用户名: 密码: 验证码:
氢氧化镍材料的合成、修饰及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化石能源危机和环境危机所产生的双重压力促使电动车(包括纯电动车和混合动力电动车)得到极为广泛的重视。在电动车中,高功率蓄电池占有非常重要的地位。具有“高比能绿色电池”之称的金属氢化物一镍电池(MH/Ni电池)在作为混合动力电动汽车的车用电池方面具有明显的优势,也是最早作为混合动力电动车用电池进入商业化阶段的电池系统。由于MH/Ni电池在设计上采用的是正极容量限制方式,因此,其正极材料氢氧化镍综合性能的提高对电池整体性能的提升至关重要。本论文以提高氢氧化镍材料的大电流充放电性能及其质量比容量为目的,采用不同的制备方法分别合成了片状纳米氢氧化镍、纳米氢氧化镍/碳复合材料、α相纳米片状Ni-Co氢氧化物以及表面覆钻的微米球形氢氧化镍,并对它们各自的电化学性能进行了深入细致的研究。
     1.纳米Ni(OH)2具有特殊的结构特性,被认为具有比微米级球形氢氧化镍更好的电化学性能。但目前系统研究纳米Ni(OH)2的制备及其形貌、结构等因素与其电化学性能关系的还很少。为了对纳米Ni(OH)2的这种关系有进一步的了解,本文采用水热法控制合成了系列均匀片状纳米Ni(OH)2,对合成的系列纳米Ni(OH)2的循环伏安、倍率放电等性能作了详尽的研究,并与商业化球形氢氧化镍进行了对比,结合XRD、SEM和HRTEM等结构分析方法得出以下的结论:①纳米Ni(OH)2有更高的电化学反应活性和快速活化能力,但并非所有的纳米级氢氧化镍均较微米级的球形氢氧化镍在电化学性能方面表现出优势。②降低纳米Ni(OH)2在垂直于[100]晶轴方向的结晶性,可以提高其电化学活性和比容量。③在理解纳米Ni(OH)2的粒径对其电化学性能的影响方面,不能单纯地追求单个颗粒整体的大小对电化学性能的影响,还应该考虑到颗粒中存在的不完全的结晶和优先生长可能对其电化学性能带来的影响。
     2.纳米Ni(OH)2具有电化学活性高、充电效率高及放电平台高等优点,但存在易于团聚、在使用过程中难与导电剂均匀混合等问题导致其纳米特性难以得到很好的体现。为了克服上述问题,我们利用超声波处理方法,在液相中把现场生成的纳米Ni(OH)2微粒直接均匀地分散负载于纳米级的碳基微粒材料表面,使两者均匀复合成一种新型材料。不仅解决了现有技术中存在的纳米Ni(OH)2活性材料的分散问题,确保了Ni(OH)2纳米特性,同时也使其导电性得到提高。电化学测试证实此种复合材料具有优异的大电流充放电特性,活性材料的利用率也得到明显提高。
     3. a-Ni(OH)2中的Ni元素在电化学反应中的理论交换电子数约为1.7,远大于β-Ni(OH)2的1个交换电子,故合成稳定的a-Ni(OH)2是提高MH/Ni电池正极比容量的重要途径。我们首次采用部分阳离子交换法制备出一系列α相Ni-Co氢氧化物。循环伏安研究表明所合成的a相Ni-Co氢氧化物比共沉淀法合成的β相Ni-Co氢氧化物具有更低的电阻和更好的电化学可逆性。充放电测试表明所合成的α相Ni-Co氢氧化物的比容量远高于β-Ni(OH)2的理论比容量,并且在500周循环后仍保持有很好的容量特性和充放电性能。通过调节Ni-Co氢氧化物的组成,还可以调控其电化学性能。此外,阳离子交换反应还可以可逆进行。阳离子交换方法是一个构筑不同组成的双金属氢氧化物的简便的新方法,并且以此方法制备的材料呈现出不同于传统方法所得产物的优异电化学性能。
     4.在微米级球形Ni(OH)2表面进行钴元素的包覆,可在其表面形成导电网络,有效提高其导电性。通常采用的覆钴方法主要是化学沉积法和电沉积法。本文采用了一种新方法—阳离子交换方法,成功地合成了系列具有核-壳结构的Ni(OH)2@CoOOH样品。这种原位的阳离子交换合成过程使得产物Ni(OH)2@CoOOH完好地保持了初始球形Ni(OH)2的结构和形貌,并且表层CoOOH与内部Ni(OH)2核是通过过渡相a-Ni(OH)2贯通起来的。这种结构不仅增强了CoOOH与Ni(OH)2之间接合的牢固度,使得此种材料的循环稳定性得到了明显的提高,而且还使其作为MH/Ni电池的正极材料时的比容量得到提高,超过了β-Ni(OH)2的理论比容量。覆钴材料的导电性和活化特性也得到了极大的提高,可用0.5-2C的倍率在几周内完全活化。此外,还探讨了Ni(OH)2@CoOOH的制备方法所涉及的反应机理。
     鉴于所开发的核-壳结构Ni(OH)2@CoOOH的制备方法简单,所得到的材料具有导电性高、易于活化、比容量高、循环性能好等优点,我们对此种材料的单批合成量成功地进行了放大,并采用所制备的大批量Ni(OH)2@CoOOH材料组装了方形动力电池(6Ah)。电化学测试结果表明,当电池的放电倍率提高到30C时仍保持有74.19%的放电效率,而用以制备核-壳结构Ni(OH)2@CoOOH材料的原料球形Ni(OH)2加入CoO作为导电添加剂所制作的对比电池在30C放电时的放电效率降到了1.86%。
The increasing concerns over air pollution and depletion of natural energy resources reserves have spurred renewed interest in electric vehicles (EV), where high power batteries are playing important role. MH/Ni batteries named as high specific energy green power sources are considered to be one of the most promising choices for EV and hybrid electric vehicle (HEV) applications. Furthermore, MH/Ni batteries are the first one which was used as power batteries in commercial HEVs. These batteries are usually designed with capacity limited by positive electrode for reasons of proper gas recombination reactions and battery safety. It follows that increasing the comprehensive performance of the nickel hydroxide electrode is essential for raising the performance of MH/Ni batteries. It's the purpose of this thesis that increasing the high rate dischargeability and energy density of nickel hydroxide electrode by the synthesis of plate like nano-scale nickel hydroxide, nickel hydroxide/carbon composites and nanosheets ofα-Ni/Co hydroxides through various methods and modifying macro-spherical nickel hydroxide with cobalt oxyhydroxide via a new method.
     1. Owing to the special structural characteristics, nickel hydroxide with nanostructural multiphase was considered to have better electrochemical properties than that of spherical nickel hydroxide. However, as far as we know, few researches touch on the synthesis of a series of nano-scale nickel hydroxides and the systematical investigation of the structure/function relationships in nano-scale nickel hydroxides. For the purpose of understanding the structure/function relationships in nano-scale nickel hydroxides, a series of large-scale nickel hydroxide nanoplates with differences in size and crystallinity were synthesized in this work. Through cyclic voltammetry and rate-discharge electrochemistry tests combining the XRD、SEM and HR-TEM analysis of the structure of nano-scale nickel hydroxides, the conclusions was obtained as followings:①Nickel hydroxides with nanostructure have higher electrochemical reaction activity and are more easily activated than macro-spherical nickel hydroxide. However, not all nano-scale nickel hydroxides behave better electrochemical properties than macro-spherical Ni(OH)2.②Electrochemical activity and specific capacity of nano-scale nickel hydroxides could be improved by reducing the crystalline in the direction perpendicular to the axis of [100].③Not only the size of single nanometer nickel hydroxide but also the defects in crystals and un-perfect crystallization of single particles have influence on its electrochemical properties.
     2. Numerous researches have indicated that nanometer nickel hydroxides have better electrochemical reaction activity, higher charging efficiency and higher discharge potential than macro-spherical Ni(OH)2. However, the nature that nanometer Ni(OH)2 is prone to aggregate, which causes nanometer Ni(OH)2 to be difficult to mix with conductive materials effectively, blocks the behaving of the characteristics of nanometer Ni(OH)2. To overcome this problem, a new kind of composite was synthesized by loading the nanometer Ni(OH)2 uniformly onto the surface of nano-scale spherical carbon particles via sonochemical technique. In this way, not only the dispersion problem of nanometer Ni(OH)2 is resolved which guarantees the behaving of the characteristics of nanometer Ni(OH)2, but also the conductivity of nanometer Ni(OH)2 is improved intensively. In addition, the electrochemical tests show that this kind of material behaves excellent high rate dischargeability, and the utilization of the active material is raised.
