用户名: 密码: 验证码:
Ni-Zn铁氧体粉的自蔓延高温合成及烧结研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ni-Zn铁氧体具有优异的软磁性能,应用广泛,但传统的制备工艺周期长、能耗大,严重浪费资源。高温自蔓延合成(SHS)技术制备铁氧体磁粉所需时间短,能耗低,污染小,可以取代固相法中的预烧工艺,弥补铁氧体传统制备工艺的不足。本文选用NiO-ZnO-Fe_2O_3-Fe-O_2-NiCO_3为原料,研究了SHS工艺参数和原料中NiCO_3含量对SHS制备铁氧体磁粉的影响机理,并系统研究了磁粉制备工艺、烧结工艺和掺杂对烧结铁氧体磁环微观结构和磁性能的影响,从中探索实现低成本SHS制备铁氧体的有效途径。
     放热系数k和氧气压力决定SHS能否进行,原料中NiCO_3含量对产物的颗粒均匀性和铁氧体化率有明显的影响。利用热力学公式计算体系的绝热温度,确定放热系数k的范围,研究不同放热系数k、氧气压力和NiCO_3含量与产物相组成、微观结构和磁性能的关系。由于SHS反应的温度非常高,在反应过程中,NiCO_3会发生分解,生成的NiO参与SHS反应,CO_2则从原料中溢出,疏松原料,利于氧气的渗透及反应完全;CO_2的溢出还对产物的颗粒均匀性有影响。结果显示,在放热系数k为0.5,氧气压力0.5 MPa及NiCO_3含量为3at%时,SHS制备的Ni-Zn铁氧体磁粉颗粒均匀性较好,平均粒径约为0.7-0.8μm,磁粉中铁氧体尖晶石相含量较高,适合后续处理及制备烧结磁环。
     将SHS制备的铁氧体磁粉造粒、成型并进行烧结。采用适当参数制备的SHS磁粉,具有较高的铁氧体化率,含有一定量的微细颗粒,微细颗粒在烧结时可以起到助熔剂的作用;颗粒具有较规则的多面体形状,利于后续处理和烧结,制备的磁环具有较优的磁性能,其初始磁导率μi和磁损耗分别为147和532 mW·cm-3。通过与固相法比较,SHS制备的铁氧体磁环具有较高的初始磁导率μi,但是损耗较高,因此降低损耗是SHS制备烧结铁氧体磁环的研究重点。
     烧结温度升高,保温时间延长,都会促进晶粒长大,孔隙率降低,提高磁环的初始磁导率μi和降低损耗,但过高的烧结温度和过长的保温时间,会造成ZnO的挥发和孔隙率的增加,减缓初始磁导率μi的增幅和损耗的降幅。为了更好的改善铁氧体的磁性能,特别是降低磁环的损耗,研究Bi_2O_3、SiO_2及Nb_2O_5等添加剂的掺杂对铁氧体磁环的影响。单独添加某一添加剂时,Bi_2O_3和SiO_2会不同程度促进晶粒长大,但不利于孔隙率的降低,而Nb_2O_5的添加对晶粒生长影响不大,但明显降低孔隙率。1wt% Bi_2O_3复合较少含量的SiO_2及Nb_2O_5掺杂时,磁环的晶粒长大,孔隙率降低,磁环磁性能改善效果显著优于单独添加任一添加剂。之后,随着SiO_2含量的增加,磁环晶粒长大,孔隙率降低,但是饱和磁化强度Ms降低过快,导致磁环的初始磁导率μi和损耗性能恶化;Nb_2O_5含量继续增加,晶粒长大的同时,孔隙率也增加,磁性能迅速恶化。1wt% Bi_2O_3复合掺杂0.2wt% Nb_2O_5时,磁环具有优异的初始磁导率μi和损耗性能,分别为289和213 mW·cm~(-3),与未掺杂的磁环相比,初始磁导率μi的增幅和损耗的降幅分别为100%和60%。
     研究晶粒尺寸对铁氧体损耗的影响,然后选择微观结构相近的样品,并对损耗进行分离,研究掺杂Nb_2O_5对不同损耗的影响。在低磁通密度Bm和低频下,Ni-Zn铁氧体的损耗主要是磁滞损耗,受微观结构的影响要大于掺杂,晶粒越小,损耗越大,并且随着磁通密度Bm和频率增加,损耗的增加越明显。通过损耗分离可知,掺杂主要是影响铁氧体的磁滞损耗,对铁氧体涡流损耗和剩余损耗之和的影响较小,几乎可以忽略。
Nickel-Zinc ferrites possess outstanding soft magnetic properties and are widely used in electronics and communication field. Conventionally, ferrite powders are made by solid-state reaction method which requires high energy consumption at elevated temperatures for long time. Fortunately, the Self-propagating High-temperature Synthesis (SHS) route for the ferrite formation can partially eliminated these drawbacks. SHS has many potential advantages, such as low processing cost, simplicity of process and energy efficiency. The raw materials used to synthesize Ni-Zn ferrite powders by SHS method were NiO-ZnO-Fe_2O_3-Fe-O_2-NiCO_3. The effects of process parameters and different NiCO_3 content in the raw materials on the microstructure and magnetic properties of Ni-Zn ferrite powders were systematically studied. The influence of SHS process, sintering process and doping on the microstructure and magnetic properties of Ni-Zn ferrites were investigated respectively, and optimum technical conditions were obtained.
