用户名: 密码: 验证码:
锌镍电池正极材料镍铝层状双氢氧化物的制备、结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍铝层状双氢氧化物(Ni-Al LDHs)又称作Al掺杂稳定的α-Ni(OH)_2,充放电时发生α(II)/γ(III)循环,晶格不会出现明显的膨胀或收缩,放电比容量和电压平台较高,可望代替β-Ni(OH)_2用作锌镍电池的正极活性材料,从而明显提高电池的比能量和循环寿命。Ni-Al LDHs常用化学共沉淀法制备,得到的样品往往比表面积较小,粒度分布较宽,电化学性能有待提高。另外,Ni-Al LDHs的电子导电性很差,大倍率放电性能不理想,用作锌镍电池正极材料时与碱性复合电解液和Zn负极的匹配性也有待研究。针对上述问题,本文采用正交试验研究了化学共沉淀法制备Ni-Al LDHs的过程中主要因素对产物电性能的影响,应用喷涂技术对中间产物凝胶状沉淀进行了喷涂处理以改善产物的物理性能和电化学性能,制备出了Co、La共掺杂的Ni-Al LDHs样品,并研究了Ni-Al LDHs正极锌镍电池的电性能,得出的主要结果和结论如下:
     1.通过正交试验研究了化学共沉淀法制备Ni-Al LDHs过程中主要因素条件对产物放电比容量的影响。结果表明,在给定因素水平下影响从大到小的顺序依次是原料配比nNi~(2+): nAl~(3+)、凝胶状沉淀的干燥处理温度、粉末研磨尺寸、体系反应温度、pH值和母液陈化时间,较佳的制备条件是原料配比nNi~(2+): nAl~(3+)为85:15,反应温度为45℃,pH值为10.5,陈化时间为36h,干燥处理温度为140℃,粉末研磨尺寸为600目。进一步的研究结果表明,原料配比影响产物的晶型结构和结晶度,降低原料配比可提高产物的结晶度和放电电压平台。干燥处理温度影响产物的结晶度和层板间H2O分子的嵌入量,升高干燥处理温度可提高产物的电化学活性、放电比容量和电极放电电压平台。粉末研磨尺寸影响产物的粒度分布和平均粒径,降低研磨尺寸可提高产物的电化学活性和放电比容量。
     2.在化学共沉淀法制备Ni-Al LDHs的过程中,采用喷涂技术对中间产物凝胶状沉淀进行处理。与常规方法相比,得到的粉末样品有较窄的粒度分布和较高的结晶度,比表面积由6.8m~2/g提高到14.1m~2/g,电极反应可逆性较好,有更高的电化学活性、放电比容量和电极循环稳定性。以0.5C倍率进行充放电时,样品的最高放电比容量和平均放电比容量分别达到347.5mAh/g和337.9mAh/g,循环100次后容量保持率为95.4%。
     3.采用化学共沉淀法制备出了Co、La共掺杂的Ni-Al LDHs。样品颗粒呈松散的球形或类球形,平均粒径在5μm以下,比表面积高达132.5m~2/g。层板间嵌入有较多的H_2O分子和CO_3~(2-)、NO_3~-杂质阴离子,并与金属阳离子或OH~-形成较强的配位作用,从而提高了层状结构的稳定性,充放电循环100周后材料的晶型结构仍为α相。循环伏安测试结果表明,样品电极反应的可逆性好,质子扩散系数D0达到5.7×10~(-9)cm~2/s。充放电结果表明,样品电化学活性高,1C倍率充放电时平均比容量达到311.5mAh/g,电极循环稳定性好,有较低的充电电压和较高的放电电压平台,高放电倍率下表现更突出。按相同方法制备的Co掺杂样品颗粒呈不规则角块状,比表面积仅为5.4m~2/g,而且粒度分布宽,电化学活性低,电极反应可逆性差,放电电压平台和循环稳定性均不理想。La掺杂样品的物理性能和电化学活性等与Co、La共掺杂样品接近,但放电比容量明显偏低。
     4.将喷涂处理制备的Ni-Al LDHs样品用作正极活性材料制备锌镍实验电池,并研究了其充放电循环性能。结果表明,实验电池的平均放电比容量达到308.6mAh/g(以正极活性物质的质量计算),明显高于球形β-Ni(OH)_2正极锌镍实验电池,而且1C倍率下电池的放电中值电压比后者约高出57mV。实验电池放电倍率增大至5C后电压平台下降较明显,但中值电压仍可达1.60V以上。实验电池的循环性能受电解液的影响较大,采用7mol/L KOH电解液时循环40次后放电容量呈快速下降趋势且波动明显,采用3.2mol/L KOH~+1.8mol/L K2CO3~+1.8mol/L KF复合电解液时电池循环性能得到显著改善,120次循环容量保持率在90%以上。但采用复合电解液时实验电池的充放电性能略有下降,其原因是电荷转移步骤的阻抗增大,阳极氧化和阴极还原时更容易极化,电极可逆性变差。进一步的研究结果表明,负极活性物质ZnO的溶解对实验电池的放电容量、循环寿命以及充放电性能影响均较明显,采用复合电解液时ZnO的溶解得到了有效抑制,因而电池的循环寿命得到显著提高。
Ni-Al layered double hydroxides (Ni-Al LDHs), also known as stable α-Ni(OH)_2dopedwith Al, follows the α(II)/γ(III) cycle and the crystal lattice doesn’t obviously expand orshrink during charge-discharge process. It also has higher specific discharge capacity anddischarge voltage plateau than β-Ni(OH)_2. Those advantages make it a promising substitute ascathode active material for Zn/Ni batteries. The specific energy and cycle life of the batteriesshould be enhanced markedly. Ni-Al LDHs is often synthesized by chemical co-precipitationmethod. However, the samples obtained normally have small specific surface areas, wideparticle distribution ranges and not ideal electrochemical performances. Moreover, lowelectronic conductivity of Ni-Al LDHs results in poor discharge performance at high rates. Onthe other hand, the matching properties of Ni-Al LDHs electrode with alkaline compoundelectrolyte and Zn anode need to be researched also. Aiming at those problems, thedissertation used orthogonal experiments to study the influence of main factors in thesynthesis process on the electrochemical performances of Ni-Al LDHs. Spray technique wasapplied to treat the gel precipitate intermediate to improve the physical properties andelectrochemical performances of the product. Ni-Al LDHs sample doped with Co and La wasprepared also. Finally, the performances of Zn/Ni battery with Ni-Al LDHs cathode materialwere studied. The main results and conclusions obtained were as follows:
     1. The influence of main factors in the synthesis process with chemical co-precipitationmethod on the specific discharge capacity of Ni-Al LDHs product was studied by orthogonalexperiments. The experimental results showed that the influence order from great to smallwas raw material ratio nNi~(2+): nAl~(3+), drying temperature of gel precipitate, grinding size of thepowder, reaction temperature, pH value and aging temperature of mother solution. Thepreferable synthesis condition was that the raw material ratio nNi~(2+): nAl~(3+)was85:15, reactiontemperature was45℃, pH value was10.5, aging time was36h, drying temperature was140℃, and grinding size was600mesh. Further research results showed that the raw materialratio affected the crystal structure and crystallinity of the product. Reducing the material ratiocould enhance the crystallinity of the product and the discharge voltage plateau of electrode.Drying temperature affected the crystallinity and intercalation content of water molecular between the layer plates. Elevating the drying temperature could enhance the electrochemicalactivity, discharge specific capacity of the product and discharge voltage plateau of theelectrode. Grinding size of the powder influenced the particle size distribution and averageparticle size. Reducing the grinding size could enhance the electrochemical activity anddischarge specific capacity of the final sample.