     3. The number of theoretical exchangeable electrons per nickel atom inα-Ni(OH)2 reaches about 1.7 which is far larger than that ofβ-Ni(OH)2 (1). Therefore, synthesing stabilizedα-Ni(OH)2 is an effective way to increase the specific capacity of Ni(OH)2 cathode. Here, as far as we known, the partial cation exchange method was firstly and successfully adopted for the synthesis of a series of 2D Co-Ni bimetallic hydroxides. The cyclic voltammetry tests show that the synthesizedαphase Co-Ni bimetallic hydroxides have lower resistance and better reversibility than that ofβphase Co-Ni bimetallic hydroxides prepared by co-deposition method. In addition, the charge-discharge tests display that the synthesized a phase Co-Ni bimetallic hydroxides have higher specific capacity than the theoretical specific capacity ofβ-Ni(OH)2 and demonstrate outstanding cycling durability even after 500 cycles. Furthermore, the cation exchange process is reversible. This simple method gives a novel way to construct nanostructural Co-Ni hydroxides with different compositions which behave excellent electrochemical properties different from that of nanostructural Co-Ni hydroxides prepared by traditional method.
     4. Modifying the surface of macro-spherical Ni(OH)2 powder by forming a conductive network with metal cobalt, cobalt oxides or cobalt hydroxides can enhance the conductivity of macro-spherical Ni(OH)2 powder intensely. The coating methods regularly used only include plating and precipitation. Here, we successfully introduced cation-exchange method as a simple and versatile way to modify the surface layer of macro-spherical Ni(OH)2 particles to form the core-shell Ni(OH)2@CoOOH. Because the cation-exchange process takes place in situ, the shape and morphology of the precursor can ben preserved well in the resulting core-shell Ni(OH)2@CoOOH. The prepared core-shell structured Ni(OH)2@CoOOH exhibits unusual firm combination between shell CoOOH and the core of Ni(OH)2, which are considered to be linked by a traditional phase of a-Ni(OH)2. This type of structure not only enhances the firm combination between shell CoOOH and the core of Ni(OH)2 leading outstanding electrochemical cycling durability of Ni(OH)2@CoOOH, but also increases the specific capacity which is higher than the theoretical specific capacity ofβ-Ni(OH)2.The conductivity of starting Ni(OH)2 is improved highly by the modification of CoOOH in the surface of Ni(OH)2. The electrochemical tests show that the as-synthesized core-shell Ni(OH)2@CoOOH can be activated easily in a few cycles using currents of 0.5-2C when used as positive electrode material in MH-Ni batteries.In addition, the reaction mechanism concerned in the synthesis process was discussed.
     Given to the simple synthesis process of Ni(OH)2@CoOOH and the advantages of it, such as the high conductivity, easy to be activated, larger specific capacity, outstanding cycling durability, the produce of Ni(OH)2@CoOOH is magnified to tens of grams for exploring the feasibility in industrial production. When obtained Ni(OH)2@CoOOH sample was chosen as cathode material in a 6Ah prismatic power battery, discharge efficiency of 74.19% at the discharge current rate of 30C was achieved as compared to the discharge efficiency (1.86%) of a 6Ah prismatic power battery with normal commercial spherical Ni(OH)2 as positive material and with adding of CoO as conductive additive in the paste for producing CoOOH.
引文
[1]Fetcenko, M. in Handbook of batteries (3rd Edition) (Eds.:Linden, D.; Reddy, T. B.), McGraw-Hill, New York,2002, Chapter 30.
    [2]Gifford, P.; Adams, J.; Corrigan, D.; Venkatesan, S. Development of Advanced Nickel/Metal Hydride Batteries for Electric and Hybrid Vehicles. J. Power Sources 1999,80,157.
    [3]杨毅夫,从EVS-17看国际电动车及动力电池的发展趋势,电池,2001,3,,192.
    [4]Sakai, T.; Uehara, I.; Ishikawa, H. R&D on Metal Hydride Materials and Ni-MH Batteries in Japan. J. Alloys Compd.1999,293-295,762.
    [5]杨毅夫.动力电池和电动车发展概况与分析,电池世界,2000,3,6.
    [6]Taniguchi, A.; Fujioka, N.; Ikoma, M.; Ohta, A. Development of Nickel/Metal-Hydride Batteries for EVs and HEVs. J. Power Sources 2001,100,117.
    [7]吴锋.绿色动力蓄电池的现状与展望,电池,2002,32(S1),10.
    [8]Chanson, C. The 1st Annual Advanced Automotive Battery Conference, Las Vegas, February,2001.
    [9]Chan, C. C. The State of the Art of Electric and Hybrid Vehicles. Proceedings of the IEEE,2002,90(2),247.
    [10]李佩,易翔翔,侯福深.国外电动汽车发展现状及对我国电动汽车发展的启示,北京工业大学学报,2004,1,20.
    [11]Shukla, A. K.; Venugopalan, S.; Hariprakash, B. Nickel-Based Rechargeable Batteries. J. Power Sources,2001,100,125.
    [12]Bode, H.; Dehmelt, K.; Witte, J. Electrochim. Acta. Zur Kenntnis der Nickelhydroxidelektrode-Ⅰ. Uber das Nickel (Ⅱ)-Hydroxidhydrat.1966,11,1079.
    [13]Lukovtsev, P. D.; Slaidin, G. J. Proton Diffusion Through Nickel Oxide. Electrochim. Acta.1962,6,17.
    [14]Zimmerman, A. H.; Effa, P. K. Discharge Kinetics of the Nickel Electrode. J Elecrochem Soc.1984,131,709.
    [15]解晶莹,张全生,刘剑峰,史鹏飞.镍氢氧化物研究进展.电源技术,1999,23,238。
    [16]Cornilsen, B. C.; Shan, X. Y.; Loyselle, P. L. Structural Comparison of Nickel Electrodes and Precursor Phases. J. Power Sources 1990,29,453.
    [17]Barnard, R.; Randell, C. F. Studies Concerning Charged Nickel Hydroxide Electrodes:Part V. Voltammetric Behaviour of Electrodes Containing (3-Ni(OH)2. J. Power Sources 1983,9,185.
    [18]Bernard, M. C; Bernard, P.; Keddam, M. Characterisation of New Nickel Hydroxides During the Transformation of α-Ni(OH)2 to β-Ni(OH)2 by Ageing. Electrochim. Acta.1996,41,91.
    [19]Barnard, R.; Randell, C. F.; Tye, F. L. Studies Concerning Charged Nickel Hydroxide. I. Measurement of Reversible Potentials Electrodes. J. Appl. Electrochem. 1980,10,109.
    [20]Barnard, R.; Randell, C. F.; Tye, F. L. Studies Concerning Charged Nickel Hydroxide Ⅱ. Thermodynamic Considerations of the Reversible Potentials. J. Appl. Electrochem.1980,10,127.
    [21]倪佩,陈延禧.添加剂及其对镍电极的作用机理,电池1997,27,35.
    [22]Wang, X. Y.; Yan, J.; Yuan, H. T.; Zhou, Z.; Song, D. Y.; Zhang, Y. S.; Zhu, L. G. Surface Modification and Electrochemical Studies of Spherical Nickel Hydroxide. J. Power Sources 1998,72,221.
    [23]Chang, Z. R.; Tang, H. W.; Chen, J. G. Surface Modification of Spherical Nickel Hydroxide for Nickel Electrodes. Electrochem. Commun.1999,1,513.
    [24]Jayashree, R. S.; Kamath, P. V. Modified Nickel Hydroxide Electrodes (Effect of Cobalt Metal on the Different Polymorphic Modifications). J. Electrochem. Soc.2002, 149, A761.
    [25]Lichtenberg, F.; Kleinsorgen, K. Stability Enhancement of the CoOOH Conductive Network of Nickel Hydroxide Electrodes. J. Power Sources 1996,62,207.
    [26]Hu, W. K.; Gao, X. P.; Geng, M. M.; Gong, Z. X.; Noreus, D. Synthesis of CoOOH Nanorods and Application as Coating Materials of Nickel Hydroxide for High Temperature Ni-MH Cells. J. Phys. Chem. B 2005,109,5392.