     The SHS process was controlled by the exothermic coefficient k and oxygen pressure. The increase of NiCO_3 content in the raw materials can significantly enhance the percent conversion and result in uniform particle of the product. The adiabatic combustion temperature was calculated and the exothermic coefficient of the system was determined. The effcts of exothermic coefficients, oxygen pressures and NiCO_3 content on the phase composition, microstructure and magnetic properties of products were studied. NiCO_3 decomposed into NiO and CO_2 during SHS reaction and CO_2 escaped from the powders and left open pores. Thus the O_2 gas was easy to infiltrate through the powders to guarantee the reaction taking place continuously. As a result, the reaction proceeded more completely. The escaping of CO_2 also influenced the particle uniform of products simultaneously. When k, O_2 pressure and the NiCO_3 content were 0.5, 0.5 MPa and 3at%, respectively, the powder was able to prepare sintered ferrites for its mean size was 0.7-0.8μm and has the relatively high purity of spinel phase.
     The SHS ferrite powders were prilled, pressed to cores and sintered. The composition, morphology, structure and magnetic properties of toroid were analyzed and compared with production obtained by solid reaction. The powder prepared by SHS contained a few minuteness particles, which can act as fluxing agent during sintering process. The Ni-Zn toroid prepared by SHS method had excellent magnetic properties, with theμi value of 147 and power loss was 532 mW·cm~(-3). Compared with the ferrites produced by conventional solid reaction, theμi of ferrites prepared by SHS method was better, but the power loss was worse.
     Increasing sintering temperature and holding time helps the toroid form homogenous grain with big grain size and less pores, which had better magnetic properties. However, increasing sintering temperature and holding time too much will cause the increase of porosity and volatilization of ZnO, which will deteriorate the improvement of magnetic properties of toroid.
     A small amount of additives can greatly affect the properties of ferrites. The effects of Bi_2O_3, SiO_2 and Nb_2O_5 addition on the microstructure and magnetic properties of Ni-Zn ferrite prepared by SHS method were systematically studied. Doping of Bi_2O_3 and SiO_2 accelerated the grain growth, but increase the porosity. Addition of Nb_2O_5 reduced the porosity in the toroid. When co-doping with the 1wt% Bi_2O_3, a small amount addition of SiO_2 and Nb_2O_5 largely improved magnetic properties of toroid since the grain growth and low porosity. With more doping of SiO_2 and Nb_2O_5, the saturated magnetization (Ms) was rapidly decreased and resulted in the deterioration of toroid. The Ni-Zn ferrite had excellent magnetic properties when co-doping 0.2wt% of Nb_2O_5 and 1wt% of Bi_2O_3 wih theμi value of 289 and power loss value of 213 mW·cm-3. The decrease of power loss range and increase amplitude ofμi was 60% and 100% respectively compared to the toroid without doping.
     The effects of microstructure and doping of Nb_2O_5 on the power loss were analyzed. To further study this phenomenon, frequency responses of the divided hysteresis losses (Ph) and the total of eddy current losses and residual losses (Pe+Pr) for ferrites with doping of Nb_2O_5 were studied. The effect of microstructure on the power loss was greater than the doping when the samples were excited at low frequency and low magnetic flux density (Bm). With the increasing of testing frequency and Bm, power loss of Ni-Zn ferrites with smaller grain size increased more observably than the one with big grain size. The doping obviously influenced the Ph, and almost impacted the Pe+Pr.
