用户名: 密码: 验证码:
基于噻吩基团的D-A结构电致变色材料的合成及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸电子-给电子结构(D-A)电致变色材料因其分子内D基团和A基团之间的电荷转移作用能对其能隙进行调节而成为近几年人们关注和研究的焦点。本论文以噻吩为研究对象,以D-A结构为贯穿全文的线索,考察了侧链吸电子基团的改变、网络状聚合状态、不对称结构设计等分子修饰手段对其电致变色性能的影响。主要目的在于合成多色显示、高光学对比度及快速响应的电致变色材料。
     本论文首先运用化学法合成了9-(4-苯甲酮基)-咔唑(CPM)、4-((3,6-二噻吩基)-9H-咔唑基)-苯甲酮(TCPM)、4-((3,6-二噻吩基)-9H-咔唑基)-苯甲酸乙酯(ETCB)和4-((3,6-二噻吩基)-9H-咔唑基)-硝基苯(NDTC)四种新单体。该四种单体均具有良好的电化学活性,利用电化学聚合法制备得到相应的聚合物薄膜以及基于ETCB与3,4-乙烯二氧噻吩(EDOT)的共聚物膜。与PCPM相比,噻吩基团的引入提高了聚合物主链的共轭性,降低了聚合物的能隙,使得PTCPM膜具有较多的颜色显示,可以在黄色、棕色、蓝色之间变换。电致变色性能测试结果显示,该膜在近红外区具有较高的光学对比度(41%,1100nm)和较好的响应时间(2s)。另外,PETCB膜可以在黄绿色和紫色之间切换,而PNDTC在中性态下为黄色,掺杂态下转变为灰黑色;PETCB与PNDTC膜的光学对比度和响应时间跟PTCPM膜的性质相似。共聚物P(ETCB/EDOT)膜则呈现了最丰富的颜色,在不同的电压下可实现砖红色、桔红色、黄色、绿色、蓝色五种颜色变换,在1100nm下显示最大的光学对比度(50%),最快响应时间为(1.9s)和最高的着色效率(356.88cm2/C)。该研究结果表明,侧链不同吸电子基团可以导致其相应聚合物的能隙发生变化,从而使其具有不同的颜色显示。主链上窄能隙单体的引入可以进一步增强共轭性,达到改善其性能的作用。
     文中第二部分合成了具有多个电化学活性点的单体(Z)-2,3-二(4-(3-噻吩)苯基)乙烯腈(Z-TPA)。并运用电化学聚合法制备了聚合物P(Z-TPA)和P(Z-TPA/EDOT)膜。紫外-可见及荧光光谱结果表明单体由于苯乙烯腈结构的存在具有聚集态发光(AIE)的性质。在紫外灯下显示天蓝色。相比于均聚物P(Z-TPA), P(Z-TPA/EDOT)膜具有较好的性能,光谱电化学数据表明共聚物膜在不同电位下不仅能在深红色、灰色、蓝色之间切换,在546nm和1100nm波长下的光学对比度也高达38%和42%,响应时间分别为1.8s和1.9s。另外,基于共聚物薄膜和PEDOT膜的双层器件在560nm和640nm下的光学对比度为18%和22%。响应时间分别为1.5s和2s。该器件还具有较好的稳定性。
     文中最后部分采用化学法制备了两种基于噻吩衍生物和苯并噻二唑的不对称结构单体4-(2-呋喃)-7-(2-噻吩)-2,1,3-苯并噻二唑(FTBT)和4-(2-呋喃)-7-[2-(3,4-乙烯二氧噻吩))-2,1,3-苯并噻二唑(DFBT),并运用电化学聚合法制备了相应的聚合物薄PFTBT和PDFBT膜。光谱电化学性质测试表明:由于EDOT基团强的给电子特性,PDFBT的最大吸收峰红移。两聚合物的能隙经计算分别为1.63eV和1.42eV。不同的吸收特性使得PFTBT膜在紫色和蓝色之间切换;PDFBT膜在不同的电压下显示蓝绿色和紫黑色的变换。聚合物膜的电致变色性能测试结果显示,PFTBT膜具有较好的电致变色性能,在760和1100nn下的光学对比度分别为35%和45%,相应的响应时间分别为0.9s和1.6s。另外,两种聚合物膜均有较好的稳定性。
Donor-acceptor (D-A) electrochromic materials have attracted great interest for the past years due to the fact that their band gap can be tuned through intramolecular charge transfer (ICT) between the donor and acceptor units. In this dissertation, the D-A electrochromic materials based on the thiophene units were developed. The effects of different side-chain accepted groups, networked polymer state, asymmetric structure on the performance of electrochromic materials were investigated. The main purpose was to gain the materials with multicolor-showing、high optical contrast and fast switching time.
     For the first part, four new electrochromic materials,4-(9H-carbazol-9-yl)-phenyl-methanone (CPM) and4-(3,6-di(thiophen-2-yl)-9H-carbazol-9-yl)-phenyl-methanone (TCPM), ethyl4-(3,6-di(thiophen-2-yl)-9H-carbazol-9-yl)-benzoate (ETCB) and9-(4-nitrophenyl)-3,6-di(thio-phen-2-yl)-9H-carbazole (NDTC), were synthesized and characterized. All the compounds show good electroactivity, and their corresponding polymer could be synthesized by electrochemical route. Moreover, the copolymer based on ETCB and3,4-ethylenedioxythiophene (EDOT) was also obtained by electropolymerization. Compared with the PCPM, PTCPM film shows better performance due to the introduction of the thiophene units, which can show yellow、brown and blue under different potentials and display reasonable optical contrast (41%,1100nm) and faster switching time (2s,1100nm). Moreover, PETCB film displays the color change from yellow-green to blue-purple, while the color-change of PNDTC film is from yellow to gray. Both the polymer films exhibit simlimar optical contrast and switching time with PTCPM. However, the copolymer show better electrochromic properties, which could show five colors change (brick red, orange, yellow, green, blue) under different applied potentials and higher optical contrast (50%of1100nm), faster switching time (1.9s,1100nm) and higher coloration efficiency (356.88cm2C-1,1100nm). All the results show that the band gap of the polymer can be tuned by the acceptor group of the side-chain, which leads to the different colors showing under different applied potentials. The band gap can also be further changed by the introduction of the monomer with narrow bandgap in the main chain, which improve the performance of the polymer.
     In this second part, a novel material, Z-2,3-bis(4-(thiophen-3-yl)-phenyl)-acrylonitrile (Z-TPA), was synthesized and characterized. Its polymer and copolymer with EDOT were gained by electropolymerization. UV-vis absorption and fluorescence spectra show that this monomer possesses the properties of aggregation-induced emission (AIE) due to the introduction of acrylonitrile unit, which can show sky-blue emitting at the aggregation state and almost no emitting at the solution state. Both its polymer and copolymer displayed better redox activity. Spectroelectrochemical analyses show that the copolymer film exhibited multicolor (from deep red, gray to blue). Spectrochronoamperometry data reveal that the copolymer films have high chromatic contrast (38%in546nm,42%in1100nm) and faster switching time (1.8s of546nm,1.9s of1100nm) as compared to the homopolymer P(Z-TPA). What's more, the copolymer film was used to construct a dual type polymer electrochromic device (ECDs) with PEDOT. The ECDs shows the reasonable optical contrast (18%in560nm,22%in640nm)、fast switching time (1.5s of560,2s of640nm) and good stability.
     For the last part, two novel asymmetric-structure compounds based on thiophene derivative and Benzo-2,1,3-thiadiazole,4-(funan-2-yl)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (FTBT) and4-(2,3-dihydro thieno[3,4-b][1,4]dioxin-5-yl)-7-(furan-2-yl)benzo[c][1,2,5]thiadiazole (DFBT), were synthesized and characterized. Their polymer could be gained by electropolymerization. Spectroelectrochemical analyses show the absorption peaks of PDFBT move to the long-wavelength region due to the existence of EDOT units, the bandgap of PFTBT and PDFBT are1.63and1.42eV, respectively. PFTBT film shows color change from purple to light blue upon different applied potentials and PDFBT film changes from blue-green to black-purple. Spectrochronoamperometry data indicate that PFTBT film exhibits better performance than PDFBT film, which displays the better optical contrast (35%in760nm,45%in1100nm) and faster switching time(0.9s of760nm,1.6s of1100nm). Both the polymer films hold better stability.
引文
[1]A. Gomez-Valdemoro, R. Martinez-Manez, F. Sancenon, F.C. Garcia, J.M. Garcia, Functional aromatic polyethers:polymers with tunable chromogenic and fluorogenic properties. Macromolecules,2010, (43):7111-7121.
    [2]J.R. Chen, D.Y. Yang,. Design and synthesis of an o-hydroxyphenyl-containing spiropyran thermochromic colorant. Org. Lett.,2009 (11):1769-1772.
    [3]X.R. Wang, J. Lu, W.Y. Shi, F. Li, M. Wei, D.G. Evans, X. Duan,. A thermochro-mic thin film based on host-guest interactions in a layered double hydroxide. Langmuir,2010,(26):1247-1253.
    [4]R. Castagna, M. Garbugli, A. Bianco, S. Perissinoto, G. Pariani, C. Bertarelli, G. Lanzani,. Photochromic electret:a new tool for light energy harvesting. J. Phys. Chem. Lett.2012, (3):51-57.