    [27]Ying, T.K. Surface Modification of Nickel Hydroxide Particles by Micro-Sized Cobalt Oxide Hydroxide and Properties as Electrode Materials. Surf. Coat. Technol. 2005,200,2376.
    [28]Oshitani, M.; Yufu, H.; Takashima, K.; Tsuji, S.; Matsumaru, Y. Development of a Pasted Nickel Electrode with High Active Material Utilization. J. Electrochem. Soc. 1989,136,1590.
    [29]Pralong, V.; Delahaye-Vidal, A.; Beaudoin, B.; Gerand, B.; Tarascon, J.M. Oxidation Mechanism of Cobalt Hydroxide to Cobalt Oxyhydroxide. J. Mater. Chem. 1999,9,955.
    [30]Barde, F.; Palacin, M.R.; Beaudoin, B.; Delahaye-Vidal, A.; Tarascon, J.M. Synthesis of In-Sn Alloy Nanoparticles by a Solution Dispersion Method. J. Chem. Mater.2004,14,299.
    [31]Butel, M.; Gautier, L.; Delmas, C. Cobalt Oxyhydroxides Obtained by'Chimie Douce'Reactions:Structure and Electronic Conductivity Properties. Solid State Ionics 1999,122,271.
    [32]潘铮铮,王荣,周震,阎杰.球型氢氧化镍表面包覆CoOOH的研究,电源技术,2001,25,200.
    [33]唐致远,王岩,耿鸣明,许峥嵘,荣强.包覆Co(OH)2和CoOOH的球形Ni(OH)2电极性能研究,电源技术,2004,28,273.
    [34]杜晓华,张泉荣,姜长印,万春荣.高密度球形Ni(OH)2的表面修饰,电源技术,2001,25,78.
    [35]Watanabe, K.; Koseki, M.; Kumagai, N. Effect of Cobalt Addition to Nickel Hydroxide as a Positive Material for Rechargeable Alkaline Batteries. J. Power Sources 1996,58,23.
    [36]Yuan, A. B.; Cheng, S. A.; Zhang, J. Q.; Cao, C. A. Effects of Metallic Cobalt Addition on the Performance of Pasted Nickel Electrodes. J. Power Sources 1999,77, 178.
    [37]Wang, X. Y.; Yan, J.; Zhou, Z.; Lin, J.; Yuan, H. T.; Song, D. Y.; Zhang, Y. S.; Zhu, L. G. Electrochemical Characteristics of Nickel Hydroxide Modified by Electroless Cobalt Coating. Int. J. Hydrogen Energy 1998,23,873.
    [38]Cheng, S. A.; Leng, W. H.; Zhang, J. Q.; Cao, C. A. Electrochemical Properties of the Pasted Nickel Electrode Using Surface Modified Ni(OH)2 Powder as Active Material.J. Power Sources 2001,101,248.
    [39]Elumalai, P.; Vasan, H.N.; Munichandraiah, N. Electrochemical Studies of Cobalt Hydroxide-An Additive for Nickel Electrodes. J. Power Sources 2001,93,201.
    [40]Armstrong, R. D.; Briggs, G. W. D.; Charles, E. A. Some Effects of the Addition of Cobalt to the Nickel Hydroxide Electrode. J. Appl. Electrochem.1988,18,215.
    [41]Zhang, Y. S.; Cao, X. Y; Yuan, H. T.; Zhang, W. H.; Zhou, Z. X. Oxygen Evolution Reaction on Ni Hydroxide Film Electrode Containing Various Content of Co. Int. J. Hydrogen Energy 1999,24,529.
    [42]Chang, Z. R.; Zhao, Y. J.; Ding, Y. C. Effects of Different Methods of Cobalt Addition on the Performance of Nickel Electrodes J. Power Sources 1999,77,69.
    [43]Wu, J. B.; Tu, J. P.; Zhang, W. K.; Huang, H. Electrochemical Investigation on Nanoscale CoO as Additive to the Positive Electrodes for Ni/MH Rechargeable Batteries. J. Alloys Compd.2007,431,321.
    [44]Wu, J. B.; Tu, J. P.; Wang, X. L.; Zhang, W. K. Synthesis of Nanoscale CoO Particles and Their Effect on the Positive Electrodes of Nickel-Metal Hydride Batteries. Int. J. Hydrogen Energy 2007,32,606.
    [45]Li, X. F.; Dong, H. C.; Zhang, H. L. An Improvement on Redox Reversibility of Cobalt Oxyhydroxide in Nickel Hydroxide Electrodes. Mater. Chem. Phys.2008,111, 331.
    [46]Hensler, K. E. Multicomponent Electrodes. Electrochem. Acta.1996,41,411.
    [47]Snook, G A.; Duffy, N. W.; Pandolfo, A. G. Evaluation of the Effects of Oxygen Evolution on the Capacity and Cycle Life of Nickel Hydroxide Electrode Materials. J. Power Sources 2007,168,513.
    [48]Singh, D. Characteristics and Effects of y-NiOOH of Cell Performance and a Method to Quantify It in Nickel Electrodes. J. Electrochem Soc.1998,145,116.
    [49]Zhou, Z. Q.; Lin, G W.; Zhang, J. L.; Ge, J. S.; Shen, J. R. Degradation Behavior of Foamed Nickel Positive Electrodes of Ni-MH Batteries. J. Alloys Compd.1999, 293-295,795.
    [50]Tessier, C.; Guerlou-Demourgues, L.; Faure, C.; Demourgues, A.; Delmas, C. Structural Study of Zinc-Substituted Nickel Hydroxides. J. Mater. Chem.2000,10, 1185.
    [51]Provazi, K.; Giz, M. J.; Dall'Antonia, L. H.; Cordoba de Torresi, S. I. The Effect of Cd, Co, and Zn as Additives on Nickel Hydroxide Opto-Electrochemical Behavior. J. Power Sources 2001,102,224.
    [52]Oshitani, M.; Takayama, T.; Takashima, K.; Tsuji, S. A Study on the Swelling of a Sintered Nickel Hydroxide Electrode. J. Appl. Electrochem.1986,16,403.
    [53]余丹梅,陈昌国,文莉,周上祺.锌的添加方式对氢氧化镍结构和性能的影响,化学通报,2004,7,532.
    [54]Fan, J.; Yang, Y. F.; Yu, P.; Chen, W. H.; Shao, H. X. Effects of Surface Coating of Y(OH)3 on the Electrochemical Performance of Spherical Ni(OH)2. J. Power Sources 2007,171,981.
    [55]Ying, T. K.; Gao, X. P.; Hu, W. K.; Wu, F.; Noreus, D. Studies on Rechargeable Ni-MH Batteries. Int. J. Hydrogen Energy 2006,31,525.
    [56]Li, W.; He, X. M.; Ren, J. G.; Jiang, C. Y.; Wan, C. R. Oxygen Evolution Improvement of Ni(OH)2 by Ca3(PO4)2 Coating at Elevated Temperature. J. Electroanal. Chem.2006,597,127.
    [57]Oshitani, M.; Sasaki, Y.; Takashima, K. Development of a Nickel Electrode Having Stable Performance at Various Charge and Discharge Rates Over a Wide Temperature Range.J. Power Sources 1984,12,219.
    [58]Morioka, Y.; Narukawa, S.; Itou, T. State-of-the-Art of a Alkaline Rechargeable Batteries J. Power Sources 2001,100,107.
    [59]Oshitani, M.; Watada, M.; Shodai, K.; Kodama, M. Effect of Lanthanide Oxide Additives on the High-Temperature Charge Acceptance Characteristics of Pasted Nickel Electrodes. J. Electrochem. Soc.2001,148, A67.
    [60]Ken-ichi, W.; Naoaki, K. Thermodynamic Studies of Cobalt and Cadmium Additions to Nickel Hydroxide as Material for Positive Electrodes J. Power Sources 1998,76,167.
    [61]Mi, X.; Gao, X. P.; Jiang, C. Y.; Geng, M. M.; Yan, J.; Wan, C. R. High Temperature Performances of Yttrium-Doped Spherical Nickel Hydroxide. Electrochim. Acta.2004,49,3361.