引文
1.赵见高.迈向21世纪的磁学和磁性材料. 1996, 25(1): 9~15
    2.彭龙,张怀武.我国软磁铁氧体产业发展与未来.新材料产业. 2007, (1): 38~41
    3.翁兴园.中国软磁铁氧体产业发展面临的风险和挑战.新材料产业. 2007, (7): 45~47
    4.陈国华.中国软磁铁氧体的发展.电工合金. 1998, 4: 15~17
    5. P. B. Avakyan. Efficient Continuous SHS-Technology for Production of Ferrite Materials. Int. J. Self-Propag. High-Temp Synth. 2000, 9(1): 75~84
    6. G. Merzhanov. History and Recent Developments in SHS. Ceram. Int. 1995, 21: 371~379
    7.李垚.自蔓延高温合成NiZn铁氧体的研究.哈工大博士论文,2000,34~100
    8. John J. Moore, H. J. Feng. Combustion Synthesis of Advanced Materials Part I: reaction parameters. Prog. Mater Sci. 1995, 39: 243~273
    9. John J. Moore, H. J. Feng. Combustion Synthesis of Advanced Materials part II: classification, application and modelling. Prog. Mater Sci. 1995, 39: 275~316
    10. J. Subrahmanyam, M. Vijayakumar. Self-Propagating High-Temperature Synthesis. J. Mater. Sci. 1992, 27: 6249~6273
    11. G. Xanthopoulou, G. Vekinis. An Overview of Some Environmental Applications of Self-Propagating High-Temperature Synthesis. Adv. Environ. Res. 2001, 5: 117~128
    12. R.Pampuch. Some Fundamental versus Practical Aspects of Self-Propagating High Temperature Synthesis. Solid State Ionics. 1997, 101-103: 899~907
    13.李垚,韩杰才,杜善义.铁氧体的自蔓延高温合成方法.功能材料. 1999, 306: 598~600
    14.姜久兴. MnZn铁氧体的燃烧合成研究.哈工大博士论文. 2005,33~111
    15. Y. Choi. Study of Magnetic Properties and Structural Analysis of Ba-Ni-Zn Ferrites Prepared through a Self-Propagating High Temperature Synthesis. Physica B. 2003, 327: 225~228
    16. K. S. Martirosyan, D. Luss. Carbon Combustion Synthesis of Ferrites: Synthesis and Characterization. Ind. Eng. Chem. Res. 2007, 46: 1492~1499
    17. Y. Ke, G. Zhimeng, A. Farid. Effect of Inner Oxidant on Self-Propagating High Temperature Synthesis of MnZn-ferrite. Rare Metals. 2006, 25: 553~556
    18.杨珂,郭志猛,郝俊杰.自蔓延高温合成锰锌铁氧体粉料.北京科技大学学报2007, 29(11): 1118~1122
    19.兰银辉,高学绪,乔袆.自蔓延高温合成钡铁氧体的研究.材料导报. 2007, 21: 333~335
    20.乔梁,蒋梅燕,郑精武.自蔓延高温合成LaZn掺杂锶铁氧体改性研究.材料工程. 2007, 8: 20~23
    21.钟润牙,王皓,颜学敏.自蔓延高温合成SrFe12O19的工艺研究.陶瓷科学与艺术. 2004, 4: 8~11
    22.曾明锋,王为民,傅正义.自蔓延高温合成软磁Ni-Zn铁氧体的研究.武汉理工大学学报. 2004, 26(9): 4~6
    23.张鹤林,夏天东,尹燕.热剂反应自蔓延高温合成材料研究进展.材料导报. 2007, 21(10): 58~61.
    24. P. Mossino. Some Aspects in Self-Propagating High Temperature Synthesis. Ceram. Int. 2004, 30: 311~332
    25. Y. Li, J. Zhao, L. Qiang. Combustion Synthesis of Zinc Ferrite Powders in Oxygen. J. Alloys Compd. 2004, 373: 298~303
    26. Y. Li, J. Zhao, J. Han. Self-Propagating High Temperature Synthesis of Ni0.35Zn0.65Fe2O4 Ferrite Powders. Mater. Res. Bull. 2002, 37: 583~592
    27.李垚,赵九蓬,曲伟.氧压力对自蔓延高温合成NiZn铁氧体粉体的影响.粉末冶金技术. 2002, 20(1): 34~37
    28.李垚,赵九蓬,姜久兴.燃烧合成ZnFe2O4的相转变与反应机制研究.材料科学与工艺. 2004, 12(1): 41~44
    29. Y. Choi, N. I. Cho, H. C. Kim. Magnetic Properties of NiZn Ferrite Powders Formed by Self-Propagating High Temperature Synthesis Reaction. J Mater Sci: Mater Electron. 2000, 11: 25~30
    30.李垚,赵九蓬,赫晓东.自蔓延高温合成NiZn铁氧体中Zn挥发的研究.功能材料. 2002, 33(4): 379~380
    31. Y. Li, J. Jiang, J. Zhao. X-ray Diffraction and M?ssbauer Studies of Phase Transformation in Manganese Ferrite Prepared by Combustion Synthesis Method. Mater. Chem. Phys. 2004, 87: 91~95
    32.李垚,赵九蓬,曲伟.铁粉含量对自蔓延高温合成NiZn铁氧体粉体的影响.材料科学与工艺. 2001, 9(4): 410~412
    33. C. Agrafiotis, V. T. Zaspalis. Self-Propagating High Temperature Synthesis of MnZn-Ferrites for Inductor Applications. J. Magn. Magn.Mater. 2004, 283: 364~374
    34. C.-H. Peng, C.-C. H, Ching-Kai Hong, S.-Y. Chen. A Self-Propagating High Temperature Synthesis Method for Ni-ferrite Powder Synthesis. Mater. Sci. Eng., B. 2004, 107: 295~300
    35. Z. A. Munir, U. Anselmi-Tamburini. Self-Propagating Exothermic Reactions: the Synthesis of High-Temperature Materials by Combustion. Mater. Sci. Rep. 1989, 3(7): 277~365