     2. Spray technique was used to treat the gel-like intermediate in the synthesis process ofNi-Al LDHs with chemical co-precipitation method. Comparing with that obtained by normalmethod, the powder sample had more narrow particle distribution range and highercrystallinity, and the specific surface area increased from6.8m~2/g to14.1m~2/g.Electrochemical testing results showed that the sample had higher electrochemical activityand discharge specific capacity. The electrode reaction was more reversible and showed bettercycle stability. The highest and average specific discharge capacity of the sample reached347.5mAh/g and337.9mAh/g at0.5C rate, respectively. Meanwhile, the capacity retentionrate was95.4%after100cycles.
     3. Ni-Al LDHs doped with both Co and La was synthesized by chemicalco-precipitation method. The sample obtained consisted of loose spherical particles with sizebelow5μm, while its specific surface area reached132.5m~2/g. The crystal structure retained αphase well after charge-discharged for100cycles. CV testing results showed that theelectrode had better reversibility and the proton diffusion coefficient reached5.7×10~(-9)cm~2/s.Charged-discharge testing results showed that the sample had higher electrochemical activityand its average discharge capacity attained311.5mAh/g at1C rate. The electrode had bettercycle stability, lower charge but higher discharge voltage plateau, which was moreoutstanding at higher rate. The sample doped with Co only synthesized with the same methodhad irregular particle shape, a much small specific surface area of5.4m~2/g and wider particledistribution range. Meanwhile, the electrochemical activity was lower, and the reversibility ofthe electrode reaction was poorer. Neither the discharge voltage plateau nor the cycle stabilitywas ideal. As for the sample doped with La only, though it had quite similar physicalproperties and electrochemical activity to that of the sample doped with both Co and La, butits specific discharge capacity was obviously lower.
     4. Zn/Ni experimental battery was manufactured with Ni-Al LDHs sample synthesized by spray technique as cathode active material, and the charge-discharge cycling performancewas studied. Experimental results showed that the average discharge capacity of the batteryreached308.6mAh/g (calculated with the mass of cathode active material), which wasobviously higher than that with β-Ni(OH)_2. And, the middle discharge voltage was about57mV higher than that of the latter. Although the discharge voltage plateau reduced remarkablyat5C rate, the middle voltage was still above1.60V. Further experimental results showed thatthe cycle performance of the battery was affected by the electrolyte used greatly. With7mol/L KOH electrolyte, the discharge capacity reduced quickly and fluctuated obviously after40cycles. While with3.2mol/L KOH~+1.8mol/L K_2CO_3~+1.8mol/L KF compoundelectrolyte, the cycle performance was improved markedly and the capacity retention rateexceeded90%after120cycles. Slight decrease of the charge and discharge performances wasfound with the compound electrolyte, because the impedance of charge transfer step and thepolarization of anodic oxidation and cathodic reduction increased. Further experimentalresults showed that the dissolution of anode active material ZnO affected the dischargecapacity, cycle life and charge-discharge performance distinctly. Using the compoundelectrolyte inhibited the dissolving of ZnO and enhanced the cycle life of battery significantly.
引文
[1]王力臻.化学电源设计[M].北京:化学工业出版社,2008:1-2.
    [2]李景虹.先进电池材料[M].北京:化学工业出版社,2004:1-2.
    [3]徐学笛.化学电源的发展及展望[J].化学工程与装备,2008,2:95-98.
    [4] Sun Y. Z., Pan J. Q., Wan P. Y., et al. The proton exchange chemistry of layeredNi(OH)2for two types of high-capacity cathode materials in rechargeable batteries [J].Materials Research Bulletin,2009,44:227-230.
    [5] Chou C. S., Tsou C. H., Wang C. I.. Preparation of Graphite/Nano-Powder CompositeParticles and Applicability as Carbon Anode Material in a Lithium Ion Battery [J].Advanced Powder Technology,2008,19:383-396.
    [6]孟良荣,王金良.电动车电池现状与发展趋势[J].电池工业,2006,11(3):202-206.