    [62]Zhang, W. G.; Jiang, W. Q.; Yu, L. M.; Fu, Z. Z.; Xia, W.; Yang, M. L. Effect of Nickel Hydroxide Composition on the Electrochemical Performance of Spherical Ni(OH)2 Positive Materials for Ni-MH Batteries. Int. J. Hydrogen Energy 2009,34, 473.
    [63]Zhang, X. Z.; Gong, Z. X.; Zhao, S. M.; Geng, M. M.; Wang, Y.; Northwood, D. O. High-Temperature Characteristics of Advanced Ni-MH Batteries Using Nickel Electrodes Containing CaF2. J. Power Sources 2008,175,630.
    [64]Yuan, A. B.; Cheng, S. A.; Zhang, J. Q.; Cao, C. A. The Influence of Calcium Compounds on the Behaviour of the Nickel Electrode. J. Power Sources,1998,76,36.
    [65]Cheng, F. Y.; Chen, J.; Shen, P. W. Y(OH)3-Coated Ni(OH)2 Tube as the Positive-Electrode Materials of Alkaline Rechargeable Batteries. J. Power Sources 2005, 150,255.
    [66]He, X. M.; Wang, L.; Li, W.; Jiang, C. Y.; Wan, C. R. Ytterbium Coating of Spherical Ni(OH)2 Cathode Materials for Ni-MH Batteries at Elevated Temperature. J. Power Sources 2006,158,1480.
    [67]He, X. M.; Ren, J. G.; Li, W.; Jiang, C. Y.; Wan, C. R. Ca3(PO4)2 Coating of Spherical Ni(OH)2 Cathode Materials for Ni-MH Batteries at Elevated Temperature. Electrochim. Acta.2006,51,4533.
    [68]Wu, J. B.; Tu, J. P.; Han, T. A.; Yang, Y. Z.; Zhang, W. K.; Zhao, X. B. High-Rate Dischargeability Enhancement of Ni/MH Rechargeable Batteries by Addition of Nanoscale CoO to Positive Electrodes. J. Power Sources 2006,156,667.
    [69]Wu, J. B.; Tu, J. P.; Han, T. A.; Yu, Z.; Zhang, W. K.; Huang, H. Electrochemical Investigation on Addition of CNTs to the Positive Electrodes for Ni/MH Rechargeable Batteries. J. Alloys Compd.2008,449,349.
    [70]Li, W. Y.; Zhang, S. Y.; Chen, J. Synthesis, Characterization, and Electrochemical Application of Ca(OH)2-, Co(OH)2-, and Y(OH)3-Coated Ni(OH)2 Tubes. J. Phys. Chem. B 2005,109,14025.
    [71]都有为.超微颗粒的应用,化共进展,1993,4,21.
    [72]王淼,李振华,鲁阳,齐仲甫,李文铸.纳米材料应用技术的新进展,材料科学与工程,2000,18,103.
    [73]杜仕国,施冬梅,邓辉.纳米材料的特异效应及其应用,自然杂志,2000,22,101.
    [74]朱学文,廖列文,崔英德.半导体纳米材料的光催化及其应用,精细化工2000,17,476.
    [75]Bhushan, B. in Springer handbook of nanotechnology (2nd Edition) (Eds.: Bhushan, B.), Springer,2007.
    [76]储炜,吴晖,尤金跨,杨勇,林祖赓.纳米科学技术在化学电源领域的新进展,电源技术,1998,22,256.
    [77]Reisner, D. E.; Salkind, A. J.; Strutt, P. R.; Xiao, T. D. Nickel Hydroxide and Other Nanophase Cathode Materials for Rechargeable Batteries.J. Power Sources, 1997,65,231.
    [78]Kear, B. H.; Strutt, P. R.; Xiao, T. D. Patents pending.
    [79]Reisner, D. E.; Xiao, T. D.; Salkind, A. J.; Strutt, P. R. in Electric and Hybrid Vehicles Technology, UK and Int. Press,1996, p.112.
    [80]Liu, X. H.; Lan, Y. Influence of Nanosized Ni(OH)2 Addition on the Electrochemical Performance of Nickel Hydroxide Electrode. J. Power Sources 2004, 128,326.
    [81]Zhang, Y.; Zhou, Z.; Yan, J. Electrochemical Behaviour of Ni(OH)2 Ultrafine Powder. J. Power Sources 1998,75,283.
    [82]Li, X. L.; Liu, J. F.; Li, Y. D. Low-Temperature Conversion Synthesis of M(OH)2 (M=Ni, Co, Fe) Nanoflakes and Nanorods. Mater. Chem. Phys.2003,80,222.
    [83]周根陶,刘双怀,郑永飞.一种新的制备超微粉末的方法--沉淀转化法,科学通报,1996,41,321.
    [84]周根陶,刘双怀,郑永飞.沉淀转化法制备不同形状的氢氧化镍和氧化镍超微粉末研究,无机材料学报,1997,13,43.
    [85]周震,阎杰,张允什,周根陶,刘双怀,郑永飞.Ni(OH)2超微粉的制备及其电化学性能,应用化学,1998,15,40.
    [86]赵力,周德瑞,张翠芬.纳米氢氧化镍的研制及其电化学性能,化学通报,2001,64,513.
    [87]Liu, X. H.; Yu, L. Synthesis of Nanosized Nickel Hydroxide by Solid-State Reaction at Room Temperature. Mater. Lett.2004,58,1327.
    [88]刘长久,叶乃清,刁汉明.纳米氧化镍氢氧化镍复合电极材料的制备及其电化学性能,应用化学,2001,18,335.
    [89]夏熙,魏莹.纳米级β-Ni(OH)2的制备和放电性能,无机材料学报,1998,13,674.
    [90]Mufit Akinc, Nathalie Jongen, Jacques Lemaitre, Heinrich Hofmann. Synthesis of Nickel Hydroxide Powders by Urea Decomposition. J. Eur. Ceram. Soc.1998,18, 1559.
    [91]Wang, D. B.; Song, C. X.; Hu, Z. S.; Fu, X. Fabrication of Hollow Spheres and Thin Films of Nickel Hydroxide and Nickel Oxide with Hierarchical Structures. J. Phys. Chem. B 2005,109,1125.
    [92]Guan, X. Y., Deng, J. C. Preparation and Electrochemical Performance of Nano-scale Nickel Hydroxide with Different Shapes. Mater. Lett.2007,61,621.
    [93]Kong, X. H.; Liu, X. B.; He, Y. D.; Zhang, D. S.; Wang, X. F.; Li, Y. D. Hydrothermal Synthesis of β-Nickel Hydroxide Microspheres with Flakelike Nanostructures and Their Electrochemical Properties. Mater. Chem. Phys.2007,106, 375.
    [94]Li, Y. D.; Wang, Z. Y.; Ding, Y. Room Temperature Synthesis of Metal Chalcogenides in Ethylenediamine. Inorg.Chem.1999,38,4737.
    [95]Li, Y. D.; Liao, H. W.; Ding, Y.; Fan, Y.; Zhang, Y.; Qian, Y. T. Solvothermal Elemental Direct Reaction to CdE (E=S, Se, Te) Semiconductor Nanorod. Inorg.Chem. 1999,38,1382.
    [96]Zhou, G. T.; Yao, Q. Z.; Wang, X. C.; Yu, J. C. Preparation and Characterization of Nanoplatelets of Nickel Hydroxide and Nickel Oxide. Mater. Chem. Phys.2006,98, 267.
    [97]魏莹,夏熙.纳米级电极材料的制备及其电化学性质研究(Ⅳ)—纳米级β-Ni(OH)2正极材料的研究,电源技术,1998,22,139.
    [98]Chen, D. L.; Gao, L. A New and Facile Route to Ultrafine Nanowires, Superthin Flakes and Uniform Nanodisks of Nickel Hydroxide. Chem. Phys. Lett.2005,405,159.
    [99]张秀英,胡志国,赵春霞.离子交换树脂法制备氢氧化镍和氧化镍超细微粒.功能材料,2000,31,109.
    [100]Cao, M. H.; He, X. Y.; Chen, J.; Hu, C. W. Self-Assembled Nickel Hydroxide Three-Dimensional Nanostructures:A Nanomaterial for Alkaline Rechargeable Batteries. Cryst. Growth Des.2007,7,170.
    [101]Meyer, M.; Bee, A.; Talbot, D.; Cabuil, V.; Boyer, J. M.; Repetti, B.; Garrigos, R. Synthesis and Dispersion of Ni(OH)2 Platelet-Like Nanoparticles in Water. J. Colloid Interface Sci.2004,277,309.