    [5]C. Sciascia, R. Castagna, M. Dekermenjian, R. Martel, A.R.S. Kandada, F.D. Fonzo, A. Bianco, C. Bertarelli, M. Meneghetti,. Light-controlled resistance modulation in a photochromic diarylethene-carbon nanotube blend. J. Phys. Chem. C.2012, (116):19483-19489.
    [6]J. Ni, Y.H. Wu, X. Zhang, B. Li, L.Y. Zhang, Z.N. Chen,. Luminescene vapochromism of a platinum(Ⅱ) complex for detection of low molecular weight halohydrocarbon. Inorg. Chem.2009, (48):10202-10210.
    [7]Z.M. Hudson, C. Sun, K.J. Harris, B.E.G. Lucier, R.W. Schurko, S. Wang,. Probing the structural origins of vapochromism of a triaryboron-functionalized platinum(Ⅱ) acetylide by optical and multinuclear solid-state NMR spectroscopy. Inorg. Chem.2011, (50):3447-3457.
    [8]R.J. Mortimer,. Organic electrochromic materials. Electrochim. Acta,1999, (44): 2971-2981.
    [9]C.G. Granqvist, P.C. Lansaker, N.R. Mlyuka, G.A. Niklasson, E. Avendano,. Progress in chromogenics:new results for electrochromic and thermochromic materials devices. Sol. Energ. Mat. Sol. C.2009, (93):2032-2039.
    [10]K. Idzik, J. Soloducho, M. Lapkowski, S. Golba,. Development of structural characterization and physicochemical behavior of triphenylamine blocks. Electrochim. Acta,2008, (53):5665-5669.
    [11]S.H. Hsiao, G.S. Liou, Y.C. Kung, Y.J. Lee,. Synthesis and characterization of electrochromic poly(amide-imide)s based on the diimide-diacid from 4,4'-diamino-4"-methoxytriphenylamine and trimellitic anhydride. Eur. Polym. J.2010, (46):1355-1366.
    [12]J.R. Platt,. Electrochromism:a possible change of colour producible in dyes by an electric field. J. Chem. Phys.1961, (34):862-863.
    [13]S.K. Deb,. A novel electrophotographic system. Appl. Optic.1969, (8, S1): 192-195.
    [14]P.M. Beaujuge, J.R. Reynolds,. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev.2010, (110):268-320.
    [15]R.J. Mortimer, A.L. Dyer, J.R. Reynolds,. Electrochromic organic and polymeric materials for display applications. Displays,2006, (27):2-18.
    [16]A. Arslan, O. Turkarslan, C. Tanyeli, I.M. Akhmedov, L. Toppare,. Electrochromic properties of a soluble conducting polymer:poly(1-(4-fluorophenyl)-2,5-di(thiophen-2-yl)-1H-pyrrole). Mater. Chem. Phys.2007, (104):410-416.
    [17]W.Q. Deng, A.H. Flood, J.F. Stoddart, W.A. Goddard,. An electrochrmical color-switchable RGB Dye:tristable [2] catenane. J. Am. Chem. Soc.,2005, (127):15994-15995.
    [18]P. Barbosa, L. Rodrigues, M. Silva, M. Smith, A. Gon calves, E. Fortunato,. Application of di-ureasil ormolytes based on lithium tetrafluoroborate in solidstate electrochromic displays. J. Mater. Chem.,2010, (20):723-730.
    [19]A. Yavuz, B. Bezgin, A.M. Onal,. Synthesis and characterization of a new conducting polymer based on 4-(2,5-di-2-thiophen-2-yl-pyrrol-1-yl)-phthalo-nitrile.J. Appl. Poly. Sci.,2009, (114):2685-2690.
    [20]P.Y. Pennarun, P. Jannasch, S. Papaefthimiou, N. Skarpentzos, P. Yianoulis,. High coloration performance of electrochromic devices assembled with electrolytes based on a branched boronate ester polymer and lithium perchlorate salt. Thin Solid Films,2006, (514):258-266.
    [21]S. Kiralp, P. Camurlu, G. Gunbas, C. Tanyeli, I. Akhmedov, L. Toppare,. Electrochromic properties of a copolymer of 1-4-di[2,5-di(2-thienyl)-1H-1-pyrrolyl]benzene with EDOT. J. Appl. Poly. Sci.,2009, (112):1082-1087.
    [22]M.M. Salamone, F. Silvestri, M. Sassi, C.M. Mari, R. Ruffo, L. Beverina, G.A. Pagani,. Role played by chain length and polarity of n-substitutents in electrochromic polymers from the tri-heterocyclic monomer pyrrole-thiophene-pyrrole. Sol. Energ. Mat. Sol. C.2012, (99):101-108.
    [23]C.L. Gaupp, D.M. Welsh, R.D. Rauh, J.R. Reynolds,. Composite coloration efficiency mesaurements of electrochromic polymers based on 3,4-alkylenedioxy- thiophenes. Chem. Mater.2002, (14):3964-3970.
    [24]H.M. Wang, S.H. Hsiao, Electrochemically and electrochromically stable polyimides bearing tert-butyl-blocked N,N,N',N'-tetraphenyl-1,4-phenylene-diamine units. Polymer,2009, (50):1692-1699.
    [25]H.J. Yen, H.Y. Lin, G.S. Liou,. Novel starburst triarylamine-containing electroactive aramids with highly stable electrochromism in near-infrared and visible light reginons. Chem. Mater.2011, (23):1874-1882.
    [26]P. Camurlu, C. Giiltekin, Z. Bicil,. Fast switching, high contrast multichromic polymers from alkyl-derivatized dithienylpyrrole and 3,4-ethylenedioxy-thiophene. Electrochim. Acta,2012, (61):50-56.
    [27]L.J. Ma, Y.X. Li, X.F. Yu, N.F. Zhu, Q.B. Yang, C.H. Noh,. Elechrochemical preparation of PMeT/TiO2 nanocoposite electrochromic electrodes with enhanced long-term stability. J. Solid. State. Electr,2008, (12):1503-1509.
    [28]K. Choi, S.J. Yoo, Y.E. Sung, R. Zentel,. High contrast ratio and ripid switching organic polymeric electrochromic thin films based on triarylamine derivatives from layer-by-layer assembly. Chem. Mater.,2006, (18):5823-5825.
    [29]B.S.I. Cho, W.J. Kwon, S.J. Choi, P.K. Kim. S.A. Park, J. Kim, S.J. Son, R. Xiao, S.H. Kim, S.B. Lee,. Nanotube-based ultrafast electrochromic display. Adv. Mater.,2005, (17):171-175.
    [30]C.G. Wu, M.I. Lu, M.F. Jhong,. Enhancing the electrochromic characteristics of conjugated polymer with TiO2 nano-rods. J. Polym. Sci. Pol. Phys.,2008, (46): 1121-1130.
    [31]K.W. Park,. Influence of pt nanocrystallinity on electrochromism of TiO2.Inorg. Chem.2005, (44):3190-3193.
    [32]X. Wang, L.J. Yu, P. Hu, F.L. Yuan,. Synthesis of single-crystalline hollow octahedral NiO. Cryst. Growth. Des.2007, (7):2415-2318.
    [33]X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang,. A highly porous NiO/polyaniline composite film prepared by combining chemical bath deposition and electro-polymerization and its electrochromic performance. Nanotechnology, 2008, (19):465701-465707.
    [34]A. Nemetz, A. Temmink, K. Bange,. Investigations and modeling of e-beam evaporated NiO(OH)x films. Sol. Energ. Mat. Sol. C.,1992, (25):93-103.
    [35]Y.F. Yuan, X.H. Xia, J.B. Wu, Y.B. Chen, J.L. Yang, S.Y. Guo,. Enhanced electrochromic properties of orderd porous nickel oxide thin film prepared by self-assembled colloidal crystal template-assisted electrodeposition. Electrochim. Acta,2011, (56):1208-1212.
    [36]X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang,. Morphology effect on the electrochromic and electrochemical performance of NiO thin films. Electrochim. Acta,2008, (53); 5721-5724.
    [37]R.A. Patil, R.S. Devan, J.H. Lin, Y.R. Ma, P.S. Patil, Y.Liou,. Efficient electrochromic properties of high-density and large-area arrays of one-dimensional NiO nanorods. Sol. Energ. Mat. Sol. C.,2013, (112):91-96.
    [38]F. Lin, D. Nordlund, T.C. Weng, R.G. Moore, D.T. Gillaspie, A.C. Dillon, R.M. Richards, C. Engtrakul,. Hole doping in Al-containing nickel oxide materials to improve electrochromic performance. ACS. Appl. Mater. Inter.2013, (5):301-309.
    [39]J.M. Wang, E. Khoo, P.S. Lee, J. Ma,. Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. J. Phys. Chem. C.,2008, (112): 14306-14312.
    [40]A. Subrahmanyam, A. Karuppasamy,. Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films. Sol. Energ. Mat. Sol. C.,2007, (91):266-274.
    [41]G. Wang, Y. Ji, X.R. Huang, X.Q. Yang, P.I. Gouma, M. Dudley,. Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing.J. Phys. Chem. B.,2006, (110):23777-23782.
    [42]Y.C. Nah, A. Ghicov, D. Kim, S. Berger, P. Schmuki,. TiO2-WO3 composite nanotubes by alloy anodization:growth and enhanced electrochromic properties. J. Am. Chem. Soc.2008, (130):16154-16155.
    [43]S.K. Deb, Optical and photoelectric properties and color centers in thin films of tungsten oxide. Phil. Mag.,1973, (27):801-822.
