用户名: 密码: 验证码:
无氨草酸沉淀—热分解制备钴氧化物及其母液循环利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化钴是一类具有优良性能的重要功能材料,它是制备锂离子电池正极材料钴酸锂的主要原料,同时也被广泛应用于超级电容器、硬质合金、压敏陶瓷、无机颜料、催化剂等领域。目前,氧化钴的工业化生产方法主要采用草酸铵沉淀-热分解工艺,该方法不仅消耗氨水,同时产生大量难以回收处理的含氨废水,直接排放不仅会对环境造成严重危害,同时也是资源和能源的浪费。本研究旨在从源头上避免氨水的加入,系统研究了无氨草酸沉淀-热分解制备氧化钴及含草酸废水循环利用的工艺流程,实现了溶液闭路循环且生产过程环境友好,在有色金属清洁生产领域具有十分重要的实际应用价值和学术理论意义。
     本研究根据同时平衡原理和质量守恒原理,系统研究了Me2+-C2O42-Cl--H2O体系中各金属离子在水溶液中的热力学平衡模型,计算并绘制了考虑各阴离子络合作用在内的复杂体系lg[Me]-pH平衡图和各金属离子存在形式分布图,全面分析了溶液pH值及柠檬酸、酒石酸和EDTA等添加剂对该平衡体系的影响。分析得出体系中杂质Ca2+、Ni2+、pb2+、Cu2+会先于Co2+生成沉淀,而Mg2+、Fe2+、Mn2+和Zn2+类杂质离子只在pH相对较高的情况下先于Co2+形成沉淀。因此在草酸钴的生产过程中,应尽量控制这些杂质的含量和控制较低的沉淀终点pH值,以保证获得高的钴沉淀率和较好的产物品质。
     系统研究了无氨草酸沉淀法各工艺参数对草酸钴沉淀率及粒子形貌、粒度的影响。氯化钴溶液浓度、反应温度和草酸加料速度等因素对草酸钴晶体形貌和粒度起着决定性作用;草酸过量系数则对草酸钴沉淀率影响极大;外加超声可有效减少粒子团聚,但其空化作用也抑制了粒子生长,草酸钴形貌由长柱状变为小块状。通过全面考察,确定了无氨草酸沉淀法的优化工艺条件:以1mol/L的氯化钴溶液为原料,过量系数为1.5的草酸作为沉淀剂,反应温度60℃,正向滴加方式,加料速度10mL/min,溶液pH值5.5。可制备得到结晶形貌良好的β晶型含水草酸钴粉末粒子(β-CoC2O4-2H2O),草酸钴粉末微观形貌呈长柱簇球状,中位径为30-50μm,一次沉淀率可达95%以上。
     对无氨草酸沉淀法制得的草酸钴粉末进行洗涤、干燥、热分解研究,全面研究了草酸钴在氩气气氛下和空气气氛下的热分解热力学行为。通过热力学计算分析,并采用DSC-TGA曲线验证得出,在氩气等惰性气氛中,草酸钴的分解产物为金属钴;而在空气等氧化性气氛中,草酸钴在温度低于700℃时的分解产物为Co3O4,而在高于900℃时的分解产物为CoO。
     全面分析了草酸钴热分解行为的动力学机理,采用Coats-Redefrn方程和Ozawa法和Kissinger法推断并相互验证热分解机理函数、表观活化能和指前因子。动力学分析推断得出:草酸钴在惰性气氛中和氧化性气氛中的热分解机理函数F(α)均为[-ln(1-α)]1/3;在惰性气氛中的热分解活化能分别为129.82 kJ/mol (Ozawa法)和125.37kJ/mol (Kissinger法);在空气气氛中生成Co3O4的热分解活化能分别为70.5kJ/mol (Ozawa法)和64.11kJ/mol (Kissinger法);在空气气氛中高温分解生成CoO的反应表观活化能分别为1232.14kJ/mol(Ozawa法)和1276.04kJ/mol (Kissinger法)。
     探索了采用P350萃取分离含草酸的盐酸溶液的新方法,有效地用于草酸沉钴母液的循环利用,分离出的草酸可返回沉淀工序,盐酸则可返回含钴原料浸出工序,反萃后再生的有机相也可再次用于萃取工序,因而实现了整个工艺流程全液相的资源循环利用。
     采用红外光谱法分析P350萃取草酸的作用机制为氢键缔合;采用斜率法计算得到P350萃取草酸的萃合比为nP350:nH2c2O4=2:1。考察了萃取剂浓度、水相酸度、有机相和水相体积比等各工艺条件对萃取分配比的影响,通过单级萃取实验确定了萃取优化条件为:有机相中P350所占体积分数为50%,H+浓度为1.7mol/L,溶液草酸浓度为0.2mol/L-0.4mol/L,萃取达到平衡所需要时间为5分钟。运用萃取过程中的“pH值摆动效应”,选择纯水作为再生反萃剂对草酸进行反萃取,可实现草酸的再生回用。
     系统研究了多级逆流萃取、反萃和洗涤工艺来分离母液中的盐酸、草酸和再生有机相。采用平衡等温线法和串级模拟实验法确定优化萃取相比O/A=2.0,级数为6级,可使萃余液中草酸含量低于0.0040mol/L;采用反萃平衡等温线法确定反萃相比O/A=1.0,反萃级数为10级,草酸的反萃率可达到95%以上。
Cobalt oxide is one of the most important functional materials with excellent properties, which is the main raw material for producing the lithium cobalt oxide as lithium-ion batteries cathode material. Meanwhile it is widely used in areas of super capacitor, cemented carbide, varistor ceramics, inorganic pigment and catalyst. At present, precipitation-thermolysis process with ammonium oxalate as the precipitant is the main supporting techniques for producing the cobalt oxide in industry, which consumes a lot of ammonia. And a great deal of ammonia-containing wastewater