zhang Yunshi et al, Cyclic voltammetric studies of stabilized α-nickel hydroxide electrode, Journal of Power Sources, 1999, 79(2):277~280
    [72]翟海军,王先友,杨红平等,掺杂 α-Ni (OH)2 的结构与性能,电源技术,2002,26(5):348~350
    [73]翟海军,王先友,杨红平等,掺杂 α-Ni (OH)2 的电极性能研究,电源技术,2003,27(增刊):197~200
    [74]翟海军,王先友,杨红平等,掺杂α-Ni (OH)2的电化学性能研究,电源技术,2002,26(4):281-283
    [75]杜晓华, 姜长印,动力电池用铝代氢氧化镍结构及电化学性能,电源技术,2002,26(2):123~127
    [76]Jinxiang Dai, Sam F.Y. Li, T. Danny Xiao et al, Structural stability of aluminum stabilized alpha nickel hydroxide as a positive electrode material for alkaline secondary batteries, Journal of Power Sources, 2000, 89:40~45
    [77]C.Y. Wang, S. Zhong, K. Konstantinov et al, Structural study of Al-substituted nickel hydroxide, Solid State Ionics, 2002, 148:503~508
    [78]张倩,徐艳辉,王晓琳,Al代α-Ni(OH)2充电效率的研究,稀有金属材料与工程,2003,32(11):919~922
    [79]许娟,周益明,唐亚文等,固相反应法合成掺铝的 α 型氢氧化镍及其电化学性能,无机化学学报,2003,19(5):535~538
    [80]许娟,周益明,唐亚文等,掺铝的 α 型氢氧化镍的合成及其电化学性能,南京师范大学学报,2002,2(4):21~22
    [81]H. Chen, J.M. Wang, T. Pan et al, Effects of high-energy ball milling (HEBM) on the structure and electrochemical performance of nickel hydroxide, International Journal of Hydrogen Energy, 2003, 28:119~124
    [82]Bing Liu, Huatang Yuan, Yunshi Zhang, Impedance of Al-substituted α-nickel hydroxide electrodes, International Journal of Hydrogen Energy, 2004, 29:453~458
    [83]H. Chen, J.M. Wang, T. Pan et al, The structure and electrochemical performance of spherical Al-substituted α-Ni(OH)2 for alkaline rechargeable batteries. Journal of Power Sources, 2005, 143(1-2):243~255
    [84]Wei-Kang Hu, Xue-Ping Gao, Dag Noréus et al, Evaluation of nano-crystal sized α-nickel hydroxide as an electrode material for alkaline rechargeable cells, Journal of Power Sources, 2006, 160:704~710
    [85]肖慧明,王建明,Al含量对α-Ni(OH)2结构及其电化学性能的影响,无机材料学报,2004,19(3):463~470
    [86]H. Chen, J.M. Wang, T. Pan et al, Physicochemical Properties and Electrochemical Performance of Al-substituted α-Ni(OH)2 with Additives for Ni-Metal Hydride Batteries, Journal of Electrochemistry Society, 2003, 150:A1399~A1404
    [87]L. Guerlou-Demourgues, C. Denage, C. Delmas, New manganese-substituted nickel hydroxides Part 1. Crystal chemistry and physical characterization, Journal of Power Sources, 1994, 52: 269~274
    [88]L. Guerlou-Demourgues, C. Delmas, New manganese-substituted nickel hydroxides Part 2. Interstratification process upon ageing, Journal of Power Sources, 1994, 52: 275~281
    [89]吴梅银,王建明,张鉴清,掺锰氢氧化镍的结构与电化学性能,物理化学学报,2005,21(5):523~527
    [90]许娟,周益明,王青等,掺锰的氢氧化镍的制备、结构及充放电性能,南京师大学报(自然科学版),2003,26(4):79~81
    [91]Ce′cile Tessier, Christiane Faure, Liliane Guerlou-Demourgues et al, Electrochemical Study of Zinc-Substituted Nickel Hydroxide, Journal of Electrochemistry Society, 2002, 149:A1136~A1145
    [92]陈惠,王建明,潘滔等,Al与Zn复合取代α-Ni(OH)2的结构和电化学性能,中国有色金属学报,2003,13(1):85~90
    [93]Ce′cile Tessier, Liliane Guerlou-Demourgues, Christiane Faure et al, Structural and textural evolution of zinc-substituted nickel hydroxide electrode materials upon
    ageing in KOH and upon redox cycling, Solid State Ionics, 2000, 133:11~23
    [94]Susana I., Córdoba de Torresi, Kellie Provazi et al, Effect of Additives in the Stabilization of the α Phase of Ni(OH)2 Electrodes, Journal of Electrochemistry Society, 2001, 148:A1179~A1184