    [44]B.W. Faughnan, R.S. Crandall, M.A. Lampert,. Model for the bleaching of WO3 electrochromic films by an electric field. Appl. Phys. Lett.,1975, (27):275-277.
    [45]V.D. Neff, Electrochromical oxidation and reductions of thin-films of Prussian blue, J. Electrochem. Soc.,1978, (125):886-887.
    [46]F. Ricci, G. Palleschi,. Sensor and biosensor preparation, optimization and applications of Prussian blue modified electrodes. Biosens. Bioelectron.,2005, (21):389-407.
    [47]C.F. Lin, C.Y. Hsu, H.C. Lo, C.L. Lin, L.C. Chen, K.C. Ho,. A complementary electrochromic system based on a prussian blue thin film and a heptyl viologen solution. Sol. Energ. Mat. Sol. C.2011, (95):3074-3080.
    [48]T. Sakano, F. Ito, T. Ono, O. Hirata, M. Ozawa, T. Nagamura,. Synthesis and electrochromic properties of a highly water-soluble hyperbranched polymer viologen. Thin Solid Films,2010, (519):1458-1463.
    [49]R.J. Mortimer, T.S. Varley,. Novel color-reinforcing electrochromic device based on surface-confined ruthenium purple and solution-phase methyl viologen. Chem. Mater.2011, (23):4077-4082.
    [50]T.H. Kuo, C.Y. Hsu, K.M. Lee, K.C. Ho,. All-solid-state electrochromic device based on poly(butyl viologen), Prussian blue, and succinonitrile. Sol. Energ. Mat. Sol. C.2009, (93):1755-1760.
    [51]R. Sydam, M. Deepa, A.G. Joshi,. A novel 1,1'-bis[4-(5,6-dimethyl-1H-benzimidazole-1-yl)butyl]-4,4'-bipyridinium dibromide (viologen) for a high contrast electrochromic device. Org. Electron.,2013, (14):1027-1036.
    [52]Y. Rong, S. Kim, F.Y. Su, D. Myers, M. Taya,. New effective process to fabricate fast switching and high contrast electrochromic device based on viologen and prussion blue/antimony tin oxide nano-composites with dark colored state. Electrochim. Acta,2011, (56):6230-6236.
    [53]R.J. Mortimer, T.S. Varley,. In situ spectroelectrochemistry and colour measurement of a complementary electrochromic device based on surface-confined Prussian blue and aqueous solution-phase methyl viologen. Sol. Energ. Mat. Sol. C.,2012, (99):213-220.
    [54]J. Heinze, B.A. Frontana-uribe, S. Ludwigs, Electrochemistry of conducting polymers-persistent models and new concepts. Chem. Rev.2010, (110):4724-4771.
    [55]B.H. Zhang, C.J. Qin, J.Q. Ding, L. Chen, Z.Y. Xie, Y.X. Cheng, L.X. Wang,. High-performanc all-polymer white-light-emitting diodes using polyfluorene containing phosphonate groups as an efficient electron-injection layer. Adv. Funct. Mater.2010, (20):2951-2957.
    [56]J. Zaumseil, C.L. Donley, J.S. Kim, R.H. Friend, H. Sirringhaus,. Efficient top-gate, ambipolar, light-emitting field-effect transistors based on a green-light-emitting polyfluorene. Adv. Mater.2006, (18):2708-2712.
    [57]H.J. Snaith, A.C. Arias, A.C. Morteani, C.S. Silva, R.H. Friend,. Charge generation kinetics and transport mechanisms in blended polyfluorene photovoltaic devices. Nano. Lett.2002, (12):1353-1357.
    [58]R. Montazami, V. Jain, J.R. Heflin,. High contrast asymmetric solid state electrochromic devices based on layer-by-layer deposition of polyaniline and poly(aniline sulfonic acid). Electrochim. Acta,2010, (56):990-994.
    [59]A.G.M. Diarmid, J.C. Ching, J.C. Richter,. Polyaniline:a new concept in conducting polymers. Synth. Met.1987, (2):285-290.
    [60]M.X. Wan,. Absorption spectra of thin film of polyaniline.J. Polym. Sci. Pol. Chem.,1992, (4):543-549.
    [61]J.Y. Wang, C.M. Yu, S.C. Hwang, K.C. Ho, L.C. Chen,. Influence of coloring voltage on the optical performance and cycling stability of a polyaniline-indium hexacyanoferrate electrochromic system. Sol. Energ. Mat. Sol. C.,2008, (92): 112-119.
    [62]J.H. Kang, Y.J. Oh, S.M. Paek, S.J. Hwang, J.H. Choy,. Electrochromic device of PEDOT-PANI hybrid system for fast response and high optical contrast. Sol. Energ. Mat. Sol. C.,2009, (93):2040-2044.
    [63]U. Leon-Silva, M.E. Nicho, H. Hu, R. Cruz-Silva,. Effect of modified ITO substrate on electrochromic properties of polyaniline films. Sol. Energ. Mat. Sol. C.,2007, (91):1444-1448.
    [64]S.X. Xiong, Y. Xiao, J. Ma, L.Y. Zhang, X.H. Lu,. Enhancement of electrochromic contrast by tethering conjugated polymer chains onto polyhedral oligomeric silsesquioxane nanocages. Macromol. Rapid Commun.,2007, (28): 281-285.
    [65]J.M. Kim, S.M. Chang, H.W. Lee, Y.S. Kwon, Y.H. Oh,. Study of the dynamic electrochromic behavior of electrochemically polymerized polypyrrole thin films using QCA and UV spectrophotometer. Synth. Met.,1997, (85):1371-1372.
    [66]E.M. Girotto, M.A,D. Paoli,. Polypyrrole color modulation and electrochromic contrast enhancement by doping with a dye. Adv. Mater.,1998, (10):790-793.
    [67]A.J.C. Silva, S.M.F. Ferreira, D.D.P. Santos, M. Navarro, J. Tonholo, A.S. Ribeiro,. A multielectrochromic copolymer based on pyrrole and thiophene derivatives. Sol. Energ. Mat. Sol. C.,2012, (103):108-113.
    [68]C. Zhang, C. Hua, G.H. Wang, M. Ouyang, C.A. Ma,. A novel multichromic copolymer via electrochemical copolymerization of (S)-1,1'-binaphthyl-2,2'-diyl bis(N-(6-hexanoic acid-1-yl) pyrrole) and 3,4-ethylenedioxythiophene. Electrochim. Acta.,2010 (55):4103-4111.
    [69]S. Varis, M. Ak, I.M. Akhmedov, C. Tanyeli, L. Toppare,. A novel multielectrochromic copolymer based on 1-(4-nitrophenyl)-2,5-di(2-thienyl)-1H-pyrrole and EDOT. J. Electroanal. Chem.,2007, (603):8-14.
    [70]S. Tarkuc, E. Sahmetlioglu, C. Tanyeli, I.M. Akhmedov, L. Toppare,. A soluble conducting polymer:1-phenyl-2,5-di(2-thienyl)-1H-pyrrole and its electrochromic application. Electrochim. Acta.,2006, (51):5412-5419.
    [71]S. Tarkuc, E. Sahmetlioglu, C. Tanyeli, I.M. Akhmedov, L. Toppare,. Electrochromic properties of poly(1-(phenyl)-2,5-di(2-thienyl)-1H-pyrrole-co-3,4-ethylenedioxy thiophene) and its application in electrochromic devices. Opt. Mater.,2008, (30):1489-1494.
    [72]P. Camurlu, S. Tarku c, E. Sahmetlioglu, I.M. Akhmedov, C. Tanyeli, L. Toppare,. Multichromic conducting copolymer of 1-benzyl-2,5-di(thiophen-2-yl)-1H-pyrrole with EDOT. Sol. Energ. Mat. Sol. C.,2008, (92):154-159.
    [73]B. Yigitsoy, S. Varis, C. Tanyeli, I.M. Akhmedov, L. Toppare,. Electrochromic properties of a novel low band gap conductive copolymer. Electrochim. Acta, 2007, (52):6561-6568.
    [74]R.J. Mortimer,. Electrochromic materials. Chem. Soc. Rev.,1997, (26):147-156.
    [75]Y. Mizuno, I. Takasu, S. Uchikoga, S. Enomoto, T. Sawabe, A. Amano, A. Wada, T. Sugizaki, J. Yoshida, T. Ono, C. Adachi,. Fluorinated carbazole derivatives as wide-energy-gap host material for blue phosphorescent organic light- emitting diodes. J. Phys. Chem. C.,2012, (116):20681-20687.
    [76]L. Beouch, F.T. Van, O. Stephan, J.C. Vial, C. Chevrot,. Optical and electrochromical properties of soluble N-hexylcarbazole-bo-3,4-ethylenedioxy-thiophene copolymers. Synth. Met.,2001, (122):351-358.
    [77]C.X. Xu, J.S. Zhao, M. Wang, Z. Wang, C.S. Cui, Y. Kong, X.X. Zhang,. Electrosynthesis and characterization of a neutrally colorless electrochromic material from poly(1,3-bis(9H-Carbazol-9-yl)benzene) and its application in electrochromic devices. Electrochim. Acta.,2012, (75):28-34.
    [78]G.A. Sotzing, J.L. Reddinger, A.R. Katritzky, J. Soloducho, R. Musgrave, J.R. Reynolds,. Multiply colored electrochromic carbazoled-based polymers. Chem. Mater.,1997, (9):1578-1587.
    [79]K.K.H. Chan, S.W. Tsang, H.K.H. Lee, F. So, S.K. So,. Charge injection and transport studies of poly(2,7-carbazole) copolymer PCDTBT and their relationship to solar cell performance. Org. Electron.,2012, (13):850-855.