will be produced in this process. The non-treatment wastewater is directly discharged, thereby not only bringing about material loss but also polluting the environment. In this research, the addition of ammonia was avoided from the origins. Preparation of Cobalt Oxide by Precipitation-Thermolysis Process of Oxalic Acid without Ammonia and Recovery Utilization of the Mother Liquor with a great of Oxalic Acid were systematically studied. Wastewater closed circulation and reused technological process were adopted to prevent pollution. Therefore, this technique has important theoretical significance and practical value.
     According to the principle of simultaneous equilibrium and mass conservation, a series of thermodynamic equilibrium equations of the complex system of Me2+-C2O42--Cl--H2O were systematically studied, and the equilibrium curves of lg[Me]-pH were drawn, which indicated the equilibrium area and composites of the solutions at different complex and pH. This paper presents the comprehensive Analysis of the effect of pH value and additive such as citric acid, tartaric acid and EDTA on this Equilibrium System. It was found that the impurities such as Ca2+, Ni2+, Pb2+, Cu2+ in the solution always precipitated before Co2+, but Mg2+, Fe2+, Mn2+, Zn2+ precipitated before Co2+ only at high pH values. Therefore, reducing impurities contents and maintaining low pH value can get higher precipitation rate and better quality of cobalt oxalate in manufacture.
     The main factors affecting the precipitation rate, the size and morphology of the precipitated particles were investigated comprehensively. The Results show that the cobalt chloride content, temperature and the feeding speed of H2C2O4 played a decisive role in the size and morphology of cobalt oxalate. And the excess coefficient of oxalic acid had great influence on the precipitation rate. Adding ultrasonic on the process can decrease agglomeration effectively with the decrease of the particle size. But ultrasonic cavitation will hinder grains further growth, and the shape of cobalt oxalate particle became tubby and square finally and the ratio of length to diameter decreased. The optimum technological conditions were obtained as follows:using cobalt chloride as the starting material with 1mol/L, oxalic acid as coprecipitated agent with the excess coefficient(molar ratio of oxalic acid to cobalt chloride)1.5:1, positive-feed method,5.5 of pH value at 60℃, the feeding speed lOmL/min. Under these conditions, the rod-likeβ-CoC2O4-2H2O with D50 from 30μm to 50μm can be fabricated, the precipitation rate was above 95%.