    [102]赵力,周德瑞,张翠芬.碱性电池用纳米氢氧化镍的研制.电池,2000,30,244.
    [103]张红兵,浦坦,李道火.纳米复合氢氧化镍电极研究.电源技术,2001,25,246.
    [104]严少平.纳米氢氧化镍粒子微乳液/反相胶团法制备与表征,物理,2002,31,246.
    [105]彭成红,刘澧浦,李祖鑫.纳米氢氧化镍材料的研制,电池,2001,31,175.
    [106]Liu, Y. G.; Tang, Z. Y.; Xu, Q.; Zhang, X. Y.; Liu, Y. Ni(OH)2 Particles Synthesized by High Energy Ball Milling. Trans. Nonferrous Met. SOCC. Hin.2006,16, 1218.
    [107]Chen, H.; Wang, J. M.; Pan, T.; Xiao, H. M.; Zhang, J. Q.; Cao, C. N. Effects of High-Energy Ball Milling (HEBM) on the Structure and Electrochemical Performance of Nickel Hydroxide. Int. J. Hydrogen Energy 2003,28,119.
    [108]Liu, B.; Wang, X. Y.; Yuan, H. T.; Zhang, Y. S.; Song, D. Y.; Zhou, Z. X. Physical and Electrochemical Characteristics of Aluminium-Substituted Nickel Hydroxide. J. Appl. Electrochem.1999,29,855.
    [109]Dixit, M.; Kamath, P. V.; Gopalakrishnan, J. Electrochemical Investigation on Addition of CNTs to the Positive Electrodes for Ni/MH Rechargeable Batteries. J. Electrochem. Soc.1999,146,79.
    [110]Hu, W. K.; Noreus, D. Alpha Nickel Hydroxides as Light Weight Nickel Electrode Materials for Alkaline Rechargeable Cells. Chem. Mater.2003,15,974.
    [111]Yang, L. J.; Gao, X. P.; Wu, Q. D.; Zhu, H. Y.; Pan, G. L. Phase Distribution and Electrochemical Properties of Al-Substituted Nickel Hydroxides. J. Phys. Chem. C 2007,111,4614.
    [112]Dai, J. X.; Li, S. F. Y.; Xiao, T. D.; Wang, D. M.; Reisner, D. E. Structural Stability of Aluminum Stabilized Alpha Nickel Hydroxide as a Positive Electrode Material for Alkaline Secondary Batteries. J. Power Sources 2000,89,40.
    [113]Faure, C.; Delmas, C.; Willmann, P. Preparation and Characterization of Cobalt-Substituted a-Nickel Hydroxide Stable in KOH Medium Part Ⅱ. a-Hydroxide with a Turbostratic Structure. J. Power Sources 1991,35,263.
    [114]Faure, C.; Delmas, C.; Willmann, P. Electrochemical Behavior of a-Cobalted Nickel Hydroxide Electrodes. J. Power Sources 1991,36,497.
    [115]Audemer, A.; Delahaye, A.; Farhi, R.; Sac-Epee, N.; Tarascon, J-M. Electrochemical and Raman Studies of Beta-Type Nickel Hydroxides Ni1-xCox(OH)2 Electrode Materials. J. Electrochem. Soc.1997,144,2614.
    [116]Sood, Anil K. Studies on the Effect of Cobalt Addition to the Nickel Hydroxide Electrode. J. Appl. Electrochem.1986,16,274.
    [117]徐艳辉,陈长聘,吴俊,林秀峰.a-Ni(OH)2活性物质的初步探索,电源技术.1999,23,209.
    [118]冷拥军,马紫峰,张存根,张鉴清,周锦鑫,曹楚南.铁取代氢氧化镍制备、结构与电化学性能,电源技术,1999,23,322.
    [119]Guerlou-Demourgues, L.; Denage, C.; Delmas, C. New Manganese-Substituted Nickel Hydroxides:Part 1. Crystal Chemistry and Physical Characterization. J. Power Sources 1994,52,269.
    [120]Guerlou-Demourgues, L.; Delmas, C. Electrochemical Behavior of the Manganese-Substituted Nickel Hydroxides. J. Electrochem. Soc.1996,143,561.
    [121]Jayashree, R. S.; Vishnu Kamath, P. Suppression of the α->β-Nickel Hydroxide Transformation in Concentrated Alkali:Role of Dissolved Cations. J. Appl. Electrochem.1999,29,449.
    [122]杨长春,李祥杰,张健民,石秋芝,李大平.第十届全国电化学会议论文集(上),B043,杭州1999,10.
    [123]Delmas, C.; Braconnier, J. J.; Borthomieu, Y.; Hagenmuller, P. New Families of Cobalt Substituted Nickel Oxyhydroxides and Hydroxides Obtained by Soft Chemistry. Mater. Res. Bull.1987,22,741.
    [124]Guerlou-Demotugues L.; Braconnier J. J.; Delmas C. Iron-Substituted Nickel Oxyhydroxides and Hydroxides Obtained by Chimie Douce. J. Solid State Chem.1993, 104,359.
    [125]Guerlou-Demourgues, L.; Delmas, C. Structure and Properties of Precipitated Nickel-Iron Hydroxides.J. Power Sources 1993,45,281.
    [126]Guerlou-Demourgues, L.; Delmas, C. Effect of Iron on the Electrochemical Properties of the Nickel Hydroxide Electrode. J. Electrochem. Soc.1994,141,713.
    [1]Bode, H.; Dehmelt, K.; Witte, J. Zur Kenntnis Der Nickelhydroxidelektrode—Ⅰ. Uber Das Nickel (Ⅱ)-Hydroxidhydrat. Electrochim. Acta.1966,11,1079.
    [2]McBreen, J. in Modern Aspects of Electrochemistry, Vol.21 (Eds.:White, R. E.; Bockris, J. OJM.; Conway, B. E.), Plenum, New York,1990, p.38.
    [3]Zhou, Z. Q.; Lin G. W.; Zhang J. L.; Ge, J. S.; Shen, J. R. Degradation Behavior of Foamed Nickel Positive Electrodes of Ni-MH Batteries. J. Alloys and Compounds, 1999,293,795.
    [4]Cai, F. S.; Zhang, G. Y.; Chen, J.; Gou, X. L.; Liu, H. K.; Dou, S. X. Ni(OH)2 Tubes with Mesoscale Dimensions as Positive-Electrode Materials of Alkaline Rechargeable Batteries. Angew. Chem., Int. Ed.2004,43,4212.
    [5]Keitaro, M.; Takashi, K.; Akira, T. Hydrothermal Synthesis of Single-Crystal Ni(OH)2 Nanorods in a Carbon-Coated Anodic Alumina Film. Adv. Mater.2002,14, 1216.
    [6]Cao, M. H.; He, X. Y.; Chen, J.; Hu, C. W. Self-Assembled Nickel Hydroxide Three-Dimensional Nanostructures:A Nanomaterial for Alkaline Rechargeable Batteries. Cryst. Growth Des.2007,7,170.
    [7]Wang, D. B.; Song, C. X.; Hu, Z. S.; Fu, X. Fabrication of Hollow Spheres and Thin Films of Nickel Hydroxide and Nickel Oxide with Hierarchical Structures. J. Phys. Chem. B 2005,109,1125.
    [8]Chen, D. L.; Gao, L. A New and Facile Route to Ultrafine Nanowires, Superthin Flakes and Uniform Nanodisks of Nickel Hydroxide. Chem. Phys. Lett.2005,405,159.
    [9]Coudun, C.; Amblard, E.; Guihaume, J.; Hochepied, J.-F. Nanostructured Particles by Controlled Precipitation Techniques—Example of Nickel and Cobalt Hydroxides. Catal. Today 2007,124,49.
    [10]Liang, Z. H.; Zhu, Y. J.; Hu, X. L. (3-Nickel Hydroxide Nanosheets and Their Thermal Decomposition to Nickel Oxide Nanosheets. J. Phys. Chem. B 2004,108, 3488.
    [11]Zhu, J. X.; Gui, Z.; Ding, Y. Y.; Wang, Z. Z.; Hu, Y.; Zou, M. Q. A Facile Route to Oriented Nickel Hydroxide Nanocolumns and Porous Nickel Oxide. J. Phys. Chem. C 2007,111,5622.