    [80]S. Beaupre, A.C. Breton, J. Dumas, M. Leclerc,. Multicolored electrochromic cells based on poly(2,7-carbazole) Derivatives for adaptive camouflage. Chem. Mater.,2009, (21):1504-1513.
    [81]A. Desbenemonvernay, P.C. Lacaze, J.E. Dubois,. Polaromicrotribometric and Ir, esca, electron-paramagnetic-res spectroscopic study of colored radical films formed by the electrochemical oxidation of carbazole:carbazole and N-ethyl, N-phenyl and N-carbazyl derivatives. J. Electroanal. Chem.,1981, (129): 229-241.
    [82]F.B. Koyuncu, S. Koyuncu, E. Ozdemir,. A new multi-electrochromic 2,7 linked polycarbazole derivative:effect of the nitro subunit. Org. Electron.,2011, (12): 1701-1710.
    [83]J.L. Reddinger, G.A. Sotzing, J.R. Reynolds,. Multicoloured electrochromic polymers derived from easily oxidized bis[2-(3,4-ethylenedioxy)thienyl]-carbazoles. Chem. Commun.,1996,1777-1778.
    [84]C.L. Gaupp, J.R. Reynolds,. Multichromic copolymers based on 3,6- bis(2-(3,4-ethylenedioxythiophene))-N-alkylcarbazole derivatives. Macromolecules.,2003, (36):6305-6315.
    85] A.J. Frank, S. Glenis, A.J. Nelson,. Conductive polymer semiconductor junction: characterization of poly(3-methylthiophene):cadmium sulfide based photoelectrochemical and photovoltaic cells. J. Phys. Chem.,1989, (93):3818-2825.
    [86]Y.C. Kung, S.H. Hsiao,. Pyrenylamine-functionalized aromatic polyamides as efficient blue-emitters and multicolored electrochromic materials. J. Polym. Sci. Pol. Chem.,2011, (49):3475-3490.
    87] C. Zhang, C. Hua, G.H. Wang, M. Ouyang, C.A. Ma,. A novel multichromic copolymer of 1,4-bis(3-hexylthiophen-2-yl)benzene and 3,4-ethylenedioxy-thiophene prepared via electrocopolymerization. J. Electroanal. Chem.,2010, (645):50-57.
    [88]N. Akbasoglu, A. Balan, D. Baran, A. Cirpan, L. Toppare,. Electrochemical and optical studies of furan and thieno[3,2-b]thiophene end capped benzotriazole derivatives. J. Polym. Sci. Pol. Chem.,2010, (48):5603-5610.
    [89]V.K. Thakur, G.Q. Ding, J. Ma, P.S. Lee, X.H. Lu,. Hybrid materials and polymer electrolytes for electrochromic device applications. Adv. Mater.,2012, (24): 4071-409.
    [90]H.A.M.V. Mullekom, J.A.J.M. Vekemans, E.E. Havinga, E.W. Meijer, Developments in the chemistry and band-gap engineering of donor acceptor substituted conjugated polymers. Mater. Sci. Eng.,2001, (32):1-40.
    [91]C.A. Thomas, K. Zong, K.A. Abboud, P.J. Steel, J. R. Reynolds, Donor-mediated band gap reduction in a homologous series of conjugated polymers. J. Am. Chem. Soc.,2004, (50):16440-16450.
    [92]G. Sonmez, C.K.F. Shen, Y. Rubin, F. Wudl,. A Red, Geen, and Blue (RGB) polymeric electrochromic device (PECD):the dawning of the PECD era. Angew. Chem. Int. Ed.,2004, (43):1498-1502.
    [93]R.J. Waltman, J. Bargon, A.F. Diaz,.Electrochemical studies of some conducting polythiophene films. J. Phys. Chem.,1983,87(8):1459-1463.
    [94]G.Q. Shi, S. Jin, G. Xue, C. Li, A conducting polymer film stronger than aluminum. Science.,1995,267(5200):994-996.
    [95]Y.J. Tao, Z.Y. Zhang, X.Q. Xu, Y.J. Zhou, H.F. Cheng, W.W. Zheng,. Facile and economical synthesis of high-contrast multielectrochromic copolymers based on anthracene and 3,4-ethylenedioxythiophene via electrocopolymerization in boron trifluoride diethyl etherate. Electrochim. Acta.,2012, (77):157-162.
    [96]Y.J. Tao, H.F. Cheng, Z.Y. Zhang, X.Q. Xu, Y.J. Zhou,. Multielectrochromic copolymer of 3,4-ethylenedioxythiophene and naphthalene prepared via electropolymerization in boron trifluoride diethyl etherate. J. Electroanal. Chem., 2013, (689):142-148.
    [97]F. Jonas, L. Schrader, Conductive modifications of polymers with poly(pyrrole) and poly(thiophenes). Synth. Met.,1991,41(3):831-836.
    [98]B. Wang, J.S. Zhao, C.S. Cui, J.F. Liu, Q.P. He,. Electrosynthesis and characterization of an electrochromic material from poly(1,4-bis(3-methyl-thiophen-2-yl)-benzene) and its application in electrochromic device. Sol. Energ. Mat. Sol. C.,2012, (98):161-167.
    [99]B. Wang, J.S. Zhao, C.S. Cui, M. Wang, Z. Wang, Q.P. He,. Electrochemical synthesis, characterization and electrochromic properties of a copolymer based on 1,4-bis(2-thienyl)naphthalene and pyrene. Opt. Mater.,2012, (34):1095-1101.
    [100]X.F. Cheng, J.S. Zhao, H.F. Sun, Y.Z. Fu, C.S. Cui, X.X. Zhang,. Effect of substituents on electrochemical and optical properties of thienyl-derivatized polypyrenes.J. Electroanal. Chem.,2013, (690):60-67.
    [101]C.X.Xu, J.S. Zhao, C.S. Cui, M. Ming, Y. Kong, X.X. Zhang,. Triphenylamine-based multielectrochromic material and its neutral green electrochromic devices. J. Electroanal. Chem.,2012, (682):29-36.
    [102]A. Balan, D. Baran, L. Toppare,. Processable donor-acceptor type electrochromes switching between multicolored and highly transmissive states towards single component RGB-based display devices. J. Mater. Chem.,2010, (20):9861-9866.
    [103]A.Durmus, G.E. Gunbas, P. Camurlu, L. Toppare,. A neutral state green polymer with a superior transmissive light blue oxidized state. Chem. Commun.,2007, 3246-3248.
    [104]O. Atwani, C. Baristiran, A. Erden, G. Sonmez,. A stable, low band gap electroactive polymer:poly(4,7-dithien-2-yl-2,1,3-benzothiadiazole). Synth. Met.,2008, (158):83-89.
    [105]P.M. Beaujuge, S. Elligner, J.R. Reynolds,. Spray processable green to highly transmissive electrochromics via chemically polymerizable donor-acceptor heterocyclic pentamers. Adv. Mater.,2008, (20):2772-2776.
    [106]A. Cihaner, F. Algi,. A novel neutral state green polymeric electrochromic with superior n- and p-doping processes:closer to red-blue-green (RGB) display realization. Adv. Funct. Mater.,2008, (18):3583-3589.
    [107]A. Balan, D. Baran, G. Gunbas, A. Durmus, F. Ozyurt, L. Toppare,. One polymer for all:benzotriazole containing donor-acceptor type polymer as a multi-purpose material. Chem. Commun.,2009,6768-6770.
    [108]A. balan, G. Gunbas, A. Durmus, L. Toppare,. Donor-Acceptor polymer with bbenzotriazole moiety:enhancing the electrochromic properties of the "donor unit". Chem. Mater.,2008,20,7510-7513.
    [109]G.E. Gunbas, A. Durmus, L. Toppare,. Could green be greener? Novel donor-acceptor-type electrochromic polymers:towards excellent neutral green matrtials with exceptional transmissive oxidized states for completion of RGB color space. Adv. Mater,.2008, (20):691-695.
    [110]G.E. Gunbas, A. Durmus, L. Toppare,. A unique processable green polymer with a transmissive oxidized state for realization of potential RGB-based electrochromic device applications. Adv. Funct. Mater.,2008, (18):2026-2030.
    [111]M. Sendur, A. Balan, D. Baran, B. Karabay, L. Toppare,. Combination of donor characters in a donor-acceptor-donor (DAD) type polymer containing benzothiadiazole as the acceptor unit. Org. Electron.,2010 (11):1877-1885.
    [112]P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromism and electrochromic devices. Cambridge Univ. Press, Cambridge,2007.
    [113]C. Pozo-Gonzalo, J. A. Pomposo, J.A. Alduncin, M. Salsamendi, A.I. Mikhaleva, L.B. Krivdin, B.A. Trofimov,. Orange to black electrochromic behavior in poly(2-(2-thienyl)-1H-pyrrole) thin films. Electrochim. Acta.,2007, (52):4784-4791.
    [114]P.M. Beaujuge, S. Ellinger. J.R. Reynolds,. The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. Nature materials., 2008, (7):795-799.
    [115]PJ. Shi, C.M.Amb, E.P. Knott, E.J. Thompson, D.Y. Liu, J.G.Mei, A.L. Dyer, J.R. Reynolds,. Broadly absorbing black to transmissive switching electrochromic polymers. Adv. Mater.,2010, (22):4949-4953.