    36. E. A. Nekrasov, Y. M. Maksimov, M. K. Ziatdinov, A. S. Shteinberg. Effect of Capillary Spreading on Combustion-wave Propagation in Gas-Free Systems. Combust. Expl. Shock Waves. 1978, 14: 575~581
    37.李垚,赵九蓬,韩杰才.自蔓延高温合成Ni0.35Zn0.65Fe2O4粉体的研究.硅酸盐学报. 2000, 28(5): 427~431
    38. M. V. Kuznetsov1, I. P. Parkin, A. Kvick. Advanced Ways and Experimental Methods in Self-Propagating High-Temperature Synthesis (SHS) of Inorganic Materials. Mater. Sci. Forum. 2006, 518: 181~188
    39. Y. Choi. Neutron Diffractometry on the Structural Analysis of Mg-Ni-Zn Ferrites Prepared through Self-Propagating High Temperature Synthesis. Physica B. 2003, 327: 229~232
    40. P. Parkin, Q. A. Pankhurst, L. Affleck. Self-Propagating High Temperature Synthesis of BaFe12O19, Mg0.5Zn0.5Fe2O4 and Li0.5Fe2.5O4: Time Resolved X-ray Diffraction Studies (TRXRD). J. Mater. Chem. 2001, 11: 193~199
    41. P. Parkin, G. Elwina, M. V. Kuznetsov. Self-Propagating High Temperature Synthesis of MFe12O19 (M=Sr, Ba) From the Reactions of Metal Superoxides and Iron Metal. J. Mater. Process. Technol. 2001, 110: 239~243
    42. P. B. Avakyan, E. L. Nersisyan, M. D. Nersesyan. Self-Propagating High Temperature Synthesis of Manganese-zinc Ferrite. Self-Propagating High-Temp Synthesis. 1995, 4(1): 79~83
    43.岳丽华.自蔓延高温合成NiCuZn铁氧体及低温烧结性能研究.哈工大硕士论文,2004,32~55
    44. M. V. Kuznetsov, Q. A. Pankhurst, I. P. Parkin. Self-Propagating High-Temperature Synthesis of Chromium Substituted Magnesium Zinc Ferrites Mg0.5Zn0.5Fe2-xCrxO4 (0 x 1.5). J. Mater. Chem. 1998, 8: 2701~2706
    45. W. B. Cross, L. Affleck, M. V. Kuznetsov. Self-Propagating High Temperature Synthesis of Ferrites MFe2O4 (M = Mg, Ba, Co, Ni, Cu, and Zn): Reactions in AnExternal Magnetic Field. J. Mater. Chem. 1999, 10: 2545~2552
    46.赵九蓬,李垚,赫晓东. NiZn铁氧体粉体的自蔓延高温合成技术.粉末冶金技术. 2001, 19(5): 290~292.
    47. Q. Ming, M. D. Nersesyan, A. Wagner. Combustion Synthesis and Characterization of Sr and Ga Doped LaFeO3. Solid State Ionics. 1999, 122: 113~121
    48. V. Komarov, P. B. Avakyan, M. D. Nersesyan. Self-Propagating High Temperature Synthesis of Strontium Hexaferrite. Combust. Expl. Shock Waves. 1992, 29(5): 51~56
    49. M. D. Nersesyan, J. R. Claycomb, Q. Ming, J. H. Miller, J. T. Richardson, D. Luss. Chemomagnetic Fields Produced by Solid Combustion Reactions. Appl. Phys. Lett. 1999, 75(8): 1170~1172
    50. M. D. Nersesyan, J. R. Claycomb, J. T. Ritchie, J. H. Miller, J. T. Richardson, D. Luss. Electric and Magnetic Fields Generated by SHS. J. Mater. Synth. Process. 2001, 9(1): 63~72
    51. J. Claycomb, M. Nersesyan, D. Luss, J. H. Miller. SQUID Detection of Magnetic Fields Produced by Chemical Reactions. IEEE Trans. Appl. supercond. 2001, 11(1): 863~866
    52. P. Parkin, G. E. Elwin, A. V. Komarov. Convenient, Low Energy Routes to Hexagonal Ferrites MFe12O19 (M=Sr, Ba) From SHS Reactions of Iron, Iron Oxide and MO2 in Air. J. Mater. Chem., 1998, 8(3): 573~578
    53. P Parkin, G. Elwin, L. F. Barquin. Self-Propagating High Temperature Synthesis of Hexagonal Ferrites MFe12O19 (M = Sr, Ba). Adv. Mater. 1991, 9(8): 643~645
    54. M. V. Kuznetsov, Q. A. Pankhurst, I. P. Parkin. Self-Propagating High Temperature Synthesis of Lithium-chromium Ferrites Li0.5Fe2.5?xCrxO4 (0 x 2.0). J. Phys. D: Appl. Phys. 1998, 31: 2886~2893
    55. Y. Choi, H. S. Shim, J. S. Lee. Study on Magnetic Properties and Structural Analysis of Ni-Zn Ferrite Prepared through Self-Propagating High Temperature Synthesis Reaction by Neutron Diffractometry. J. Alloys Compd. 2001, 326: 56~60
    56. Y. Choi, N. I. Cho. The formation of NiZn Ferrites through Self-Propagating High Temperature Synthesis. J. Mater. Sci. Lett. 1999, 18: 655-658