    [12]Guan, X. Y.; Deng, J. C. Preparation and Electrochemical Performance of Nano-Scale Nickel Hydroxide with Different Shapes. Mater. Lett.2007,61,621.
    [13]李稳,姜长印,万春荣.纳米氢氧化镍的研究进展,电池,2004,34,440.
    [14]余丹梅,周上祺,陈昌国,王华清.纳米氢氧化镍的研究进展,电池,2003,33,114.
    [15]Cha, C. S.; Yang, X. Recent Advances in Experimental Methods Applied to Lithium Battery Researches, J. Power Sources 1993,43,145.
    [16]Cha, C. S.; Li, C. M.; Yang, H. X.; Liu, P. F. Powder Microelectrodes,J. Electroanal. Chem.1994,368,47.
    [17]查全性.《电极过程动力学导论(第三版)》,科学出版社,2002.
    [18]Yang, D. N.; Wang, R. M.; He, M. S.; Zhang, J.; Liu, Z. F. Ribbon-and Boardlike Nanostructures of Nickel Hydroxide:Synthesis, Characterization, and Electrochemical Properties. J. Phys. Chem. B 2005,109,7654.
    [19]Armstrong, R. D.; Briggs, G. W. D.; Charles, E. A. Some Effects of the Addition of Cobalt to the Nickel Hydroxide Electrode.J. Appl Electrochem.1988,18,215.
    [20]Zhang, Y. S.; Cao, X. Y; Yuan, H. T.; Zhang, W. H.; Zhou, Z. X. Oxygen Evolution Reaction on Ni Hydroxide Film Electrode Containing Various Content of Co. Int. J. Hydrogen Energy 1999,24,529.
    [21]Zhang, Y. S.; Zhou, Z.; Yan, J. Electrochemical Behaviour of Ni(OH)2 Ultrafine Powder. J. Power Sources 1998,75,283.
    [22]Winter, M.; Brodd, R. J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev.2004,104,4245.
    [1]Watanabe, K.; Koseki, M.; Kumagai, N. Effect of Cobalt Addition to Nickel Hydroxide as a Positive Material for Rechargeable Alkaline Batteries. J. Power Sources 1996,58,23.
    [2]Yuan, A. B.; Cheng, S. A.; Zhang, J. Q.; Cao, C. A. Effects of Metallic Cobalt Addition on the Performance of Pasted Nickel Electrodes. J. Power Sources 1999,77, 178.
    [3]Oshitani, M.; Yufu, H.; Takashima, K.; Tsuji, S.; Matsumaru, Y. Development of a Pasted Nickel Electrode with High Active Material Utilization. J. Electrochem. Soc. 1989,136,1590.
    [4]Wu, M. S.; Huang, C. M.; Wang, Y. Y.; Wan, C. C. Effects of Surface Modification of Nickel Hydroxide Powder on the Electrode Performance of Nickel/Metal Hydride Batteries. Electrochim. Acta 1999,44,4007.
    [5]Wang, X. Y.; Yan, J.; Zhou, Z.; Lin, J.; Yuan, H. T.; Song, D. Y.; Zhang, Y. S.; Zhu, L. G. Electrochemical Characteristics of Nickel Hydroxide Modified by Electroless Cobalt Coating. Int. J. Hydrogen Energy,1998,23,873.
    [6]Chang, Z. R.; Tang, H. W.; Chen, J. G. Surface Modification of Spherical Nickel Hydroxide for Nickel Electrodes. Electrochem. Commun.1999,1,513.
    [7]Cheng, S. A.; Leng, W. H.; Zhang, J. Q.; Cao, C. A. Electrochemical Properties of the Pasted Nickel Electrode Using Surface Modified Ni(OH)2 Powder as Active material. J. Power Sources 2001,101,248.
    [8]Lichtenberg, F.; Kleinsorgen, K. Stability Enhancement of the CoOOH Conductive Network of Nickel Hydroxide Electrodes. J. Power Sources 1996,62,207.
    [9]Ying, T. K. Surface Modification of Nickel Hydroxide Particles by Micro-Sized Cobalt Oxide Hydroxide and Properties as Electrode Materials. Surf. Coat. Technol. 2005,200,2376.
    [10]Cai, F. S.; Zhang, G. Y.; Chen, J.; Gou, X. L.; Liu, H. K.; Dou, S. X. Ni(OH)2 Tubes with Mesoscale Dimensions as Positive-Electrode Materials of Alkaline Rechargeable Batteries. Angew. Chem., Int. Ed.2004,43,4212.
    [11]Han, X. J.; Xu, P.; Xu, C. Q.; Zhao, L.; Mo, Z. B.; Liu, T. Study of the Effects of Nanometer β-Ni(OH)2 in Nickel Hydroxide Electrodes. Electrochim. Acta 2005,50, 2763.
    [12]He, X. M.; Pu, W. H.; Cheng, H. W.; Jiang, C. Y.; Wan, C. R. Granulation of Nano-Scale Ni(OH)2 Cathode Materials for High Power Ni-MH Batteries. Energy Convers. Manage.2006,47,1879.
    [13]Yang, D. N.; Wang, R. M.; He, M. S.; Zhang, J.; Liu, Z. F. Ribbon-and Boardlike Nanostructures of Nickel Hydroxide:Synthesis, Characterization, and Electrochemical Properties. J. Phys. Chem. B 2005,109,7654.
    [14]Han, X. J.; Xie, X. M.; Xu, C. Q.; Zhou, D. R.; Ma, Y. L. Morphology and Electrochemical Performance of Nano-Scale Nickel Hydroxide Prepared by Supersonic Coordination-Precipitation Method. Opt. Mater.2003,23,465.
    [15]McBreen, J. in Modern Aspects of Electrochemistry, Vol.21 (Eds.:White, R. E.; Bockris, J. OJM.; Conway, B. E.), Plenum, New York,1990, p.38.
    [16]Zhou, Z. Q.; Lin G. W.; Zhang J. L.; Ge, J. S.; Shen, J. R. Degradation Behavior of Foamed Nickel Positive Electrodes of Ni-MH Batteries. J. Alloys and Compounds, 1999,293,795.
    [17]李稳,姜长印,万春荣.纳米氢氧化镍的研究进展,电池2004,34,440.
    [18]Gedanken, A. Using Sonochemistry for the Fabrication of Nanomaterials. Ultrason. Sonochem.2004,11,47.
    [19]Gnanaraj, J. S.; Pol, V. G.; Gedanken, A.; Aurbach, D. Improving the High-Temperature Performance of LiMn2O4 Spinel Electrodes by Coating the Active Mass with MgO via a Sonochemical Method. Electrochem. Commun.2003,5,940.
    [20]Pol, V. G.; Gedanken, A.; Calderon-Moreno, J. Deposition of Gold Nanoparticles on Silica Spheres:A Sonochemical Approach. Chem. Mater.,2003,75,1111.
    [21]Pol, V. G.; Motiei, M.; Gedanken, A.; Calderon-Moreno, J.; Mastai, Y. Sonochemical Deposition of Air-Stable Iron Nanoparticles on Monodispersed Carbon Spherules. Chem. Mater.2003,15,1378.
    [22]范晶.氢氧化镍及氧化镍的电化学性能改进与应用基础研究,博士论文,武汉大学,2008.
    [1]Angelov, S.; Drillon, M.; Zhecheva, E.; Stoyanova, R.; Belaiche, M.; Derory, A.; Herr, A. Co(OH) (NO3)·H2O:A Novel Double-Chain Compound with Competing Interactions. Inorg. Chem.1992,31,1514.
    [2]Rabu, P.; Angelov, S.; Legoll, P.; Belaiche, M.; Drillon, M. Ferromagnetism in Triangular Cobalt(II) Layers:Comparison of Co(OH)2 and Co2(NO3) (OH)3. Inorg. Chem.1993,32,2463.
    [3]Perez-Ramirez, J.; Ribera, A.; Kapteijn, F.; Coronadob, E.; Gomez-Garcia, C. J. Magnetic Properties of Co-Al, Ni-Al, and Mg-Al Hydrotalcites and the Oxides Formed upon Their Thermal Decomposition. J. Mater. Chem.2002,12,2370.
    [4]Levin, D.; Ying, J. Y. Oxidative Dehydrogenation of Propane by Non-Stoichiometric Nickel Molybdates. Stud. Surf. Sci. Catal.1997,110,367.