    [95]Xianyou Wang, Hean Luo, P.V. Parkhutik et al, Studies of the performance of nanostructural multiphase nickel hydroxide, Journal of Power Sources, 2003, 115:153~160
    [96]冯炎龙,郭建忠,刘力等,均匀沉淀法合成氢氧化镍超微粉,浙江林学院学报,2003,20(3):293~296
    [97]Avena, M.J., Vasquez, M.V., Carbonio, R.E. et al, A simple and novel method for preparing Ni(OH)2 part I. Structural studies and voltametric response, Journal of Applied Electrochemistry,1994,24,256~260
    [98]Mufit Akinc, Nathalie Jongen, Jacques Lemaitre et al, Synthesis of Nickel Hydroxide Powders by Urea Decomposition, Journal of the European Ceramic Society, 1998,18:1559~564
    [99]王燕,杨云霞,杨旭,α-Ni(OH)2中嵌入氨的含量测定,化学世界,2000,41(12):659~661
    [100]R. Acharya, T. Subbaiah, S. Anand et al, Effect of preparation parameters on electrolytic behaviour of turbostratic nickel hydroxide, Materials Chemistry and Physics, 2003, 81:45~49
    [101]R. Acharya, T. Subbaiah, S. Anand et al, Effect of precipitating agents on the physicochemical and electrolytic characteristics of nickel hydroxide, Materials Letters, 2003, 57:3089~3095
    [102]Y.L. Zhao, J.M. Wang, H. Chen et al, Al-substituted α-nickel hydroxide prepared by homogeneous precipitation method with urea, International Journal of Hydrogen Energy, 2004, 29:889~896
    [103]V. Ganesh Kumar, N. Munichandraiah, P. Vishnu Kamath et al, On the performance of stabilized α-nickel hydroxide as a nickel-positive electrode in alkaline storage batteries, Journal of Power Sources, 1995, 56(1):111~114
    [104]张建平,周浩然,许茂,透射电镜在不同分散条件下测定纳米氢氧化镍地粒度和分布,化学工程师,2005,117(6):1~2
    [105]方惠群,于俊生,史坚,仪器分析,北京:科学出版社,2002,243
    [106]王培铭,许乾慰,材料研究方法,北京:科学出版社,2005,262
    [107]刘宏兵,向兰,金涌,掺铝 Ni(OH)2 的制备及其电化学性能,云南大学学报(自然科学版),2005,27(3A):248~252
    [108]刘永辉,电化学测试技术,北京,北京航空学院出版社,1987
    [109]Gu W.B., Wang C.Y., Liaw B.Y., Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cell, Journal of Electrochemistry Society, 1998, 145(10):3418~3426
    [110]王先友,张允什,阎杰等,沉积钴镀层的粘结式氢氧化镍电极电化学性能研究,电化学,1999,5:86~93
    [111]袁安保,张鉴清,丁万春等,金属钴对泡沫镍电极及 Ni/MH 电池性能的影响,电化学,1999,5:281~287
    [112]赵培正,张秀英,赵林治等,掺杂 Al 的 α-Ni(OH)2 的电化学性能,应用化学,2000,17:35~38
    [113]Kamath P.V., Dixit M., Indiara L. et al, Stabilized α-Ni(OH)2 as electrode material for alkaline secondary cells, Journal of Electrochemical Society, 1994,141:2956~2959
    [114]成少安,张鉴清,隔膜对 MH-Ni 电池放电容量和循环寿命的影响,电源技术,1999(1):10-13
    [115]Minying Liu, Qingxiang Zhao, Yudong Wang et al, Nylon-6 film grafted with acrylic acid fro dissepiment in alkaline storage batteries, POLYMERS FOR ADVANCED TECHNOLOGIES, 2004, 15:105~110
    [116]唐华军,贾军,邓志荣,3 种隔膜对 MH-Ni 电池电化学性能的影响,2003,23(6):155~157
    [117]许鑫华,李冬光,刘强等,高分子电池隔膜的研究进展,材料导报,18(1):49~52
    [118]唐致远,荣强,宋世栋等,金属氢化物-镍电池用隔膜的研究进展,现代化工,2003,23(增刊):52~54
    [119]Peter Kritzer, Separators for nickel metal hydride and nickel cadmium batteries designed to reduce self-discharge rates, Journal of Power Sources, 2004, 137:317~321
    [120]袁安保,徐乃欣,大容量方形 MHNi 动力电池的研究,电池,2002,32(6):323~325
    [121]周志刚,刘雪省,魏启一等,电解液组成对 MH-Ni 电池性能的影响,电源技术,1995,19(6):1~4
    [122]董清海,颜广炅,余成洲等,电解液量对 MH/Ni 电池性能的影响,电池,2000,30(2):77~79
    [123]Alexander A.Kamnev, The Role of Lithium in Preventing The DetrimentalEffect of Iron on Alkaline Battery Nickel Hydroxide Electrode: A Mechanistic Aspect, Electrochimica Acta, 1996, 41(2):267~275