    [116]M. Icli, M. Pamuk, F. Algi, A.M. Onal, A. Cihaner,. A new soluble neutral state black electrochromic copolymer via a donor-acceptor approach. Org. Electron., 2010, (11):1255-1260.
    [117]Y. Zhu, K. Zhang, B. Tieke,. Electrochemical polymerization of bis(3,4-ethylenedioxythiophene)-substituted 1,4-diketo-3,6-diphenyl-pyrrolo-[3,4-c]pyrrole (DPP) derivative. Macromol. Chem. Phys.,2009, (210):431-439.
    [118]K. Zhang, B. Tieke, J.C. Forgie, P.J. Skabara,. Electrochemical polymerization of N-arylated and N-alkylated EDOT-substituted pyrrolo [3,4-c]pyrrole-1,4-dione (DPP) derivatives:influence of substitution pattern on optical and electronic properties. Macromol. Rapid Commun.,2009, (30):1834-1840.
    [119]B. Bezgin, A.M. Onal,. Electrochemical polymerization of an electron deficient fluorine derivative bearing ethylenedioxythiophene side groups. Electrochim. Acta.,2010, (55):779-784.
    [120]B.B. Carbas, A. Kivrak, A.M. Onal,. A new processable electrochromic polymer based on an electron deficient fluorine derivative with a high coloration efficiency. Electrochim. Acta.,2011, (58):223-230.
    [1]R.J. Mortimer, A.L. Dyer, J.R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays.,2006, (27):2-18.
    [2]P. Camurlu, S. Tarkuc, E. Sahmetlioglu, I.M. Akhmedov, C. Tanyeli, L. Toppare, Multichromic conducting copolymer of 1-benzyl-2,5-di(thiophen-2-yl)-1H-pyrrole with EDOT. Sol. Energ. Mat. Sol. C.,2008, (92):154-159.
    [3]S. Varis, M. Ak, I.M. Akhmedov, C. Tanyeli, L. Toppare, A novel multielectrochromic copolymer based on 1-(4-nitrophenyl)-2,5-di(2-thienyl)-1H-pyrrole and EDOT. J. Electroanal. Chem.,2007, (603):8-14.
    [4]X.G. Guo, R.P. Ortiz, Y. Zheng, Y. Hu, Y.Y. Noh, K.J. Baeg, A. Facchetti, T.J. Marks, Bithiophene-Imide-Based Polymeric Semiconductors for Field-Effect Transistors:Synthesis, Structure-Property Correlations, Charge Carrier Polarity, and Device Stability. J. Am. Chem. Soc.,2011, (133):1405-1418.
    [5]Y.H. Kim, J. Hwang, J.I. Son, Y.B. Shim, Synthesis, electrochemical, and spectroelectrochemical properties of conductive poly-[2,5-di-(2-thienyl)-1H-pyrrole-l-(p-benzoic acid)]. Synth. Met.,2010, (160):413-418.
    [6]B.B. Carbas, A. Kivrak, A.M. Onal, A new processable electrochromic polymer based on an electron deficient fluorene derivative with a high coloration efficiency. Electrochim. Acta.,2011, (58):223-230.
    [7]C. Teng, X.C. Yang, C.Z. Yuan, C.Y. Li, R.K. Chen, H.N. Tian, S.F. Li, A. Hagfeldt, L.C. Sun, Two Novel Carbazole Dyes for Dye-Sensitized Solar Cells with Open-Circuit Voltages up to 1 V Based on Br-/Br3" Electrolytes. Org. let., 2009, (11):5542-5545.
    [8]A. Kimoto, J.S. Cho, K. Ito, D. Aoki, T. Miyake, K. Yamamoto, Novel Hole-Transport Material for Efficient Polymer Light-Emitting Diodes by Photoreaction. Macromol. Rapid. Commun.,2005, (26):597-601.
    [9]L.J. Zhang, C. He, J.W. Chen, P. Yuan, L. Huang, C. Zhang, W.Z, Cai, Z.T. Liu, Y. Cao, Bulk-Heterojunction Solar Cells with Benzotriazole-Based Copolymers as Electron Donors:Largely Improved Photovoltaic Parameters by Using PFN/A1 Bilayer Cathode. Macromolecules,2010, (43):9771-9778.
    [10]B. Wang, J.S. Zhao, R.M. Liu, J.F. Liu, Q.P. He, Electrosyntheses,characterizations and electrochromic properties of a copolymer based on 4,4'-di(N-carbazoyl)biphenyl and 2,2'-bithiophene. Sol. Energ. Mat. Sol. C.,2011, (95):1867-1874.
    [11]M. Lapkowski, P. Data, A. Nowakowska-Oleksy, J. Soloducho, S. Roszak, Electrochemical characterization of alternate conducting carbazole-bisthiophene units. Mater. Chem. Phys.,2012, (131):757-763.
    [12]S. Koyuncu, l. Kaya, F.B. Koyuncu, E. Ozdemir, Electrochemical, optical and electrochromic properties of imine polymers containing thiophene and carbazole units. Synth. Met.,2009, (159):1034-1042.
    [13]K. Kawabata, H. Goto, Electrosynthesis of 2,7-linked polycarbazole derivatives to realize low-bandgap electroactive polymers. Synth. Met.,2010, (160):2290-2298.
    [14]F.B. Koyuncu, S. Koyuncu, E. Ozdemir, A new multi-electrochromic 2,7 linked polycarbazole derivative:Effect of the nitro subunit. Org. Electron.,2011, (12): 1701-1710.
    [15]F.B. Koyuncu, S. Koyuncu, E. Ozdemir, A new donor-acceptor carbazole derivative:Electrochemical polymerization and photo-induced charge transfer properties. Synth. Met.,2011, (161):1005-1013.
    [16]F.B. Koyuncu, S. Koyuncu, E. Ozdemir, A novel donor-acceptor polymeric electrochromic material containing carbazole and 1,8-naphtalimide as subunit. Electrochim. Acta.,2010, (55):4935-4941.
    [17]Z.Y. Yang, Z.G. Chi, T. Yu, X.Q. Zhang, M. Chen, B.J. Xu, S.W. Liu, Y. Zhang, J.R. Xu, Triphenylethylene carbazole derivatives as a new class of AIE materials with strong blue light emission and high glass transition temperature.J. Mater. Chem.,2009, (19):5541-5546.
    [18]J. Hwang, J.I. Son, Y. Shim, Electrochromic and electrochemical properties of 3-pyridinyl and 1,10-phenanthroline bearing poly(2,5-di(2-thienyl)-1H-pyrrole) derivatives. Sol. Energ. Mat. Sol. C.,2010, (94):1286-1292.
    [19]C. Zhang, C. Hua, G.H. Wang, M. Ouyang, C.A. Ma, A novel multichromic copolymer of 1,4-bis(3-hexylthiophen-2-yl)benzene and 3,4-ethylenedioxy-thiophene prepared via electrocopolymerization. J. Electroanal. Chem.,2010, (645):50-57.
    [20]S. Cattarin, G. Mengoli, M.M. Musiani, B. Schreck, Synthesis and properties of film electrodes from N-substituted carbazoles in acid medium. J. Electroanal. Chem.,1988, (246):87-100.
    [21]O. Usluer, S. Koyuncu, S. Demic, R.A.J. Janssen, A Novel High-Contrast Ratio Electrochromic Material from Spiro[cyclododecane-1,9'-fluorene]bicarbazole. J. Polym. Sci. Pol. Phys.,2011, (49):333-341.
    [22]S. Sadki, C. Chevrot, Electropolymerization of 3,4-ethylenedioxy-thiophene, N-ethylcarbazole and their mixtures in aqueous micellar solution. Electrochim. Acta.,2003, (48):733-739.
    [23]R. Ravindranath, P.K. Ajikumar, S. Bahulayan, N.B.M. Hanafiah, A. Baba, R.C. Advincula, W. Knoll, S. Valiyaveettil, Ultrathin Conjugated Polymer Network Films of Carbazole Functionalized Poly(p-Phenylenes) via Electropoly-merization J. Phys. Chem. B.,2007, (111):6336-6343.
    [24]A. Yavuz, B. Bezgin, L. Aras, A.M. Onal, Synthesis and electropolymerization of the phthaocyanines with 4-(2,5-di-2-thiophen-2-yl-pyrrol-1-yl) substituents. J. Electroanal. Chem.,2010,(639):116-122.
    [25]L.Q. Zeng, Z.G. Le, J.K. Xu, H.T. Liu, F. Zhao, S.Z. Pu,. Electrochemical polymerization of 9-phenylcarbazole in mixed electrolytes of boron trifluoride diethyl etherate and sulfuric acid. J. Mater. Sci.,2008, (43):1135-1143.
    [26]A. Oral, S. Koyuncua, I.S. Kaya, Polystyrene functionalized carbazole and electrochromic device application. Synth. Met.,2009, (159):1620-1627.
    [27]Z.E. Malki, K. Hasnaoui, L. Bejjit, M. Haddad, M. Hamidi, M. Bouachrine, Synthesis, characterization and theoretical study of new organic copolymer based on PVK and PEDOT. J. Non-Cryst. Solids.,2010, (356):467-473.
    [28]K. Kham, S. Sadki, C. Chevrot, Oxidative electropolymerizations of carbazole derivatives in the presence of bithiophene. Synth. Met.,2004, (145):135-140.
    [29]L.Y. Xu, J.S. Zhao, C.S. Cui, R.M. Liu, J.F. Liu, H.S. Wang, Electrosynthesis and characterization of an electrochromic material from poly(1,4-bis(2-thienyl)-benzene) and its application in electrochromic devices. Electrochim. Acta., 2011, (56):2815-2822.