    [5]Stavart, A.; Lierde, A. V. Electrooxidation of Cyanide on Cobalt Oxide Anodes. J. Appl. Electrochem.2001,31,469.
    [6]Yuan, Z.; Huang, F.; Feng, C.; Sun, J.; Zhou, Y. Synthesis and Electrochemical Performance of Nanosized CO3O4. Mater. Chem. Phys.2003,79,1.
    [7]He, T.; Chen, D. R.; Jiao, X. L.; Wang, Y. L.; Duan, Y. Z. Solubility-Controlled Synthesis of High-Quality Co3O4 Nanocrystals. Chem. Mater.2005,17,4023.
    [8]Yang, L. X.; Zhu, Y. J.; Li, L.; Zhang, L.; Tong, H.; Wang, W. W.; Cheng, G. F.; Zhu, J. F. A Facile Hydrothermal Route to Flower-Like Cobalt Hydroxide and Oxide. Eur. J. Inorg. Chem.2006,23,4787.
    [9]Coudun, C.; Amblard, E; J. Guihaume, J.-F.; Hochepied, O. Nanostructured Particles by Controlled Precipitation Techniques Example of Nickel and Cobalt Hydroxides. Catal. Today 2007,124,49.
    [10]Han, K. S.; Guerlou-Demourgues, L.; Delmas, C. Intercalation Process of Metavanadate Chains into a Nickel-Cobalt Layered Double Hydroxide. Solid State Ionics 1997,98,85.
    [11]Taibi, M.; Ammar, S.; Jouini, N.; Fievet, F.; Molinie, P.; Drillon, M. Layered Nickel Hydroxide Salts:Synthesis, Characterization and Magnetic Behaviour in Relation to the Basal Spacing. J. Mater. Chem.2002,12,3238.
    [12]Z.P., Liu; Ma, R. Z.; Osada, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Synthesis, Anion Exchange, and Delamination of Co-Al Layered Double Hydroxide: Assembly of the Exfoliated Nanosheet/Polyanion Composite Films and Magneto-Optical Studies. J. Am. Chem. Soc.2006,128,4872.
    [13]Mavis, B.; Akinc, M. Cyanate Intercalation in Nickel Hydroxide. Chem. Mater. 2006,18,5317.
    [14]Ma, R. Z.; Takada, K.; Fukuda, K.; Iyi, N.; Bando, Y.; Sasaki, T. Topochemical Synthesis of Monometallic (Co2+-Co3+) Layered Double Hydroxide and Its Exfoliation into Positively Charged Co(OH)2 Nanosheets. Angew. Chem. Int. Ed 2007,46,1.
    [15]Watanabe, K.; Kikuoka, T.; Kumagai, N. Physical and Electrochemical Characteristics of Nickel Hydroxide as a Positive Material for Rechargeable Alkaline Batteries.J. Appl. Electrochem.1995,25,219.
    [16]Pralong, V.; Delahaye-Vidal, A.; Beaudoin, B.; Gerand, B.; Tarascon, J.-M. Oxidation Mechanism of Cobalt Hydroxide to Cobalt Oxyhydroxide.J. Mater. Chem. 1999,9,955.
    [17]Elumalai, P.; Vasan, H. N.; Munichandraiah, N. Electrochemical Studies of Cobalt Hydroxide—An Additive for Nickel Electrodes. J. Power Sources 2001,93,201.
    [18]Cai, F. S.; Zhang, G. Y.; Chen, J.; Gou, X. L.; Liu, H. K.; Dou, S. X. Ni(OH)2 Tubes with Mesoscale Dimensions as Positive-Electrode Materials of Alkaline Rechargeable Batteries. Angew. Chem., Int. Ed.2004,43,4212.
    [19]Kang, Y. M.; Song, M. S.; Kim, J. H.; Kim, H. S.; Park, M. S.; Lee, J. Y.; Liu, H. K.; Dou, S. X. A study on the Charge-Discharge Mechanism of Co3O4 as an Anode for the Li Ion Secondary Battery. Electrochim. Acta 2005,50,3667.
    [20]Cao, M. H.; He, X. Y.; Chen, J.; Hu, C. W. Self-Assembled Nickel Hydroxide Three-Dimensional Nanostructures:A Nanomaterial for Alkaline Rechargeable Batteries. Cryst. Growth Des.2007,7,170.
    [21]Cao, L.; Kong, L. B.; Liang, Y. Y.; Li, H. L. Preparation of Novel Nano-Composite Ni(OH)2/USY Material and Its Application for Electrochemical Capacitance Storage. Chem. Commun.2004,14,1646.
    [22]Cao, L.; Xu, F.; Liang, Y. Y.; Li, H. L. Preparation of the Novel Nanocomposite Co(OH)2/ultra-stable Y Zeolite and Its Application as a Supercapacitor with High Energy Density. Adv. Mater.2004,16,1853.
    [23]Zhao, D. D.; Bao, S. J.; Zhou, W. J.; Li, H. L. Preparation of Hexagonal Nanoporous Nickel Hydroxide Film and Its Application for Electrochemical Capacitor. Electrochem. Commun.2007,9,869.
    [24]Faure, C.; Delmas, C.; Fouassier, M.; Willmann, P. Preparation and Characterization of Cobalt-Substituted a-Nickel Hydroxides Stable in KOH Medium Part I. a-Hydroxide with an Ordered Packing. J. Power Sources 1991,35,249.
    [25]Faure, C.; Delmas, C.; Willmann, P. Preparation and Characterization of Cobalt-Substituted a-Nickel Hydroxide Stable in KOH Medium Part II. a-Hydroxide with a Turbostratic Structure. J. Power Sources 1991,35,263.
    [26]Yang, L. J.; Gao, X. P.; Wu, Q. D.; Zhu, H. Y.; Pan, G. L. Phase Distribution and Electrochemical Properties of Al-Substituted Nickel Hydroxides. J. Phys. Chem. C 2007,111,4614.
    [27]Hu, W.K.; Noreus, D. Alpha Nickel Hydroxides as Lightweight Nickel Electrode Materials for Alkaline Rechargeable Cells. Chem. Mater.2003,15,974.
    [28]Demourgues-Guerlou, L.; Braconnier, J. J.; Delmas, C. Iron-Substituted Nickel Oxyhydroxides and Hydroxides Obtained by Chimie Douce. J. Solid State Chem.1993, 104,359.
    [29]Demourgues-Guerlou, L.; Delmas, C. Structure and Properties of Precipitated Nickel-Iron Hydroxides. J. Power Sources 1993,45,281.
    [30]Barnard, R.; Randell, C. F.; Tye, F. L. Studies Concerning Charged Nickel Hydroxide I. Measurement of Reversible Potentials Electrodes. J. Appl. Electrochem. 1980,10,109.
    [31]Dai, J. X.; Li, S. F.Y.; Xiao, T. D., Wang, D. M.; Reisner, D. E. Structural Stability of Aluminum Stabilized Alpha Nickel Hydroxide as a Positive Electrode Material for Alkaline Secondary Batteries. J. Power Sources 2000,89,40.
    [32]Hua, W. K.; Gao, X. P.; Noreus, D.; Burchardt, T.; Nakstad, N. K. Evaluation of Nano-Crystal Sized α-Nickel Hydroxide as an Electrode Material for Alkaline Rechargeable Cells. J. Power Sources 2006,160,704.
    [33]Corrigan, D. A.; Knight, S. L. Electrochemical and Spectroscopic Evidence on the Participation of Quadrivalent Nickel in the Nickel Hydroxide Redox Reaction. J. Electrochem. Soc.1989,136,613.
    [34]Taibi, M.; Ammar, S.; Jouini, N.; Fievet, F. Layered Nickel-Cobalt Hydroxyacetates and Hydroxycarbonates:Chimie Douce Synthesis and Structural Features. J. Phys. Chem. Solids 2006,67,932.
    [35]Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P. Cation Exchange Reactions in Ionic Nanocrystals. Science 2004,306,1009.
    [36]Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.; Wang, L. W.; Alivisatos, A. P. Spontaneous Superlattice Formation in Nanorods Through Partial Cation Exchange. Science 2007,317,355.
    [37]Xu, C. Y.; Zhen, L.; Yang, R.; Wang, Z. L. Synthesis of Single-Crystalline Niobate Nanorods via Ion-Exchange Based on Molten-Salt Reaction. J. Am. Chem. Soc.2007, 129,15444.