    [7]白中浩,曹立波,杨健.纯电动汽车用动力电池性能评价方法研究[J].湖南大学学报(自然科学版),2006,33(5):48-51.
    [8]毕道治.混合动力车(HEV)电池的发展[J].电池工业,2007,12(4):262-267.
    [9]梁春辉,冀群心.混合动力汽车及其蓄电池[J].蓄电池,2007,12:47-49.
    [10] Divya K.C., stergaard J.. Battery energy storage technology for power systems—Anoverview[J]. Electric Power Systems Research,2009,79:511-520
    [11] Guinot S., Bouzir N., Penneau, et al. Alkaline solid polymer electrolyte Ni/Znsecondary batteries [A]. Salind A.J., Mclarnon E.R., Bagotzky V.S.. Rechargeable ZincBatteries, PV95214[C]. Pennington, N.J.: The Electrochem Soc Inc,1996:182-194.
    [12] Falk S.U., Salkind A.J.. Alkaline storage batteries [M]. New York: John Wiley&SonsInc,1969:34-41.
    [13] Edison T.A.. Reversible galvanic battery [P]. US:684204,1901.
    [14]张文保.密封锌镍电池发展评述[J].电源技术,2000,24(3):178-180.
    [15]高自明,武彩霞.锌镍电池研究进展[J].电源技术,1997,23(2):83-85.
    [16] Linden D., Reddy T. B..电池手册[M].第三版.汪继强(译).北京:化学工业出版社,2007:2321-2324.
    [17] Yuan Y. F., Tu J. P., Wu H. M., et al. Effect of ZnO nanomaterials associated withCa(OH)2as anode material for Ni-Zn batteries[J]. Journal of Power Sources,2006,159:357-360.
    [18]陈军,陶占良,苟兴龙.化学电源-原理、技术与应用[M].北京:化学工业出版社,2006:239-244.
    [19]高效岳,沈涛,唐琛明,等. Zn-Ni电池的进展[J].电池工业,2002,7(3-4):220-224.
    [20] Coates D., Ferreira E., Charkey A.. Development of a Long Cycle Life SealedNickel-Zinc Battery for High Energy-Density Applications [J]. IEEE AES SystemsMagazine,1997:35-38.
    [21]周震涛,刘澧蒲.锌镍二次电池及其制备方法[P]. CN03113882.9,2003.
    [22]杨占红,王升威,廖建平,等. CaSn(OH)6的结构及其在锌镍电池中的应用[J].中南大学学报(自然科学版),2010,41(1):73-76.
    [23] Ma M., Tu J. P., Yuan Y. F., et al. Electrochemical performance of ZnO nanoplates asanode materials for Ni/Zn secondary batteries[J]. Journal of Power Sources,2008,179(1):395-400.
    [24] Zhu X. M., Yang H. X., Ai X. P., et al. Structural and electrochemical characterizationof mechanochemically synthesized calcium zincate as rechargeable anodic materials[J].Journal of Applied Electrochemistry,2003,33:607-612.
    [25]刘建敏,王军红,杨化滨,等. PVA碱性凝胶聚合物电解质电化学稳定性及其在锌镍二次电池中的应用[J].南开大学学报(自然科学版),2005,38(4):37-41.
    [26]黄琳琳,景义军.锌镍电池用碱性聚合物电解质的研究进展[J].电源技术,2009,33(9):825-827.
    [27]胡俊.密封锌镍电池产业化关键问题的研究[D].长沙:中南大学,2009.
    [28] PowerGenix为“普锐斯”配备锌镍可充电池[J].电源技术,2009,33(1):3.
    [29] Yuan G. X., Huang K. L., Liu S. Q., et al. Synthesis and characterization of sphericalnonstoichiometric Ni(OH)x(x=2.03-2.10) as electrode materials[J]. Journal of PowerSources,2010,195:5094-5100.
    [30] Pan J. Q., Sun Y. Z., Wang Z. H., et al. Nano-NiOOH prepared by splitting method assuper high-speed charge/discharge cathode material for rechargeable alkaline batteries[J]. Journal of Power Sources,2009,188:308-312.
    [31] Jindra J.. Sealed Ni-Zn cells,1996-1998[J]. Journal of Power Sources,2000,88:202-205.
    [32] Mohamad A. A., Mohamed N. S., Yahya M. Z. A., et al. Ionic conductivity studies ofpoly(vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel-zinc cells[J].Solid State Ionics,2003,156:171-177.
    [33]李永创,李中东,赵林治,等.一种动力型圆柱密封锌镍碱性蓄电池锌负极的制备方法[P]. CN200510051248.1,2005.
    [34]朱志坚.用于二次锌镍电池的锌负极及其制备方法和含该锌负极的二次锌镍电池[P]. CN200510002899.1,2005.
    [35] Yuan Y. F., Tu J. P., Wu H. M., et al. Electrochemical performance and morphologyevolution of nanosized ZnO as anode material of Ni-Zn batteries[J]. ElectrochimicaActa,2006,51:3632–3636.
    [36]谢德梅.改性氢氧化镍的制备、结构与电化学性能[D].广州:华南理工大学,2007.
    [37]何汉兵,周科朝,李志友.羟基氧化镍的研究进展[J].电源技术,2008,32(3):197-200.
    [38] Venkatraman M., Van Zee J.W.. A model for the silver-zinc battery during high rates ofdischarge [J]. Journal of Power Sources,2007,166:537-548.
    [39]周环波. Ni(OH)2、NiOOH的合成、结构与电化学性能[D].广州:华南理工大学,2005.
    [40]袁永锋.锌镍电池电极材料氧化锌纳米化与表面修饰的结构及其电化学性能[D].杭州:浙江大学,2007.
    [41] Coates D., Charkey A.. Nickel-Zinc Batteries for Commercial Application [A].34thIntersociety Energy Conversion Engineering Conference [C]. Vancouver, BC, Canada:1999.