    57. Y. Choi, K. S. Choi, N. I. Cho. Characterization of Quasi-Nano-Crystalline Li-Cu Ferrite Powders Prepared by Using Self-Propagating High-Temperature Synthesis. J. Korean Phys. Soc. 2007, 50(6): 1719~1721
    58. Y. Choi, S. H. Lee. Effects of Initial Composition and Oxygen Pressure onFormation of Quasi-Nanocrystalline Ba-Zn Ferrite Powders during Self-Propagating High-Temperature Synthesis. Jpn. J. Appl. Phys. 2008, 47(1): 644~646
    59. Y. Choi, J. J. Lee. Study of the Synthesis Mechanism and Magnetic Properties of Quasi-nano-sized Ba-Mg Ferrite Powders Formed by Self-Propagating High Temperature Synthesis, Physica B. 2009, 404: 692~694
    60. Y. Choi, N. I. Baik. Fabrication of Nano-sized BaxMg1-xFe2O4 Ferrite Powders by Using Self-propagating High Temperature Synthesis Reaction and Mechanical Milling, J. Alloys Compd. 2009, 480: 134~137
    61. Y. Choi, B. S. Seong, S. S. Kim. Characterization and Structural Analysis of Nano-sized Ba-Zn Ferrite Powders Prepared by Using a Self-Propagating High Temperature Synthesis Reaction and Mechanical Milling. Physica B. 2009, 404: 689~691
    62. S. M. Busurin, Y. G. Morozov, M. V. Kuznetsov. Effect of an Electrostatic Field on Self-Propagating High-Temperature Synthesis of Manganese Ferrite. Combust. Expl. Shock Waves. 2005, 41(4): 421~425
    63. M. V. Kuznetsova, Y. G. Morozova, S. M. Busurin. Phase Composition and Magnetism of Combustion Products in Ba-Fe-O Compounds Synthesized Under Applied DC Electric Field. J. Magn. Magn.Mater. 2007, 309: 202~206
    64. K. S. Martirosyan, J. R. Claycomb, G. Gogoshin, R. A. Yarbrough, J. H. Miller, D. Luss. Spontaneous Magnetization Generated by Spin, Pulsating, and Planar Combustion Synthesis. J. Appl. Phys. 2003, 93(11): 9329~9335
    65.周志刚.铁氧体磁性材料.科学出版社. 1981,27~293
    66. N. S. Gajbhiye, G. Balaji. Synthesis, Reactivity and Cations Inversion Studies of Nanocrystalline MnFe2O4 Particles. Thermochim. Acta. 2002, 385: 143~151
    67. H. Yan, Z. G. Xu, F. X. Cheng. Nanophased CoFe2O4 Prepared by Combustion Method. Solid State Commun. 1999, 111: 287~291
    68.乔妙杰,郭晋红,赵维富.掺杂对NiZn铁氧体品质因数的影响.材料导报. 2006, 20: 345~346
    69.席国喜,李伟伟,路迈西. Mn-Zn铁氧体掺杂改性研究进展.磁性材料及器件. 2007, 38(2): 19~22
    70. Huang, H. He, Z. Feng. Effects of SnO2 Addition on the Magnetic Properties of Manganese Zinc Ferrites. J. Magn. Magn.Mater. 2006, 301: 331~335
    71. L. M. Salah. Spectroscopic Studies of the Effect of Addition of Y3+ on Structural Characteristics of NiZn Ferrites. Phys. stat. sol. 2006, 203(2): 271~281
    72. H. Shokrollahi. Magnetic Properties and Densification of Manganese-Zinc Soft Ferrites (Mn1-xZnxFe2O4) Doped with Low Melting Point Oxides. J. Magn. Magn.Mater. 2008, 320: 463~474
    73. H. Shokrollahi, K. Janghorban. Influence of Additives on the Magnetic Properties, Microstructure and Densification of Mn-Zn Soft Ferrites. Mater. Sci. Eng., B. 2007, 141: 91~107
    74. E. P. Wohlfarth. Ferromagnetic Materials, vol. 2, North-Holland, Amsterdam, Oxford, New York, 1980: 144~243
    75. K. H. J. Buschow. Handbook of Magnetic Materials, Vol. 8, Elsevier, 1995, 59~189
    76. Goldman. Modern Ferrite Technology, Second ed., New York, Springer, 2005: 217~226
    77. K. H. Wu, T. H. Ting, G. P. Wang, C. C. Yang, B. R. McGarvey. EPR and SQUID Studies on Magnetic Properties of SiO2-Doped Ni-Zn Ferrite Nanocomposites. Mater. Res. Bull. 2005, 40: 2080~2088
    78. R. K. Kotnala, V. Verma, V. Pandey, V. P. S. Awana, R. P. Aloysius, P. C. Kothari. The Effect of Nano-SiO2 on the Magnetic and Dielectric Properties of Lithium Cadmium Ferrite. Solid State Commun. 2007, 143: 527~531