    [124]Sang Soo Han, Hee Yong Lee, Nam Hoon Goo et al, Improvement of electrode performances of Mg2Ni by mechanical alloying, Journal of Alloys and Compounds, 2002, 330-332:841~845
    [125]C. X. Shang, M. Bououdina, Y. Song et al, Mechanical alloying and electronic simulations of (MgH2+M) systems(M=Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage, International Journal of Hydrogen Energy, 2004,29:73~80
    [126]肖学章,陈长聘,王新华等,Mg-Fe-Ni 非晶储氢电极材料的微结构和电化学性能,物理化学学报,2005,21(5):565~568
    [127]余丹梅,陈昌国,周上祺等,机械研磨对氢氧化镍结构和电化学性能的影响,电池,2003,33(4):215~217
    [128]Q.S. SONG, C.H. CHIU, S.L.I. CHAN, Effects of ball milling on the physical and electrochemical characteristics of nickel hydroxide powder, Journal of Applied Electrochemistry, 2005, 35(2):157~162
    [129]Q.S. Song, C.H. Chiu, S.L.I. Chan, Performance improvement of pasted nickel electrodes with an addition of ball-milled nickel hydroxide powder,Electrochimica Acta,2006,51:6548~6555
    [130]彭成红,刘澧浦,李祖鑫,纳米氢氧化镍材料的研制,电池,2000,30:244~245
    [131] Taniguchi A, Fujioka N, Ikoma M et al, Development of Nickel/Metal-Hydride Batteries for EVs and HEVs, Journal of Power Sources, 2001,100:117~124
    [132]唐致远,张晓阳,刘元刚等,正极添加 Na2WO4 对镍氢电池高温性能的影响,物理化学学报,2006,22(7):895~898
    [133]X.M. He, C.Y. Jiang, W. Li et al, Co/Yb Hydroxide Coating of Spherical Ni(OH)2 Cathode Materials for Ni-MH Batteries at Elevated Temperatures, Journal of The Electrochemical Society, 2006, 153(3):A566~A569
    [134]C. Fierro, A. Zallen, J. Koch et al, The Influence of Nickel-Hydroxide Composition and Microstructure on the High-Temperature Performance of Nickel Metal Hydride Batteries, Journal of The Electrochemistry Society, 2006, 153(3):A492~A496
    [135]X. Mi, X.P. Gao, C.Y. Jiang et al, High temperature performance of yttrium-doped spherical nickel hydroxide, Electrochimica Acta, 2004,49:3361~3366
    [136]Fang-Yi Cheng, Jun Chen, Pan-Wen Shen, Y(OH)3-coated Ni(OH)2 tube as thepositive-electrode materials of alkaline rechargeable batteries, Journal of Power Sources, 2005, 150:255~260
    [137]A. Van der Ven, D. Morgan, Y.S. Meng et al, Phase Stability of Nickel Hydroxides and Oxyhydroxides, Journal of The Electrochemistry Society, 2006, 53(2):A210~A215
    [138]Venkat Srinivasan, Bahne C. Cornilsen, John W. Weidner, A nonstoichiometric structural model to characterize changes in the nickel hydroxide electrode during cycling, Journal of Solid State Electrochemistry, 2005, 9:61~76
    [139]Hu, W.K., GAO, X.P., GENG, M.M. et al, Synthesis of CoOOH Nanorods and Application as Coating Materials of Nickel Hydroxide for High Temperature Ni-MH Cells, Journal of Physical Chemistry, 2005,B109(12):5392~5394
    [140]米欣,叶茂,阎杰等,外掺 Y2O3 对镍氢电池正极高温性能的影响,中国稀土学报,2004,22(1):119~124
    [141]米欣,姜长印,阎杰等,球型 Ni(OH)2 表面包覆 Y(OH)3 及其高温充放电性能,无机化学学报,2004,20(2):164~168
    [142]夏保佳,林则青,马丽萍等,正极添加剂对 MH/Ni 电池高温充电行为的影响,电池,2003,33(2):68~70
    [143]刘建华,杨敬武,唐致远等,温度对掺杂球形 Ni(OH)2 质子扩散的影响,电化学,2000,6(2):187~192
    [144]唐致远,王岩,MH/Ni 电池高温性能研究,电池,2004,34(1):33~34
    [145]米欣,姜长印,耿鸣明等,掺钇球形 Ni(OH)2 的合成及高温性能研究,电池,2004,34(1):13~15
    [146]李方,杨毅夫,危亚辉等,Ni(OH)2 表面包覆对 MH/Ni 电池性能的影响,2004,34(3):178~179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700