    [42]李永创,李中东,赵林治,等.动力型圆柱密封锌镍碱性蓄电池[P]. CN1835271A,2006.
    [43]瓦尔特劳德·陶赫尔·毛特纳,卡尔·科德斯奇,韦恩·哈特福德.锌镍充电电池[P].CN1372703A,2002.
    [44] Mautner W. T., Kordesch K.. Studies of pasted nickel electrodes to improve cylindricalnickel-zinc cells [J]. Journal of Power Sources,2004,132:275-281.
    [45] Constantin D. M., Rus E. M., Oniciu L., et al. The influence of some additives on theelectrochemical behaviour of sintered nickel electrodes in alkaline electrolyte[J].Journal of Power Sources,1998,74:188-97.
    [46] Sasaki Y., Yamashita T.. Effect of electrolytic conditions on the deposition of nickelhydroxide [J]. Thin Solid Films,1998,334:117-119.
    [47] Cormier E., Wasmund E.B., Renny L. V., et al. A new powder morphology for makinghigh-porosity nickel structures [J]. Journal of Power Sources,2007,171:999-1009.
    [48] Wang D. L., Wang C. Y., Dai C. S., et al. Surface behavior of pasted nickel electrodeswith electrodeposited Co-Ce on substrate [J]. Transactions of Nonferrous MetalsSociety of China,2006,16:1148-1153.
    [49] Nathira Begum S., Muralidharan V.S., Ahmed Basha C.. The influences of someadditives on electrochemical behaviour of nickel electrodes [J]. International journal ofhydrogen energy,2009,34:1548-1555.
    [50] Song Q. S., Aravindaraj G. K., Sultana H., et al. Performance improvement of pastednickel electrodes with multi-wall carbon nanotubes for rechargeable nickel batteries [J].Electrochimica Acta,2007,53:1890-1896.
    [51] Ettel V., Ambrose J., Cushnie K., et al. Porous nickel electrode substrate [P]. USA:5700363,1997.
    [52]黄庆文.锌镍电池极片制作技术和设备研究[J].电池工业,2005,10(4):221-224.
    [53]黄朝明,庄飚.应用于电动车、电动自行车及电动摩托车上的新型锌镍电池的性能特征[J].电池工业,2000,5(2):77-78.
    [54]胡俊,杨占红,赵玉彬,等.负极黏结剂对密封锌镍蓄电池性能影响[J].电池工业,2009,14(5):333-336.
    [55]王升威,杨占红,曾利辉,等. KOH浓度对密封锌镍电池性能的影响[J].电池,2007,37(6):450-452.
    [56]方飞.锌镍电池锌电极的制备及电化学性能[D].杭州:浙江工业大学,2004.
    [57] Wang S.W., Yang Z. H., Zeng L. H. Study of calcium zincate synthesized bysolid-phase synthesis method without strong alkali[J]. Materials Chemistry and Physics,2008,112:603-606.
    [58]杨占红,王升威,曾利辉等.化学合成法制备锌镍电池负极材料锌酸钙[J].中南大学学报(自然科学版),2008,39(5):918-922.
    [59] Zhu X. M., Yang H. X., Ai X. P., et al. Structure and electrochemical characterization ofmechanochemically synthesized calcium zincate as rechargeable anodic materials [J].Journal of Applied Electrochemistry,2003,33:607-612.
    [60] Iwakura C., Murakami H., Nohara S., et al. Charge-discharge characteristics ofnickel/zinc battery with polymer hydrogel electrolyte [J]. Journal of Power Sources,2005,152:291-294.
    [61] Wu J. Z., Tu J. P., Yuan Y. F., et al. Ag-modification improving the electrochemicalperformance of ZnO anode for Ni/Zn secondary batteries [J]. Journal of Alloys andCompounds,2009,479:624-628.
    [62]迟伟伟,杨占红,王升威,等.有机缓蚀剂对密封锌镍电池性能的影响[J].电源技术,2010,34(2):171-173,202.
    [63] Li M. C., Royer M., Stien D.. Inhibitive effect of sodium eperuate on zinc corrosion inalkaline solutions [J]. Corrosion Science,2008,50:1975-1981.
    [64] Cohen-Hyams T., Ziengerman Y., Ein-Eli Y.. In situ STM studies of zinc in aqueoussolutions containing PEG DiAcid inhibitor: Correlation with electrochemicalperformances of zinc-air fuel cells[J]. Journal of Power Sources,2006,157:584-591.
    [65]贾铮,张翠芬,周德瑞.二次碱性锌电极的复合缓蚀剂[J].电池,2004,34(2):111-113.
    [66] Bass K., Mitchell P. J., Wilcox G. D., et al. Methods for the reduction god shape changeand dendritic growth in zinc-based secondary cells[J]. Journal of Power Sources,1991,35(3):333-351.
    [67] Adler T. C., McLarnon F. R., Cairns E. J.. Low-zinc-solubility electrolytes for use inzinc/nickel oxide cells [J]. Journal of Electrochemistry Society,1993,140(2):289-293.
    [68]王家捷,穆举国,茹海涛.锌镍动力电池的发展和应用[J].电池工业,2006,11(3):194-196.
    [69]陈衍珍.锌镍电池新进展[J].电源技术,2000,24(2):120-123.
    [70]赵允平.国外电动车用锌镍电池的研究[J].电源技术,1995,19(1):37-40.
    [71]董清海,颜广炅,余成洲.提高MH-Ni电池循环寿命的研究[J].电源技术,2000,24(5):306-310.
    [72] Song Q. S, Tang Z. Y., Guo H. T., et al. Structural characteristics of nickel hydroxidesynthesized by a chemical precipitation route under different pH values [J]. Journal ofPower Sources,2002,112:428-434.
    [73] Zhang W. G., Jiang W. Q., Yu L. M., et al. Effect of nickel hydroxide composition onthe electrochemical performance of spherical Ni(OH)2positive materials for Ni-MHbatteries [J]. International Journal of hydrogen energy,2009,34:473-480.