    79. Y. Wu, Z. W. Li, L. Chen, S. J. Wang, C. K. Ong. Effect of Doping SiO2 on High-Frequency Magnetic Properties for W-type Barium Ferrite. J. Appl. Phys. 2004, 95(8): 4235~4239
    80. K. H. Wu, Y. C. Chang, T. C. Chang, Y. S. Chiu, T. R. Wu. Effects of SiO2 Content and Solution pH in Raw Materials on Ni-Zn Ferrite Magnetic Properties. J. Magn. Magn. Mater. 2004, 283: 380~384
    81. J. Topfer, S. Schwarzer, S. Senz, D. Hesse. Influence of SiO2 and CaO Ddditions on the Microstructure and Magnetic Properties of Sintered Sr-Hexaferrite. J. Eur. Ceram. Soc. 2005, 25: 1681~1688
    82. W. Yan, L. Wang, Z. Xia, M. Cheng, Q. Li, Y. Zhang. Effect of PbO-SiO2 and PbO-B2O3 Flux Dystems on the Crystalline and Magnetic Properties of Ni0.5Zn0.5Fe2O4 Ferrite Prepared from the Mixed Powders. Mater. Res. Bull. 2007, 42: 1468~1472
    83. Maghsoudia, M. J. Hadianfarda, H. Shokrollahi. The Influence of Al Content and CaO-SiO2 on the Magnetic and Structural Properties of Al-substituted Ni Ferrites. J. Alloys Compd. 2009, 481: 539~542
    84. E. Rezlescu, N. Rezlescu, C. Pasnicu, M. L. Craus. Densification by Nonmagnetic Additives of High Frequency Lithium-Zinc and Nickel-Zinc Ferrites. J. Magn. Magn.Mater. 1996, 157-158: 487~488
    85. N. Rezlescu, L. Rezlescu, P. D. Popa, E. Rezlescu. Influence of Additives on the Properties of a NiZn Ferrite with Low Curie Point. J. Magn. Magn. Mater. 2000, 215-216: 194~196
    86. P. Rao, C. Kim, C. Kim. Influence of V2O5 Additions on the Permeability and Power Loss Characteristics of Ni-Zn Ferrites. Mater. Lett. 2007, 61: 1601~1604
    87. Mirzaee, M. A. Golozar, A. Shafyei. Influence of V2O5 as an Effective Dopant on the Microstructure Development and Magnetic Properties of Ni0.64Zn0.36Fe2O4 Soft Ferrites. Mater. Charact. 2008, 59: 638~641
    88. S. H. Chen, S. C. Chang, C. Y. Tsay, K. S. Liu, I. N. Lin. Improvement on Magnetic Power Loss of MnZn-Ferrite Materials by V2O5 and Nb2O5 Co-doping. J. Eur. Ceram. Soc. 2001, 21: 1931~1935
    89. Mirzaee, A. Shafyei, M. A. Golozar, H. Shokrollahi. Influence of MoO3 and V2O5 Co-doping on the Magnetic Properties and Microstructure of a Ni-Zn Ferrite. J. Alloys Compd. 2008, 461: 312~315
    90. P. Rao, C. Kim. Effect of Nb2O5 Additions on the Power Loss of NiZn Ferrites. J Mater Sci. 2007, 42: 8433~8437
    91. P. Rao, O. Caltun, I. Dumitru, L. Spinu. Complex Permeability Spectra of Ni-Zn Ferrites Doped with V2O5/Nb2O5. J. Magn. Magn. Mater. 2006. 304: e749~e751
    92. L. Jia, H. Zhang, Z. Zhong, Y. Liu. Effects of Different Sintering Temperature and Nb2O5 Content on Structural and Magnetic Properties of Z-type Hexaferrites. J. Magn. Magn. Mater. 2007, 310: 92~97
    93. K. Sun, Z. Lan, Z. Yu, L. Li, J. Huang. Grain Growth and Magnetic Properties of Nb2O5-Doped NiZn Ferrites. Jpn. J. Appl. Phys. 2008, 47(10): 7871~7875
    94. V. T. Zaspalis, E. Antoniadis, E. Papazoglou, V. Tsakaloudi, L. Nalbndian, C. A. Sikalidis. The Effect of Nb2O5 Dopant on the Structural and Magnetic Properties of MnZn-Ferrites. J. Magn. Magn. Mater. 2002, 250: 98~109
    95. S. Park, J. Lee, J. Lee, Y. Chung, J. Seo. The Effects of Nb2O5 and TiO2 on Electrical and Magnetic Properties of Mn-Zn Ferrites. Phys. stat. sol. (c). 2004, 1(12): 3619~3622
    96. B. Yuksel, S. Kirtay, T. O. Ozkan, E. Ackalin, H. Erkalfa. The Effect of B2O3 Addition to the Microstructure and Magnetic Properties of Ni0.4Zn0.6Fe2O4 Ferrite. J. Magn. Magn. Mater. 2008, 320: 714~718
    97. K. Sun, Z. Lan, Z. Yu, X. Nie, L. Li, C. Liu. Magnetic Properties of Sn-substitutedNiZn Ferrite Thin Films. J. Magn. Magn. Mater. 2008, 320: 1180~1183
    98. P. K. Maskar, S. V. Kakatkar, R. S. Patil, V. A. Jadhav, N. D. Chaudhari, A. M. Sankpal, S. R. Sawant. Magnetic Hysteresis in Sn4+ Doped Ni-Zn Ferrite. Mater. Chem. Phys. 1995, 41: 154~157