    [30]A. Cihaner, F. Alg, A processable rainbow mimic fluorescent polymer and its unprecedented coloration efficiency in electrochromic device. Electrochim. Acta., 2008, (53):2574-2578.
    [31]S. Koyuncu, B. Gultekin, C. Zafer, H. Bilgili, M. Can, S. Demic, I. Kaya, S. Icli, Electrochemical and optical properties of biphenyl bridged-dicarbazole oligomer films:Electropolymerization and electrochromism. Electrochim. Acta.,2009, (54):5694-5702.
    [32]B. Yigitsoy, S.M.A. Karim, A. Balan, D. Baran, L. Toppare, Multichromic polymers of benzotriazole derivatives:Effect of benzyl substitution. Electrochim. Acta.,2011, (56):2263-2268.
    [33]M. Ouyang, G.H. Wang, Y.J. Zhang, C. Hua, C. Zhang, Multicolored electrochromic copolymer based on 1,4-di(thiophen-3-yl)benzene and 3,4-ethylenedioxythiophene.J. Electroanal. Chem.,2011, (653):21-26.
    [34]I. Fabre-Francke, M. Zagorska, G. Louarn, P. Hapiot, A. Pron, S. Sadki, Synthesis, electrochemical and spectroscopic investigations of New N-BEDOT derivatives containing anil substituted carbazole subunits. Electrochim. Acta., 2008, (53):6469-6476.
    [35]C.X. Xu, J.S. Zhao, M. Wang, Z. Wang, C.S. Cui, Y. Kong, X.X. Zhang, Electrosynthesis and characterization of a neutrally colorless electrochromic material from poly(1,3-bis(9H-carbazol-9-yl)benzene) and its application in electrochromic devices. Electrochim. Acta.,2012, (75):28-34.
    [36]F.B. Koyuncu, An ambipolar electrochromic polymer based on carbazole and naphthalene bisimide:Synthesis and electro-optical properties. Electrochim. Acta.,2012, (68):184-191
    [1]. Y.J. Cheng, S.H. Yang, C.S. Hsu, Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chem. Rev.,2009, (109):5868-5923.
    [2]. M. Ak, M. S. Ak, G. Kurtay, M. Gullu, L.Toppare, Synthesis and electropolymerization of 1,2-bis(thiophen-3-ylmethoxy)benzene and its electrochromic properties and electrochromic device application. Solid. State. Sci.,2010, (12):1199-1204.
    [3]. A.C. Ozelcaglayan, M. Sendur, N. Akbasoglu, D.H. Apaydin, A. Cirpan, L. Toppare,. Synthesis and electrochemical properties of a new benzimidazole derivative as the acceptor unit in donor-acceptor-donor type polymers. Electrochim. Acta.,2012, (67):224-229.
    [4]. J.F. Morin, M. Leclerc, D. Ades, A. Siove,. Polycarbazoles:25 Years of Progress. Macromol. Rapid Commun.,2005, (26):761-778.
    [5]. N. Bloudin, A. Michaud, M. Leclerc, A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells. Adv. Mater.,2007, (19): 2295-2300.
    [6]. F.B. Koyuncu, E. Sefer, S. Koyuncu, E. Ozdemir, The New Branched Multielectrochromic Materials:Enhancing the Electrochromic Performance via Longer Side Alkyl Chain. Macromolecules.,2011, (44):8407-8414.
    [7]. H.M. Xie, K. Zhang, C.H. Duan, S.J. Liu, F. Huang, Y. Cao,. New acceptor-pended conjugated polymers based on 3,6- and 2,7-carbazole for polymer solar cells. Polymer.,2012, (53):5675-5683.
    [8]. S. Koyuncu, O. Usluer, M. Can, S. Demic, S. Icli, N.S. Sariciftci,. Electrochromic and electroluminescent devices based on a novel branched quasi-dendric fluorene-carbazole-2,5-bis(2-thienyl)-1H-pyrrole system.J. Mater. Chem.,2011, (21):2684-2693.
    [9]. F.B. Koyuncu, S. Koyuncu, E. Ozdemir,. A new multi-electrochromic 2,7 linked polycarbazole derivative:Effect of the nitro subunit. Org. Electron.,2011, (12): 1701-1710.
    [10]. F.B. Koyuncu, S. Koyuncu, E. Ozdemir, A novel donor-acceptor polymeric electrochromic material containing carbazole and 1,8-naphtalimide as subunit. Electrochim. Acta.,2010, (55):4935-4941.
    [11]. J.L. Reddinger, G.A. Sotzing, J.R. Reynolds, Multicoloured electrochromic polymers derived from easily oxidized bis[2-(3,4-ethylenedioxy)thienyl] carbazoles. Chem. Commun.,1996,1777-1778.
    [12]. F.B. Koyuncu. An ambipolar electrochromic polymer based on carbazole and naphthalene bisimide:Synthesis and electro-optical properties. Electrochim. Acta.,2012,(68):184-191.
    [13]. B. Wang, J.S. Zhao, C.S. Cui, J.F. Liu, Q.P. He,. Electrosynthesis and characterization of an electrochromic material from poly(1,4-bis(3-methyl-thiophen-2-yl)benzene) and its application in electrochromic device. Sol. Energ. Mat. Sol. C.,2012, (98):161-167.
    [14]. B. Zaifoglu, M. Sendur, N.A. Unlu, L. Toppare,. High optical transparency in all redox states:Synthesis and characterization of benzimidazole and thieno[3,2-b]thiophene containing conjugated polymers. Electrochim. Acta., 2012, (85):78-83.
    [15]. G. Zotti, G. Schiavon, S. Zecchin, L. Groenendaal,. Conductive and Magnetic Properties of Poly(3,6-bis(2-(3,4-ethylenedioxy)thienyl)-N-dodecylcarbazole) A Polyconjugated Polymer with a High Spin Density Polaron State. Chem. Mater., 1999, (11):3624-3628.
    [16]. A. Iraqi, I. Wataru,3,6-Linked 9-Alkyl-9H-carbazole Main-Chain Polymers: Preparation and Properties. J. Polym. Sci. A:Polym. Chem.,2004, (42):6041-6051.
    [17]. S. Koyuncu, l. Kaya, F.B. Koyuncu, E. Ozdemir, Electrochemical, optical and electrochromic properties of imine polymers containing thiophene and carbazole units. Synth. Met.,2009, (159):1034-1042.
    [18]. F.B. Koyuncu, S. Koyuncu, E. Ozdemir, A new donor-acceptor carbazole derivative:Electrochemical polymerization and photo-induced charge transfer properties. Synth. Met.,2011, (161):1005-1013.
    [19]. M. Lapkowski, P. Data, A. Nowakowska-Oleksy, J. Soloducho, S. Roszak, Electrochemical characterization of alternate conducting carbazole-bisthiophene units. Mater. Chem. Phys.,2012, (131):757-763.
    [20]. C. Zhang, C. Hua, G.H. Wang, M. Ouyang, C.A. Ma, A novel multichromic copolymer via electrochemical copolymerization of (S)-1,1'-binaphthyl-2,2'-diyl bis (N-(6-hexanoic acid-1-yl) pyrrole) and 3,4-ethylenedioxythiophene. Electrochim. Acta.,2010, (55):4103-4111.
    [21]. M. Ouyang, G.H. Wang, Y.J. Zhang, C. Hua, C. Zhang, Multicolored electrochromic copolymer based on 1,4-di(thiophen-3-yl)benzene and 3,4-ethylenedioxythiophene.J. Electroanal. Chem.,2011, (653):21-26.
    [22]. P. Camurlu, Z. Bicil, C. Gultekin, N. Karagoren,. Novel ferrocene derivatized poly(2,5-dithienylpyrrole)s:Optoelectronic properties, electrochemical copolymerization. Electrochim. Acta.,2012, (63):245-250.
    [23]. A.J.C. Silva, S.M.F. Ferreira, D.D.P. Santos, M. Navarro, J. Tonholo, A.S. Ribeiro,. A multielectrochromic copolymer based on pyrrole and thiophene derivatives. Sol. Energ. Mat. Sol. C.,2012, (103):108-113.
    [24]. B. Hu, Y.J. Zhang, X.J. Lv, M. Ouyang, Z.Y. Fu, C. Zhang,. Electrochemical and electrochromic properties of two novel polymers containing carbazole and phenyl-methanone units.J. Electroanal. Chem.,2013, (689):291-296.
    [25]. B.B. Carbas, A.M. Onal,. New fluorene-xanthene-based hybrid electrochromic and fluorescent polymers via donor-acceptor approach. Electrochim. Acta.,2012, (66):38-44.
    [26]. F. Algi, A. Cihaner,. An ambipolar low band gap material based on BODIPY and EDOT. Org. Electron.,2009, (10):453-458.
    [27]. G.M. Nie, H.J. Yang, J. Chen, Z.M. Bai,. A novel high-quality electrochromic material from 3,4-ethylenedioxythiophene bis-substituted fluorine. Org. Electron.,2012, (13):2167-2176.
    [28]. Y.J. Zhang, M. Ouyang, C.H. Yu, B. Hu, Q.P. Lou, C. Zhang,. Novel nonplanar triphenylamine-centered oligofluorenes:Synthesis, thermal, photophysical and electrochemical properties.J. Lumin.,2011, (131):1758-1764
    [29]. D.J. Zha, L. Chen, F.Y. Wu, H.M. Wang, Y.W. Chen,. Donor-acceptor-integrated conjugated polymers based on carbazole[3,4-c:5,6-c] bis[1,2,5]thiadiazole with tight π-π stacking for photovoltaics. J. Polym. Sci. Pol. Chem.,2013, (51):565-574.