    [74] Jung K. W., Yang D. C., Park C. N.. Effects of the addition of ZnO and Y2O3on theelectrochemical characteristics of a Ni(OH)2electrode in nickelemetal hydridesecondary batteries [J]. International Journal of hydrogen energy,2010,35:13073-13077.
    [75] Wang X. Y., Luo H. A., Yang H. P., et al. Oxygen catalytic evolution reaction on nickelhydroxide electrode modified by electroless cobalt coating [J]. International Journal ofHydrogen Energy,2004,29:967-972.
    [76]战国宸,张宝宏,丛文博.电解液添加剂对锌电极性能的影响[J].应用科技,2001,28(7):45-47.
    [77] Cho Y. D., Fey K. G. T.. Surface treatment of zinc anodes to improve discharge capacityand suppress hydrogen gas evolution [J]. Journal of Power Sources,2008,184:610-616.
    [78] Vatsalarani J., Geetha S., Trivedi D. C., et al. Stabilization of zinc electrodes with aconducting polymer [J]. Journal of Power Sources,2006,158:1484-1489.
    [79]姜忆初,贺必新.锌银蓄电池研究进展[J].船电技术,2005,6:57-60.
    [80] Zhang L., Huang H., Zhang W. K., et al. Effects of conductive ceramic on theelectrochemical performance of ZnO for Ni/Zn rechargeable battery[J]. ElectrochimicaActa,2008,53:5386-5390.
    [81] Yang H. X., Cao Y. L., Ai X. P., et al. Improved discharge capacity and suppressedsurface passivation of zinc anode in dilute alkaline solution using surfactant additives[J]. Journal of Power Sources,2004,128(1):97-101.
    [82] Zhu L. Q., Zhang H., Li W. P., et al. Investigation of zinc powder modified byultrasonic impregnation of rare earth lanthanum[J]. Applied Surface Science,2007,253:9443-9449.
    [83] Kiani M. A., Mousavi M. F., Ghasemi S.. Size effect investigation on batteryperformance: Comparison between microand nano-particles of β-Ni(OH)2as nickelbattery cathode material [J]. Journal of Power Sources,2010,195:5795-5800.
    [84] Vidotti M., Salvador R. P., Torresi S. I.. Synthesis and characterization of stable Co andCd doped nickel hydroxide nanoparticles for electrochemical applications [J].Ultrasonics Sonochemistry,2009,16:35-40.
    [85]陈军,陶占良.镍氢二次电池[M].北京:化学工业出版社,2006:44-45.
    [86] Hu W. K., Gao X. P., Noréus D.. Evaluation of nano-crystal sized α-nickel hydroxide asan electrode material for alkaline rechargeable cells [J]. Journal of Power Sources,2006,160:704-710.
    [87]谢德梅,周震涛.覆钴型氢氧化镍的结构及电化学性能[J].电源技术,2007,31(10):816-818.
    [88] Kamath P. V., Dixit M., Indira L.. Stabilized α-Ni(OH)2as electrode material foralkaline secondary cells [J]. Journal of the Electrochemical Society,1994,141(11):2956-2959.
    [89] Faure C., Delmas C., Willmann P.. Preparation and characterization ofcobalt-substituted α-nickel hydroxide stable in KOH medium Part II. α-Hydroxide witha turbostratic structure [J]. Journal of Power Sources,1991,35:263-277.
    [90]冷拥军,马紫峰,张存根,等.铁取代氢氧化镍制备、结构与电化学性能Ⅱ,结构分析[J].电源技术,2000,24(1):32-35.
    [91] Jayashree R. S., Vishnu Kamath P.. Layered double hydroxides of Ni with Cr and Mnas candidate electrode materials for alkaline secondary cells [J]. Journal of PowerSources,2002,107:120-124.
    [92] Li K. W., Kumada N., Yonesaki Y., et al. The pH effects on the formation of Ni/Alnitrate form layered double hydroxides (LDHs) by chemical precipitation andhydrothermal method [J]. Materials Chemistry and Physics,2010,121:223-229.
    [93]徐向宇.层状α-Ni(OH)2和镍铝水滑石的光敏性能研究[D].北京:北京化工大学,2006.
    [94] Goh K. H., Lim T. T., Dong Z. L.. Application of layered double hydroxides forremoval of oxyanions: A review [J]. Water Research,2008,42:1343-1368.
    [95] Melo F., Morlanés N.. Study of the composition of ternary mixed oxides: Use of thesematerials on a hydrogen production process [J]. Catalysis Today,2008,133-135:374-382.
    [96] Guadagnini L., Mignani A., Scavetta E., et al. Ni(OH)2versus Ni/Al layered doublehydroxides as matrices to immobilize glucose oxidase [J]. Electrochimica Acta,2010,55:1217-1220.
    [97] Hibino T., Ohya H.. Synthesis of crystalline layered double hydroxides: Precipitationby using urea hydrolysis and subsequent hydrothermal reactions in aqueous solutions[J]. Applied Clay Science,2009,45:123-132.
    [98] Saiah F. B. D., Su B. L., Bettahar N.. Nickel-iron layered double hydroxide (LDH):Textural properties upon hydrothermal treatments and application on dye sorption [J].Journal of Hazardous Materials,2009,165:206-217.
    [99] Gao X. R., Lei L. X., Hu M., et al. Structure, morphology and electrochemicalperformance of Zn-doped [Ni4Al(OH)10]OH [J]. Journal of Power Sources,2009,191:662-668.
    [100] Li Y. W., Yao J. H., Liu C. J., et al. Effect of interlayer anions on the electrochemicalperformance of Al-substituted α-type nickel hydroxide electrodes [J]. InternationalJournal of Hydrogen Energy,2010,35:2539-2545.