    [38]Wang, R. H.; Chen, Q.; Wang, B. L.; Zhang, S.; Peng, L. M. Strain-Induced Formation of K2Ti6O13 Nanowires via Ion Exchange. Appl. Phys. Lett.2005,86, 133101.
    [39]Lubeck, C. R.; Han, T. Y.-J.; Gash, A. E.; Satcher, J. H., Jr.; Doyle, F. M. Synthesis of Mesostructured Copper Sulfide by Cation Exchange and Liquid-Crystal Templating. Adv. Mater.2006,18,781.
    [40]查全性.电极过程动力学导论(第三版),科学出版社,2002.
    [41]陈剑,粉末微电极用作生物传感器的理论和实践,博士论文,武汉大学,1997.
    [42]Leroux, F.; Moujahid, E. M.; Taviot-Gueho, C.; Besse, J. P. Effect of Layer Charge Modification for Co_Al Layered Double Hydroxides:Study by X-Ray Absorption Spectroscopy. Solid State Sci.2001,3,81.
    [43]Zhang, H. B.; Liu, H. S.; Cao, X. J.; Li, S. J.; Sun, C. C. Preparation and Properties of the Aluminum-Substituted a-Ni(OH)2. Mater. Chem. Phys.2003,79,37.
    [44]Rajamathi, M.; Vishnu Kamatha, P.; Seshadri, R. Chemical Synthesis of a-Cobalt Hydroxide. Mater. Res. Bull.2000,35,271.
    [45]Kurmoo, M. Hard Magnets Based on Layered Cobalt Hydroxide:The Importance of Dipolar Interaction for Long-Range Magnetic Ordering. Chem. Mater.1999,11, 3370.
    [46]Li, H.; Ma, J. Molecular Dynamics Modeling of the Structures and Binding Energies of a-Nickel Hydroxides and Nickel-Aluminum Layered Double Hydroxides Containing Various Interlayer Guest Anions. Chem. Mater.2006,18,4405.
    [47]Stahlin, W.; Oswald, H. R. Acta Crystallogr.1970, B26,860.
    [48]Pralong, V.; Delahaye-Vidal, A.; Beaudoin, B.; Leriche, J-B; Tarascon, J-M. Electrochemical Behavior of Cobalt Hydroxide Used as Additive in the Nickel Hydroxide Electrode. J. Electrochem. Soc.2000,147,1306.
    [49]Ran, S. L.; Gao, L. Preparation of a-MnO2 Nanorods and CO3O4 Submicrooctahedrons by Molten Salt Route. Chem. Lett.2007,36,688.
    [1]Wang, X. Y.; Yan, J.; Yuan, H. T.; Zhou, Z.; Song, D. Y.; Zhang, Y. S.; Zhu, L. G. Surface Modification and Electrochemical Studies of Spherical Nickel Hydroxide. J. Power Sources 1998,72,221.
    [2]Chang, Z. R.; Tang, H. W.; Chen, J. G. Surface Modification of Spherical Nickel Hydroxide for Nickel Electrodes. Electrochem. Commun.1999,1,513.
    [3]Jayashree, R. S.; Kamath, P. V. Modified Nickel Hydroxide Electrodes--Effect of Cobalt Metal on the Different Polymorphic Modifications. J. Electrochem. Soc.2002, 149, A761.
    [4]Lichtenberg, F.; Kleinsorgen, K. Stability Enhancement of the CoOOH Conductive Network of Nickel Hydroxide Electrodes. J. Power Sources 1996,62,207.
    [5]Hu, W. K.; Gao, X. P.; Geng, M. M.; Gong, Z. X.; Noreus, D. Synthesis of CoOOH Nanorods and Application as Coating Materials of Nickel Hydroxide for High Temperature Ni-MH cells. J. Phys. Chem. B 2005,109,5392.
    [6]Ying, T. K. Surface Modification of Nickel Hydroxide Particles by Micro-Sized Cobalt Oxide Hydroxide and Properties as Electrode Materials. Surf. Coat. Technol. 2005,200,2376.
    [7]Oshitani, M.; Yufu, H.; Takashima, K.; Tsuji, S.; Matsumaru, Y Development of a Pasted Nickel Electrode with High Active Material Utilization. J. Electrochem. Soc. 1989,136,1590.
    [8]Pralong, V.; Delahaye-Vidal, A.; Beaudoin, B.; Gerand, B.; Tarascon, J. M. Oxidation Mechanism of Cobalt Hydroxide to Cobalt Oxyhydroxide. J. Mater. Chem. 1999,9,955.
    [9]Barde,F.; Palacin, M. R.; Beaudoin, B.; Delahaye-Vidal, A.; Tarascon, J. M. New Approaches for Synthesizing γⅢ-CoOOH by Soft Chemistry. Chem. Mater.2004,14, 299.
    [10]Butel, M.; Gautier, L.; Delmas, C. Cobalt Oxyhydroxides Obtained by'Chimie Douce'Reactions:Structure and Electronic Conductivity Properties. Solid State Ionics 1999,122,271.
    [11]潘铮铮,王荣,周震,阎杰.球型氢氧化镍表面包覆CoOOH的研究,电源技术,2001,25,200.
    [12]唐致远,王岩,耿鸣明,许峥嵘,荣强.包覆Co(OH)2和CoOOH的球形Ni(OH)2电极性能研究,电源技术,2004,28,273.
    [13]杜晓华,张泉荣,姜长印,万春荣.高密度球形Ni(OH)2的表面修饰,电源技术,2001,25,78.
    [14]Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P. Cation Exchange Reactions in Ionic Nanocrystals. Science 2004,306,1009.
    [15]Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.; Wang, L. W.; Alivisatos, A. P. Spontaneous Superlattice Formation in Nanorods Through Partial Cation Exchange. Science 2007,317,355.
    [16]Xu, C. Y.; Zhen, L.; Yang, R.; Wang, Z. L. Synthesis of Single-Crystalline Niobate Nanorods via Ion-Exchange Based on Molten-Salt Reaction. J. Am. Chem. Soc.2007, 129,15444.
    [17]Wang, R. H.; Chen, Q.; Wang, B. L.; Zhang, S.; Peng, L. M. Strain-Induced Formation of K2Ti6O13 Nanowires via Ion Exchange. Appl. Phys. Lett.2005,86, 133101.
    [18]Lubeck, C. R.; Han, T. Y.-J.; Gash, A. E.; Satcher, J. H.; Jr.; Doyle, F. M. Synthesis of Mesostructured Copper Sulfide by Cation Exchange and Liquid-Crystal Templating. Adv. Mater.2006,18,781.
    [19]Chan, E. M.; Marcus, M. A.; Fakra, S.; EINaggar, M.; Mathies, R. A.; Alivisatos, A. P. Millisecond Kinetics of Nanocrystal Cation Exchange Using Microfluidic X-Ray Absorption Spectroscopy. J. Phys. Chem. A 2007,111,12210.
    [20]Camargo, P. H. C.; Lee, Y. H.; Jeong, U. Y.; Zou, Z. Q.; Xia, Y. N. Cation Exchange: A Simple and Versatile Route to Inorganic Colloidal Spheres with the Same Size But Different Compositions and Properties. Langmuir 2007,23,2985.
    [21]Chen, W. H; Yang, Y. F.; Shao, H. X.; Fan, J. Tunable Electrochemical Properties Brought About by Partial Cation Exchange in Hydrotalcite-Like Ni-Co/Co-Ni Hydroxide Nanosheets. J. Phys. Chem. C2008,112,17471.
    [22]程风云,唐致远,郭鹤桐.球形Ni(OH)2粒径分布对电化学活性的影响,天津大学学报,2000,33,56.
    [23]江枫山.粒子大小对氢氧化镍反应特性影响的研究,硕士论文,武汉大学,2005.
    [24]范晶.氢氧化镍及氧化镍的电化学性能改进与应用基础研究,博士论文,武汉大学,2008.
    [25]乐颂光,余邦林.《钻冶金》,冶金工业出版社,1987,14.
    [26]谢朋,翟玉春,翟秀静,赵彦军.添加剂Co(OH)2的制备研究,电源技术,1998,22,148.
    [27]Li, X. F.; Dong, H. C.; Zhang, H. L. An Improvement on Redox Reversibility of Cobalt Oxyhydroxide in Nickel Hydroxide Electrodes. Mater. Chem. Phys.2008,111, 331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700