    99. K. Sun, Z. Lan, Z. Yu, L. Li, J. Huang, X. Zhao. Effects of SnO2 Addition on the Microstructure and Magnetic Properties of NiZn Ferrites. J. Magn. Magn. Mater. 2008, 320: 3352~3355
    100.N. Rezlescu, L. Sachelarie, E. Rezlescu, C-L. Sava, P. D. Popa. Influence of PbO on Microstructure and Properties of a NiZn Ferrite. Ceram. Int. 2003, 29: 107~111
    101.P. Andrei, O. F. Caltun, C. Papusoi, A. Stancu, M. Feder. Losses and Magnetic Properties of Bi2O3 Doped MnZn Ferrites. J. Magn. Magn. Mater. 1999, 196~197: 362~364
    102. Z. Yu, K. Sun, L. Li, Y. Liu, Z. Lan, H. Zhang. Influences of Bi2O3 on Microstructure and Magnetic Properties of MnZn Ferrite. J. Magn. Magn. Mater. 2008, 320: 919~923
    103.L. Jia, H. Zhang, Y. Liu, Z. Zhong, Q. Wen. Effects of Mixing Procedure and Bi2O3 Content on Structural and Magnetic Properties of Hexaferrites Sintered at Low Temperature. J. Magn. Magn. Mater. 2007, 316: 67~72
    104.C. Liu, Z. Lan, X. Jiang, Z. Yu, K Sun, L. Li, P. Liu. Effects of Sintering Temperature and Bi2O3 Content on Microstructure and Magnetic Properties of LiZn Ferrites. J. Magn. Magn. Mater. 2008, 320: 1335~1339
    105.M. Pal, P. Brahma, D. Chakravorty. Magnetic and Electrical Properties of Nickel-Zinc Ferrites Doped with Bismuth Oxide. J. Magn. Magn. Mater. 1996, 152: 370~374
    106.P. K. Maskai, S. V. Kakatkar, A. M. Sankpal, R. S. Payil, S. S. Suryavanshi, S. R. Sawant. Wall Permeability Studies on Ti4+ Doped Ni-Zn Ferrite. Czech. J. Phys. 1996,46(4): 397~402
    107.S. A. Patil, B. V. Bhise, A. K. Ghatage. Effect of MnTi and MnSn Substitutions on the Magnetic Properties of Ni-Zn Ferrite. Mater. Chem. Phys. 2000, 65: 38-45
    108.L. Gama, A. P. Diniz, A. C. F. M. Costa, S. M. Rezende, A. Azevedo, D. R. Cornejo. Magnetic Properties of Nanocrystalline Ni-Zn Ferrites Doped with Samarium. Physica B. 2006, 384: 97~99
    109.C. F. M. Costa, M. R. Morelli, R. H. G. A. Kiminami. Combustion Synthesis, Sintering and Magnetical Properties of Nanocristalline Ni-Zn Ferrites Doped withSamarium. J Mater Sci. 2004, 39: 1773~1778
    110.A. C. F. M. Costa, A. P. A. Diniz, A.G. B. de Melo, R. H. G. A. Kiminami, D. R. Comejo, A. A. Costa, L. Gama. Ni-Zn-Sm Nanopowder Ferrites: Morphological Aspects and Magnetic Properties. J. Magn. Magn. Mater. 2008, 320: 742~749
    111.L. Gama, E. P. Hernandez, D. R. Cornejo, A. A. Costa, S. M. Rezende, R. H. G. A. Kiminami, A. C. F. M. Costa. Magnetic and Structural Properties of Nanosize Ni-Zn-Cr Ferrite Particles Synthesized by Combustion Reaction. J. Magn. Magn. Mater. 2007, 317: 29~33
    112.M. El-Sayed. Effect of Chromium Substitutions on Some Properties of NiZn Ferrites. Ceram. Int. 2002, 28: 651~655
    113.A. M. Sankpal, S. V. Kakatkar, G. G Tengshe, R. S. Patil, N. D. Chaudhari, S. R. Sawant, S. S. Suryavanshi. Magnetization Studies on Aluminium and Chromium Substituted NiZn Ferrites. J. Magn. Magn. Mater. 1998, 186: 349~356
    114.A. M. Sankpal, S. V. Kakatkar, R.S. Patil, N. D. Chaudhari, R. K. Kamat, S. M. Kabbur, S. S. Suryavanshi, S. R. Sawant. Relaxation Time Studies on Ni0.7Zn0.3AlxFe2-xO4 and Ni0.7Zn0.3CrxFe2-xO4. Mater. Chem. Phys. 1998. 53: 77~79
    115.S. Singhal, S. K. Barthwal, K. Chandra. Structural, Magnetic and Mossbauer Spectral Studies of Nanosize Aluminum Substituted Nickel Zinc Ferrites. J. Magn. Magn. Mater. 2006, 296: 94~103
    116.Y. Chen, P. Liu, Z. Jin. Studies of La2O3 Additive in Ni-Zn Ferrite. J. Mater. Sci. Lett. 1995, 14: 998~1001
    117. J. Sun, J. Li, G. Sun. Effects of La2O3 and Gd2O3 on Some Properties of Ni-Zn Ferrite. J. Magn. Magn. Mater. 2002, 250: 20~24.