    [101] Kovanda F., Rojka T., Bezdi ka P., et al. Effect of hydrothermal treatment on propertiesof Ni-Al layered double hydroxides and related mixed oxides [J]. Journal of Solid StateChemistry,2009,182:27-36.
    [102] Wang H., Tang Z. Y., Liu Y. G., et al. Synthesis and behavior of Al-stabilized α-Ni(OH)2[J]. Transaction of Nonferrous Metals Society of China,2009,19:170-175.
    [103] Zhao Y. L., Wang J. M., Chen H., et al. Different additives-substituted α-Nickelhydroxide prepared by urea decomposition[J]. Electrochimica Acta,2004,50:91-98.
    [104] Zhao Y. L., Wang J. M., Chen H., et al. Al-substituted α-Nickel hydroxide prepared byhomogeneous precipitation method with urea[J]. International Journal of HydrogenEnergy,2004,29:889-896.
    [105]张文魁,黄娜,黄辉,等.均匀沉淀法制备片状结构α-Ni(OH)2[J].中国有色金属学报,2007,17(1):166-171.
    [106] Chen H., Wang J. M., Pan T., et al. The structure and electrochemical performance ofspherical Al-substituted α-Ni(OH)2for alkaline rechargeable batteries[J]. Journal ofPower Sources,2005,143:243-255.
    [107]周环波,周震涛. Al掺杂纳米Ni(OH)2的结构及电性能[J].电池,2005,35(3):180-182.
    [108] Pan T., Wang J. M., Zhao Y. L., et al. Al-stabilized α-nickel hydroxide prepared byelectrochemical impregnation[J]. Materials Chemistry and Physics,2003,78:711-718.
    [109] Delmas C., Borthomieu Y.. Chimie Douce reaction: A new route to obtain wellcrystallized layer double hydroxides [J]. Journal of Solid State Chemistry,1993,104:345-352.
    [110] Qi J. Y., Xu P., Lv Z. S., et al. Effect of crystallinity on the electrochemicalperformance of nanometer Al-stabilized α-nickel hydroxide [J]. Journal of Alloys andCompounds,2008,462:164-169.
    [111] Béléké A. B., Mizuhata M.. Electrochemical properties of nickel-aluminum layereddouble hydroxide/carbon composite fabricated by liquid phase deposition [J]. Journal ofPower Sources,2010,195:7669-7676.
    [112]周勤俭,袁庆文,覃事彪,等.正极材料α-Ni(OH)2的研究进展[J].电池,2003,33(2):93-95.
    [113] Mavis B., Akinc M.. Three-component layer double hydroxides by urea precipitation:structural stability and electrochemistry [J]. Journal of Power Sources,2004,134:308-317.
    [114] Zhang Q., Xu Y. H., Wang X. L.. The electrochemical behavior of Ni(OH)2in KOHsolution containing aluminum hydroxide [J]. Materials Chemistry and Physics,2004,86:293-297.
    [115] Wang C. Y., Zhong S., Bradhurst D. H., et al. Ni/Al/Co-substituted α-Ni(OH)2aselectrode materials in the nickel metal hydride cell [J]. Journal of Alloys andCompounds,2002,330-332:802-805.
    [116] Wu. M. Y., Wang J. M., Zhang J. Q., et al. Effects of coprecipitated manganese on thestructure and electrochemical performance of Al-substituted a-nickel hydroxide [J].Journal of Solid State Electrochemistry,2006,10:411-415.
    [117]许娟,周益明,王青,等.掺锰的氢氧化镍的制备、结构及充放电性能[J].南京师大学报(自然科学版),2003,26(4):79-81.
    [118] Chen H., Wang J. M., Pan T., et al. Effects of coprecipitated zinc on the structure andelectrochemical performance of Ni/Al-layered double hydroxide [J]. InternationalJournal of Hydrogen Energy,2002,27:489-496.
    [119] Wu Q. D., Liu S., Li L., et al. High-temperature electrochemical performance ofAl-α-nickel hydroxides modified by metallic cobalt or Y(OH)3[J]. Journal of PowerSources,2009,186:521-527.
    [120] Li Y. M., Li W. Y., Chou S. L., et al. Synthesis, characterization and electrochemicalproperties of aluminum-substituted alpha-Ni(OH)2hollow spheres [J]. Journal of Alloysand Compounds,2008,456:339-343.
    [121]刘长久,钟胜奎,柴小琴,等.复合掺杂纳米α-Ni(OH)2的制备与性能[J].电池,2004,34(16):434-435.
    [122] Chang Z. R., Li H. J., Tang H. W., et al. Synthesis of γ-CoOOH and its effects on thepositive electrodes of nickel batteries [J]. International Journal of Hydrogen Energy,2009,34:2435-2439.
    [1] Wu. M. Y., Wang J. M., Zhang J. Q., et al. Effects of coprecipitated manganese on thestructure and electrochemical performance of Al-substituted a-nickel hydroxide [J].Journal of Solid State Electrochemistry,2006,10:411-415.
    [2] Qi J. Y., Xu P., Lv Z. S., et al. Effect of crystallinity on the electrochemical performance ofnanometer Al-stabilized α-nickel hydroxide[J]. Journal of Alloys and Compounds,2008,462:164–169.
    [3] Li Y. M., Li W. Y., Chou S. L., et al. Synthesis, characterization and electrochemicalproperties of aluminum-substituted alpha-Ni(OH)2hollow spheres [J]. Journal of Alloysand Compounds,2008,456:339-343.
    [4] Kovanda F., Rojka T., Bezdi ka P., et al. Effect of hydrothermal treatment on properties ofNi-Al layered double hydroxides and related mixed oxides [J]. Journal of Solid StateChemistry,2009,182:27-36.
    [5]《正交试验法》编写组.正交试验法[M].北京:国防工业出版社,1976:7-24.