    [30]. P. Camurlu, S. TarkuC, E. Sahmetlioglu, I.M. Akhmedov, C. Tanyeli, L. Toppare,. Multichromic conducting copolymer of 1-benzyl-2,5-di(thiophen-2-yl)-1H-pyrrole with EDOT. Sol. Energ. Mat. Sol. C.,2008, (92):154-159.
    [31]. A.G. Nurioglu, H, Akpinar, M. Sendur, L. Toppare,. Multichromic Benzimidazole-Containing Polymers:Comparison of Donor and Acceptor Unit Effects. J. Polym. Sci. Pol. Chem.,2012, (50):3499-3506.
    [32]. A. Cihaner, F. Algi,. Electrochemical and optical properties of new soluble dithienylpyrroles based on azo dyes. Electrochim. Acta.,2009, (54):1702-1709.
    [33]. B. Yigitsoy, S.M.A. Karim, A. Balan, D. Baran, L. Toppare,. Multichromic polymers of benzotriazole derivatives:Effect of benzyl substitution. Electrochim. Acta.,2011, (56):2263-2268
    [34]. V.K. Thakur, G.Q. Ding, J. Ma, P.S. Lee, X.H. Lu,. Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications. Adv. Mater.,2012, (24):4071-4096.
    [35]. H. Akpinar, A. Balan, D. baran, E.K. Unver, L. Toppare,. Donoreacceptoredonor type conjugated polymers for electrochromic applications:benzimidazole as the acceptor unit. Polymer.,2010, (51):6123-6131.
    [1]. Q. Peng, J. Xu, W.X. Zheng, Low Band Gap Copolymers Based on Thiophene and Quinoxaline:Their Electronic Energy Levels and Photovoltaic Application. J. Polyer. Sci. Pol. Chem.,2009, (47):3399-3408.
    [2]. F. Zhang, W. Mammo, L.M. Andersson, S. Admassie, M.R. Andersson, O. Inganas, Low-Bandgap Alternating Fluorene Copolymer/Methanofullerene Heterojunctions in Efficient Near-Infrared Polymer Solar Cells. Adv. Mater., 2006, (18):2169-2173.
    [3]. A. Gadisa, E. Perzon, M.R. Andersson, O. Inganas, Red and near infrared polarized light emissions from polyfluorene copolymer based light emitting diodes. Appl. Phys. Lett.,2007, (90):113510-113513.
    [4]. C. Gu, W.Y. Dong, L. Yao, Y. Lv, Z.B. Zhang, D. Lu, Y.G. Ma, Cross-Linked Multifunctional Conjugated Polymers Prepared by In Situ Electrochemical Deposition for a Highly-Efficient Blue-Emitting and Electron-Transport Layer. Adv. Mater.,2012, (24):2413-2417.
    [5]. B. Wang, J.S. Zhao, R.M. Liu, J.F. Liu, Q.P. He, Electrosyntheses, characterizations and electrochromic properties of a copolymer based on 4,40-di(N-carbazoyl)biphenyl and 2,20-bithiophene. Sol. Energ. Mat. Sol. C., 2011,(95):1867-1874.
    [6]. V.K. Thakur, G.Q. Ding, J. Ma, P.S. Lee, X.H. Lu, Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications. Adv. Mater.,2012, (24): 4071-4096.
    [7]. S. Cho, K. Lee, A.J. Heeger, Extended Lifetime of Organic Field-Effect Transistors Encapsulated with Titanium Sub-Oxide as an 'Active' Passivation/Barrier Layer. Adv. Mater.,2009, (21):1941-1944.
    [8]. P.M. Beaujuge, W. Pisula, H.N. Tsao, S. Ellinger, K. Mullen, J.R. Reynolds, Tailoring Structure-Property Relationships in Dithienosilole-Benzothiadiazole Donor-Acceptor Copolymers. J. Am. Chem. Soc.,2009, (131):7514-7515;
    [9]. B. Yigitsoy, S. Varis, C. Tanyeli, I.M. Akhmedov, L. Toppare, A soluble conducting polymer of 2,5-di(thiophen-2-yl)-1-p-tolyl-lH-pyrrole and its electrochromic device. Thin Solid Films.,2007, (515):3898-3904.
    [10]. G.M. Nie, L.Y. Qu, J.K. Xu, S.S. Zhang,. Electrosyntheses and characterizations of a new soluble conducting copolymer of 5-cyanoindole and 3,4-ethylenedioxy-thiophene. Electrochim. Acta.,2008, (53):8351-8358.
    [11]. E. Yildiz, P. Camurlu, C. Tanyeli, I. Akhmedov, L. Toppare, A soluble conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine and its multichromic copolymer with EDOT.J. Electroanal. Chem.,2008, (612); 247-256.
    [12]. J. Hwang, J.I. Son, Y.B. Shim, Electrochromic and electrochemical properties of 3-pyridinyl and 1,10-phenanthroline bearing poly(2,5-di(2-thienyl)-1H-pyrrole) derivatives. Sol. Energ. Mat. Sol. C.,2010, (94):1286-1292.
    [13]. M. Sendur, A.Balan, D.Baran, B. Karabay, L.Toppare, Combination of donor characters in a donor-acceptor-donor (DAD) type polymer containing benzothiadiazole as the acceptor unit. Org. Electron.,2010, (11):1877-1885.
    [14]. S. HellstrOm, T.Q. Cai, O.Inganas, M.R. Andersson, Influence of side chains on electrochromic properties of green donor-acceptor-donor polymers. Electrochim. Acta.,2011, (56):3454-3459.
    [15]. E. Kaya, A. Balan, D. Baran, A.Cirpan, L.Toppare, Electrochromic and optical studies of solution processable benzotriazole and fluorene containing copolymers. Org. Electron.,2011, (12):202-209.
    [16]. L. Sacan, A. Cirpan, P. Camurlu, L. Toppare, Conducting polymers of succinic acid bis-(2-thiophen-3-yl-ethyl)ester and their electrochromic properties. Synthetic. Met.,2006, (156):190-195.
    [17]. Y. Coskun, A. Cirpan, L. Toppare, Conducting polymers of terepthalic acid bis-(2-thiophen-3-yl-ethyl) ester and their electrochromic properties. Polymer., 2004, (45):4989-4995.
    [18]. P. Camurlu, A. Cirpan, L. Toppare, Conducting polymers of octanoic acid 2-thiophen-3-yl-ethyl ester and their electrochromic properties. Mater. Chem. Phys.,2005, (92):413-418.
    [19]. P. Camurlu, A. Cirpan, L. Toppare, Dual type complementary colored polymer electrochromic devices utilized by 3-ester substituted thiophenes. J. Electroanal. Chem.,2004, (572):61-65.
    [20]. D. Badeva, F. Tran-van, L. Beouch, C. Chevrot, I. Markova, T. Racheva, G. Froyer, Embedding and electropolymerization of terthiophene derivatives in porous n-type silicon. Mater. Chem. Phys.,2012, (133):592-598.
    [21]. M. Ak, A. Durmus, L. Toppare, Solid state electrochromic device applications of N-(2-(thiophen-3-yl)methylcarbonyloxyethyl) maleimide. Solid. State. Sci., 2007, (9):843-849.
    [22]. C. Zhang, C. Hua, G.H. Wang, M. Ouyang, C.A. Ma, A novel multichromic copolymer of 1,4-bis(3-hexylthiophen-2-yl)benzene and 3,4-ethylenedioxy-thiophene prepared via electrocopolymerization. J. Electroanal. Chem.,2010, (645):50-57.
    [23]. M. Ouyang, G.H. Wang, Y.J. Zhang, C. Hua, C. Zhang, Multicolored electrochromic copolymer based on 1,4-di(thiophen-3-yl)benzene and 3,4-ethylenedioxythiophene. J. Electroanal. Chem.,2011, (653):21-26.
    [24]. C. Zhang, C. Hua, G.H. Wang, M. Ouyang, C.A. Ma, A novel multichromic copolymer via electrochemical copolymerization of (S)-1,1'-binaphthyl-2,2'-diyl bis (N-(6-hexanoic acid-1-yl) pyrrole) and 3,4-ethylenedioxythiophene. Electrochim. Acta.,2010, (55):4103-4111.
    [25]. Y. Hong, J.W.Y. Lam, B.Z. Tang, Aggregation-induced emission:phenomenon, mechanism and applications. Chem. Commun.,2009, (29):4332-4353.
    [26]. K.A.N. Upamali, L.A. Estrada, P.K. De, X.C. Cai, J.A. Krause, D.C. Neckers, Carbazole-Based Cyano-Stilbene Highly Fluorescent Microcrystals. Langmuir., 2011,(27):1573-1580.
    [27]. B.K. An, S.K. Kwon, S.D. Jung, S.Y. Park, Enhanced emission and its switching in fluorescent organic nanoparticles. J. Am. Chem. Soc.,2002, (124):14410-14415.
    [28]. Y.J. Zhang, J.W. Sun, G.F. Bian, Y.Y. Chen, M. Ouyang, B. Hu, C. Zhang, Cyanostilben-based derivatives:mechanical stimuli-responsive luminophors with aggregation-induced emission enhancement. Photochem. Photobiol. Sci.,2012, (11):1414-1421.