    118.J. Slama, R. Dosoudil, M. Usakova. Magnetic Properties of Be or Cu-substituted NiZn Ferrites. J. Magn. Magn. Mater. 2006, 304: e758~e761
    119.T. T. Ahmed, I. Z. Rahman, M. A. Rahman. Study on the Properties of the Copper Substituted NiZn Ferrites. J. Mater. Process. Technol. 2004, 153-154: 797~803
    120.J. J. Shrotri, S. D. Kulkarni, C. E. Deshpande, A. Mitra, S. R. Sainkar, P. S. A. Kumar, S. K. Date. Effect of Cu Substitution on the Magnetic and Electrical Properties of Ni-Zn Ferrite Synthesised by Soft Chemical Method. Mater. Chem. Phys. 1999, 59: 1~5
    121.H. Su, H. Zhang, X. Tang, Z. Zhong, Y. Jing. Analysis of Low-Temperature-Fired NiCuZn Ferrites for Power Applications. Mater. Sci. Eng., B. 2009, 16: 222~225
    122.文雯,张怀武,钟慧. Co离子添加对NiZn铁氧体电磁性能的影响.磁性材料及器件. 2005, 36(3): 24~26
    123.陈良,孔占兴,梁迪飞. Co2+取代对NiZn铁氧体材料截止频率fr的影响.功能材料. 2008, 39(5): 754~757
    124.T. Lancastera, S. J. Blundella, F. L. Prattb.μ+-SR Studies of the Weak Ferromagnets CoCO3 and NiCO3. Physica B. 2003, 326: 522~526
    125.W. M. Shaheen. Thermal Behaviour of Pure and Binary Basic Nickel Carbonate and Ammonium Molybdate Systems. Mater. Lett. 2002, 52: 272~282
    126.A. G. Merzhanov. Solid Flames: Discoveries, Concepts and Horizons of Cognition. Combust. Sci. and Tech. 1994, 98: 307~336
    127.梁英教,车荫昌.无机物热力学数据手册.东北大学出版社. 1993, 16~431
    128.张有纲,黄永杰,罗迪民.磁性材料.成都电讯工程学院出版社. 1988,95~171
    129.宛德福,马兴隆.磁性物理学.电子科技大学出版社. 1994,416~421
    130.黄爱萍.锰锌铁氧体损耗、磁导率和阻抗特性及制备技术研究.华中科技大学博士论文. 2006, 45~47
    131.D. Jiles著.磁学及磁性材料导论.肖春涛译.兰州大学出版社. 2003,132~135
    132.H. Su, H. Zhang, X. Tang, Y. Jing. Influence of Microstructure on Permeability Dispersion and Power Loss of NiZn Ferrite. J. Appl. Phys. 2008, 103: 093903-1-5
    133.A. Nakata, H. Chihara, A. Sasaki. Microscopic Study of Grain-Boundary Region in Polycrystalline Ferrites. J. Appl. Phys. 1985, 57(1): 4177~4179
    134.B. P. Rao, P. S. V. Subba, K. H. Rao. Densification, Grain Growth and Microstructure of NiZn Ferrites. J. Phys. IV France. 1997, 07: C1-241~ C1-243
    135.L. Jia, H. Zhang, Z. Zhong, Y. Liu. Effects of Different Sintering Temperature and Nb2O5 Content on Structural and Magnetic Properties of Z-type Hexaferrites. J. Magn. Magn. Mater. 2007, 310: 92~97
    136.都有为.铁氧体.江苏科学技术出版社. 1996,353~359
    137.O. Inoue, N. Matsutani, K. Kugimiya. Low Loss Mn-Zn Ferrites: Frequency Dependence of Minimum Power Loss Temperature. IEEE Trans. Magn. 1993, 29: 3532-3534

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700