    [6] Liu L. P., Zhou Z. T., Peng C. H.. Sonochemical intercalation synthesis of nano γ-nickeloxyhydroxide: Structure and electrochemical properties [J]. Electrochimica Acta,2008,54:434-441.
    [7] Béléké A. B., Mizuhata M.. Electrochemical properties of nickel-aluminum layered doublehydroxide/carbon composite fabricated by liquid phase deposition [J]. Journal of PowerSources,2010,195:7669-7676.
    [8] Wang H., Tang Z. Y., Liu Y. G., et al. Synthesis and behavior of Al-stabilized α-Ni(OH)2[J]. Transaction of Nonferrous Metals Society of China,2009,19:170-175.
    [9] Zhang W. G., Jiang W. Q., Yu L. M., et al. Effect of nickel hydroxide composition on theelectrochemical performance of spherical Ni(OH)2positive materials for Ni-MH batteries[J]. International Journal of Hydrogen Energy,2009,34:473-480.
    [10] Hua W. K., Gao X. P., Noréus D., et al. Evaluation of nano-crystal sized α-nickelhydroxide as an electrode material for alkaline rechargeable cells [J]. Journal of PowerSources,2006,160:704-710.
    [11] Li K. W., Kumada N., Yonesaki Y., et al. The pH effects on the formation of Ni/Al nitrateform layered double hydroxides (LDHs) by chemical precipitation and hydrothermalmethod [J]. Materials Chemistry and Physics,2010,121:223-229.
    [12] Morioka H., Shimizu Y., Sukenobu M., et al. Partial oxidation of methane to synthesisgas over supported Ni catalysts prepared from Ni–Ca/Al-layered double hydroxide [J].Applied Catalysis A: General,2001,215:11-19.
    [13]金叶玲,陈静,钱运华,等.聚丙烯酸协同超声水热法制备超细凹凸棒土[J].武汉大学学报(理学版),2006,52(2):185-188.
    [1] Gao F., Tang, Z. Y., Xue J. J.. Preparation and characterization of nano-particle LiFePO4and LiFePO4/C by spray-drying and post-annealing method [J]. Electrochimica Acta,2007,53:1939-1944.
    [2] Wang Y., Chen W., Luo Q., et al. Columnar-grown porous films of lithium manganeseoxide spinel (LiMn2O4) prepared by ultrasonic spray deposition [J]. Applied SurfaceScience,2006,252:8096-8101.
    [3] Kim J. M., Kumagai N., Kadoma Y., et al. Synthesis and electrochemical properties oflithium non-stoichiometric Li1+x(Ni1/3Co1/3Mn1/3)O2+δprepared by a spray drying method[J]. Journal of Power Sources,2007,174:473-479.
    [4] Chang H. Y., Sheu C. I., Cheng S. Y., et al. Synthesis of Li1.1Ni1/3Co1/3Mn1/3O2cathodematerial using spray-microwave method [J]. Journal of Power Sources,2007,174:985-989.
    [5] Li X. Q., Wang Z. X., Liang R. F., et al. Electrochemical properties of high-power lithiumion batteries made from modified spinel LiMn2O4[J]. Transaction of Nonferrous MetalsSociety of China,2009,19:1494-1498.
    [6] Song Q. S., Chiu C. H., Chan S. L. I.. Effects of ball milling on the physical andelectrochemical characteristics of nickel hydroxide powder [J]. Journal of AppliedElectrochemistry,2006,36:97-103.
    [7]巴德.阿伦. J,福克纳.拉里.电化学方法、原理和应用[M].第二版.邵元华,朱果逸,董献堆,等(译).北京:化学工业出版社,2005:157-160.
    [8]翟海军,王先友,杨红平,等.掺杂α-Ni(OH)2的电极性能研究[J].电源技术,2003,27(增刊):197-200.
    [9]彭美勋,沈湘黔,王零森,等. Ni(OH)2电极交流阻抗与放电容量的关系[J].电池,2004,34(6):408-410.
    [10] Sugimoto A., Ishida S., Hanawa K.. Preparation and Characterization of Ni/Al-LayeredDouble Hydroxide [J]. Journal of the Electrochemical Society,1999,146(4):1251-1255.
    [11]徐向宇.层状α-Ni(OH)2和镍铝水滑石的光敏性能研究[D].北京:北京化工大学,2006.
    [12] Li K. W., Kumada N., Yonesaki Y., et al. The pH effects on the formation of Ni/Alnitrate form layered double hydroxides (LDHs) by chemical precipitation andhydrothermal method [J]. Materials Chemistry and Physics,2010,121:223-229.
    [13]陈惠,王建明,潘滔. Al与Zn复合取代α-Ni(OH)2的结构和电化学性能[J].中国有色金属学报,2003,13(1):85-89.
    [14]唐致远,高飞,薛建军.球磨方式对锂离子正极材料LiFePO4性能的影响[J].无机化学学报,2007,23(8):1415-1420.
    [15] Gao J., Ying J. R., Jiang C. Y., et al. High-density spherical Li4Ti5O12/C anode materialwith good rate capability for lithium ion batteries [J]. Journal of Power Sources,2007,166:255-259.
    [1] Béléké A. B., Mizuhata M.. Electrochemical properties of nickel–aluminum layereddouble hydroxide/carbon composite fabricated by liquid phase deposition [J]. Journal ofPower Sources,2010,195:7669-7676.
    [2] Li Y. M., Li W. Y., Chou S. L., et al. Synthesis, characterization and electrochemicalproperties of aluminum-substituted alpha-Ni(OH)2hollow spheres[J]. Journal of Alloysand Compounds,2008,456:339-343.
    [3] Qi J. Y., Xu P., Lv Z. S., et al. Effect of crystallinity on the electrochemical performanceof nanometer Al-stabilized α-nickel hydroxide[J]. Journal of Alloys and Compounds,2008,462:164-169.