    [29]. M. Ak, M. S. Ak, G. Kurtay, M. Gullii, L.Toppare, Synthesis and electropolymerization of 1,2-bis(thiophen-3-ylmethoxy)benzene and its electrochromic properties and electrochromic device application. Solid. State. Sci.,2010, (12):1199-1204.
    [30]. F.B. Koyuncu, E. Sefer, S. Koyuncu, E. Ozdemir, The New Branched Multielectrochromic Materials:Enhancing the Electrochromic Performance via Longer Side Alkyl Chain. Macromolecules.,2011, (44):8407-8414.
    [31]. M. Ak, E. Sahmetlioglu, L. Toppare, Synthesis, characterization and optoelectrochemical properties of poly(1,6-bis(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)hexane) and its copolymer with EDOT. J. Electroanal Chem.,2008, (621): 55-61.
    [32]. B. Wang, J.S. Zhao, C.S. Cui, R.M. Liu, J.F. Liu, H.S. Wang, H.T. Liu, Electrochromic properties of a novel low band gap conjugated copolymer based on 1,4-bis(2-thienyl)-naphthalene and 3,4-ethylenedioxythiophene. Electrochim. Acta.,2011, (56):4819-4827.
    [33]. G.M. Nie, L.Y. Qu, J.K. Xu, S.S. Zhang., Electrosyntheses and characterizations of a new soluble conducting copolymer of 5-cyanoindole and 3,4-ethylenedioxythiophene. Electrochim. Acta.,2008, (53):8351-8358.
    [34]. M. Ertas, A. Cirpan, L. Toppare,. Synthesis and characterization of conducting copolymers of succinic acid bis-(4-pyrrol-1-yl-pheny) ester and their electrochromic properties. Synth. Met.,2004, (143):49-58.
    [35]. C. Zhang, Y. Xu, N.C. Wang, Y. Xu, W.Q. Xiang, M. Ouyang, C.A. Ma,. Electrosyntheses and characterizations of novel electrochromic copolymers based on pyrene and 3,4-ethylenedioxythiophene. Electrochim. Acta.,2009, (55): 13-18.
    [36]. S.H. Hsiao, W.J. Guo, W.F. Lee, Y.C. Kung, Y.J. Lee, Synthesis and characterization of electrochromic poly(amide-imide)s bearing methoxy-substituted triphenylamine units. Mater. Chem. Phys.,2011, (130):1086-1093.
    [37]. B.B.Carbas, A.Kivrak, A.M. Onal, A new processable electrochromic polymer based on an electron deficient fluorene derivative with a high coloration efficiency. Electrochim. Acta.,2011, (58):223-230.
    [38]. F.B. Koyuncu, An ambipolar electrochromic polymer based on carbazole and naphthalene bisimide:Synthesis and electro-optical properties. Electrochim. Acta.,2012, (68):184-191.
    [1]C.X. Xu, J.S. Zhao, M. Wang, Z. Wang, C.S. Cui, Y. Kong, X.X. Zhang,. Electrosynthesis and characterization of a neutrally colorless electrochromic material from poly(1,3-bis(9H-Carbazol-9-yl)benzene) and its application in electrochromic devices. Electrochim. Acta.,2012, (75):28-34.
    [2]S. Celebi, A. Balan, B. Epik, D. Baran, L. Toppare,. Donor-Acceptor type neutral state green polymer bearing pyrrole as the donor unit. Org. Electron.,2009, (10): 631-636.
    [3]H.M. Wang, S.H.Hsiao,. Electrochemically and electrochromically stable polyimides bearing tert- butyl-blocked N,N,N',N'-tetraphenyl-1,4-phenylenne-diamine units. Polymer.,2009, (50):1692-1699.
    [4]Y.A. Udum, S. Tarkuc, L. Toppare,. A bis-selenophene substituted alkoxy benzene derivative as a highly stable novel electrochromic polymer. Synth. Met.,2009, (159):361-365.
    [5]V.V. Roznyatovskiy, N.V. Roznyatovskaya, H. Weyrauch, K. Pinkwart, J. Tubke, J.L. Sessler,. Naphthobipyrrole:versatile synthesis and electropolymerization. J. Org. Chem.,2010, (75):8355-8362.
    [6]A.B. Powell, C.W. Bielawski, A.H. Cowley,. Design, synthesis, and study of main chain poly(N-heterocyclic carbene) complexes:applications in electrochromic devices. J. Am. Chem. Soc.,2010, (132):10184-10194.
    [7]G.S. Liou, H.Y. Lin,. Synthesis and electrochemical properties of novel aromatic poly(amine-amide)s with Anodically highly stable yellow and blue electrochromic behaviors. Macromolecules.,2009, (42):125-134.
    [8]D. Baran, A. Balan, S. Celebi, B.M. Esteban, H. Neugebauer, N.S. Sariciftci, L. Toppare,. Processable multipurpose conjugated polymer for electrochromic and photovoltaic applications. Chem. Mater.,2010, (22):2978-2987.
    [9]A.R. Rabindranath, Y. Zhu, K. Zhang, B. Tieke,. Purple red and luminescent polyiminoarylenes containing the 1,4-diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DPP) chromophore. Polymer.,2009, (50):1637-1644.
    [10]J.H. Hou, S.Q. Zhang, T.L. Chen, Y. Yang,. A new n-type low bandgap conjugated polymer P-co-CDT:synthesis and excellent reversible electrochemical and electrochromic properties. Chem. Commun.,2008,6034-6036.
    [11]F. Algi, A. Cihaner,. An ambipolar neutral state green polymeric electrochromic. Org. Electron.,2009, (10):704-710.
    [12]P.M. Beaujuge, S. Ellinger, J.R. Reynolds,. Spay processable green to highly transmissive electrochromics via chemically polymerizable donor-acceptor hererocyclic pentamers. Adv. Mater.,2008, (20) 2772-2776.
    [13]M. Ak, L. Toppare,. Synthesis of star-shaped pyrrole and thiophene functionalized monomers and optoelectrochemical properties of corresponding copolymers. Mater. Chem. Phys.,2009, (114):789-794.
    [14]P. Camurlu, E. Sahmetlioglu, E. Sahin, I.M. Akhmedov, C. Tanyeli, L. Toppare,. Fine tuning of color via copolymerization and its electrochromic device application. Thin Solid Films.,2008, (516):4139-4144.
    [15]H.J. Seol, H. Jeong, S. Jeon,. Optoelectrochemical properties of copolymer of terthiophene with 3,4-ethlenedioxypyrrole.J. Electroanal. Chem.,2009, (636): 107-112.
    [17]M. Ouyang, G.H. Wang, C. Zhang,. A novel electrochromic polymer containing triphenylamine derivative and pyrrole. Electrochim. Acta.,2011, (56):4645-4649.
    [18]C. Zhang, G.H. Wang, M. Ouyang,. Multielectrochromic property of N-phenylnaphthalen-2-amine and N-(4-(1 H-pyrrol-1-yl)phenyl)-N-phenylnaph-thalen-2-amine.J. Electroanal. Chem.,2011, (660):45-49.
    [19]B.B. Carbas, A. Kivrak, A.M. Onal,. A new processable electrochromic polyer based on an electron deficient fluorine derivative with a high coloration efficiency. Electrochim. Acta.,2011, (58):223-230.
    [20]A. Giines, A. Cihaner, A.M. Onal,. Synthesis and electro-optical properties of new conjugated hybrid polymers based on furan and fluorine units. Electrochim. Acta.,2013, (89):339-345.
    [21]K. Zhang, B. Tieke, J.C. Forgie, F. Vilela, J.A. Parkinson, P.J. Skabara,. Cross-linked polymers based on 2,3,5,6-tera-substituted pyrrolo[3,4-c]-pyrrole-1,4(2H,5H)-dione (DPP):synthesis, optical and electronic properties. Polymer., 2010, (51):6107-6114.
    [22]T. Tibaoui, B. Zaidi, M. Bouachrine, M. Paris, K. Alimi,. A study of polymers obtained by oxidative coupling of furan monomers. Synth. Met.,2011, (161): 2220-2225.
    [23]F. Algi, A. Cihaner,. A novel terthienyl based polymer electrochrome with peripheral BODIPY. Polymer.,2012, (53):3469-3475.
    [24]J. L. Segura, R. Gomez, R. Blanco, E. Reinold, P. Bauerle,. Synthesis and Electronic Properties of anthraquinone-, tetracyanoanthraquinodimethane-, and perylenetetracarboxylic diimide-functionalized poly(3,4-ethylenedioxy-thiophenes). Chem. Mater.,2006, (18):2834-2847.
    [25]C. Suspene, R. Barattin, C. Celle, A. Carella, J.P. Simonato,. Chemical functionalization of silicon nanowires by an electroactive group:a direct spectroscopic characterization of the hybid nanomaterial. J. Phys. Chem. C., 2010, (114):3924-3931.
    [26]H.Y. Wu, K.L. Wang, J.C. Jiang, D.J. Liaw, K.R. Lee, J.Y. Lai, C.L. Chen,. Experimental and theoretical investigation of a new rapid switching near-infrared electrochromic conjugated polymer. J. Polym Sci. Pol. Chem.,2010, (48):3913-3923.
    [27]G.S. Liou, H.J. Yen, M.C. Chiang,. Near-infrared electrochromic poly (aryl ether)s based on isolated electroactive tetraphenyl-p-phenylenediamine moieties. J. Polym. Sci. Pol. Chem.,2009, (47):5378-5385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700