    [4] Li X., Liu J. P., Ji X. X., et al. Ni/Al layered double hydroxide nanosheet film growndirectly on Ti substrate and its application for a nonenzymatic glucose sensor[J]. Sensorsand Actuators B,2010,147:241-247.
    [5]谢德梅,周震涛.覆钴型氢氧化镍的结构及电化学性能[J].电源技术,2007,31(10):816-818.
    [6] Wang C Y., Zhong S., Bradhurst D. H., et al. Ni/Al/Co-substituted α-Ni(OH)2aselectrode materials in the nickel metal hydride cell [J]. Journal of Alloys and Compounds,2002,330-332:802-805.
    [7] Jayashree R. S., Kamath P. V.. Modified nickel hydroxide electrodes: effect of cobaltmetal on the different polymorphic modifications [J]. Journal of Electrochemical Society,2002,149(6):761-764.
    [8]吴华斌,刘长久,孙丹.镧(Ⅲ)与锌(Ⅱ)复合掺杂非晶Ni(OH)2的电化学性能[J].稀有金属,2008,32(2):203-206.
    [9]齐美荣,刑春晓,陈世娟,等.稀土La(Ⅲ)掺杂非晶态氢氧化镍的电化学性能[J].广东化工,2010,37(201):107-108,111.
    [10] Vidotti M., Salvador R.P., Torresi S.I.. Synthesis and characterization of stable Co and Cddoped nickel hydroxide nanoparticles for electrochemical applications [J]. UltrasonicsSonochemistry,2009,16:35-40.
    [11]翟海军,王先友,杨红平,等.掺杂α-Ni(OH)2的电极性能研究[J].电源技术,2003,27(增刊):197-200.
    [12]巴德.阿伦. J,福克纳.拉里.电化学方法、原理和应用[M].第二版.邵元华,朱果逸,董献堆,等(译).北京:化学工业出版社,2005:157-160.
    [13] Qazi S. Junaid S., Karlsson G., Rennie A. R.. Dispersions of plate-like colloidalparticles-Cubatic order?[J]. Journal of Colloid and Interface Science,2010,348:80-84.
    [14]徐向宇.层状α-Ni(OH)2和镍铝水滑石的光敏性能研究[D].北京:北京化工大学,2006.
    [15] Li Y., Xie X. W., Liu J. L., et al. Synthesis of α-Ni(OH)2with hydrotalcite-like structure:Precursor for the formation of NiO and Ni nanomaterials with fibrous shapes[J].Chemical Engineering Journal,2008,136:398-408.
    [16]杨书廷,陈改荣,尹艳红等.掺钇α-Ni (OH)2的研究[J].应用化学,2001,18(9):689-692.
    [17]陈惠,王建明,潘滔,等. Al与Zn复合取代α-Ni(OH)2的结构和电化学性能[J].中国有色金属学报,2003,13(1):85-90.
    [1] Wu J. Z., Tu J. P., Yuan Y. F., et al. Ag-modification improving the electrochemicalperformance of ZnO anode for Ni/Zn secondary batteries [J]. Journal of Alloys andCompounds,2009,479:624-628.
    [2] Kiani M. A., Mousavi M. F., Ghasemi S.. Size effect investigation on battery performance:Comparison between microand nano-particles of β-Ni(OH)2as nickel battery cathodematerial [J]. Journal of Power Sources,2010,195:5794-5800.
    [3] Linden D., Reddy T.B..电池手册[M].第三版.汪继强(译).北京:化学工业出版社,2007:2321-2324.
    [4] Adler T. C., McLarnon F. R., Cairns E. J.. Low-zinc-solubility electrolytes for use inzinc/nickel oxide cells [J]. Journal of Electrochemistry Society,1993,140(2):289-293.
    [5]王家捷,穆举国,茹海涛.锌镍动力电池的发展和应用[J].电池工业,2006,11(3):194-196.
    [6] Zhang L., Huang H., Zhang W.K., et al. Effects of conductive ceramic on theelectrochemical performance of ZnO for Ni/Zn rechargeable battery[J]. ElectrochimicaActa,2008,53:5386-5390
    [7] Liu C. J., Li Y. W.. Synthesis and characterization of amorphous α-nickel hydroxide [J].Journal of Alloys and Compounds,2009,478:415-418.
    [8]战国宸,张宝宏,丛文博.电解液添加剂对锌电极性能的影响[J].应用科技,2001,28(7):45-47.
    [9] Li Y.W., Yao J. H., Liu C. J., et al. Effect of interlayer anions on the electrochemicalperformance of Al-substituted α-type nickel hydroxide electrodes [J]. InternationalJournal of hydrogen energy,2010,35:2539-2545.
    [10]徐艳辉,张倩,王晓琳.氢氧化镍材料的反应机理和电极制备[J].电池工业,2009,14(4):268-272.
    [11]陈军,陶占良,苟兴龙.化学电源-原理、技术与应用[M].北京:化学工业出版社,2006:240-241.
    [12] Yang H. X., Cao Y. L., Ai X. P., et al. Improved discharge capacity and suppressedsurface passivation of zinc anode in dilute alkaline solution using surfactant additives[J]. Journal of Power Sources,2004,128:97-101.
    [13]卜雪涛,蒋巍,梁广川.表面活性剂对锌电极电化学性能的影响[J].电源技术,2006,30(4):290-293,297.
    [14] Cho Y. D., Fey G. T. K.. Surface treatment of zinc anodes to improve discharge capacityand suppress hydrogen gas evolution [J]. Journal of Power Sources,2008,184:610-616.
    [15]王福耻.材料现代分析测试方法[M].北京:北京理工大学出版社,2006:239-244.
    [16] Smedley S. I., Zhang X. G.. A regenerative zinc–air fuel cell[J]. Journal of PowerSources,2007,165:897-904.
    [17]贾铮,戴长松,陈玲.电化学测量方法[M].北京:化学工业出版社,2007,141-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700