     Washing, drying and thermal decomposition on Cobalt oxalate dehydrate (CoC2O4-2H2O) were studied. The thermal decomposition behavior of Cobalt oxalate dehydrate was studied in Ar or Air Atmosphere by Thermogravimetry analysis(TGA) and Differential Scanning Calorimetry(DSC) respectively. It was also analyzed and discussed from thermodynamics point of view in this paper. The result shows that the thermal decomposed products were mainly Cobalt Metal in Ar Atmosphere, and mainly Co3O4 with temperature below 700℃, mainly CoO with temperature above 900℃in air atmosphere. DSC-TGA curves verified the effectiveness of the thermodynamics model.
     This paper made an overall analysis of kinetic mechanism of the thermal decomposition behavior of cobalt oxalate.The kinetic model function, the apparent activation energy and preexponential factor were obtained by Coats-Redefrn equations, Ozawa method and Kissinger method. The most possible kinetic model function was [-ln(1-a)]1/3 in both inert atmosphere and oxidizing atmosphere. The activation energy of decomposition which was estimated by Ozawa and Kissinger in inert atmosphere were 129.82 KJ/mol and 125.37kJ/mol, respectively. And preexponential factor was 3.0533×109S-1. The activation energy of reaction from COC2O4 to Co3O4 by Ozawa and Kissinger in air atmosphere were 70.5 kJ/mol and 64.11kJ/mol, respectively. And preexponential factor was 1.2008×105S-1. The activation energy of reaction from Co3O4 to CoO by Ozawa and Kissinger in air atmosphere were 1232.14kJ/mol and 1276.04kJ/mol, respectively. And preexponential factor was 2.2103×1056S-1.
     A novel method of selective extraction of oxalic acid from hydrochloric acid solution by the complexing agent P350 was proposed, which was used in recycling of the mother-liquor after precipitating cobalt effectively. The oxalic acid separated from the mother-liquor can be reused in precipitation process, and the hydrochloric acid in extraction raffinate can be used for leaching of raw materials Containing cobalt. The organic Phase after back extraction can extract again. So, all the resources of this process can be recycling used.
     The mechanism of extraction was investigated by infrared, and there were hydrogen bond association reaction. The composition of extracted complex had been determined P350: H2C2O4=1 : 1 by means of the slope method. The influences by factors such as the extractant concentration, aqueous phase acidity, volumetric ratio of oil phase and aqueous phase on the distribution ratio were examined. The optimum technological conditions were obtained as follows:the P350 concentration in extractant 50% by volume, the concentration of hydrogen ion 1.7mol/L,the concentration of oxalic acid from 0.2mol/L to 0.4mol/L,the time of extraction equilibrium 5min. The pH swing effect was used to strip the oxalic acid from organic Phase, using pure water as stripping agent, and the reuse of oxalic acid was realized.
     Multi-stage countercurrent extraction, back extraction and washing were investigated in this paper. The volumetric ratio of oil phase and aqueous phase (O/A) and extraction stages were determined by the method of equilibria isotherm and the string class simulate experiment. The concentration of the oxalic acid in extraction raffinate was less than 0.0040mol/L with 6-stage extraction while O/A was 2.0.And the back extraction ratio was more than 95% with 10-stage extraction while O/A was 2.0.
引文
[1]王永利,徐国栋.钴资源的开发和利用.河北北方学院学报(自然科学版)2005,21(3):18-21.
    [2]乐颂光.钴冶金.北京:冶金工业出版社,1987.7-35.
    [3]唐娜娜.钴矿资源及其选矿研究进展.有色矿冶,2006,22(S1):5-7.
    [4]文德荣.草酸钴和氧化钴.江西冶金,1997,17(5):54-56.
    [5]陈松.湿法制备单分散Co3O4粉末的形貌和粒度控制研究:[博士学位论文].长沙:中南大学,2003.
    [6]何焕华,蔡乔方.中国镍钴冶金.北京:冶金工业出版社,2000.541-557.
    [7]税用红.钻与社会生活.成都纺织高等专科学校学报,2000,17(4):61-62.
    [8]曹异生.世界钻工业现状及前景展望.中国金属通报,2007, (42):34-36.
    [9]王文祥.单分散超细钴氧化物的制备:[硕士学位论文].长沙:中南大学,2001.
    [10]赖雪飞.低氯碳酸钴的制备工艺研究:[硕士学位论文].成都:四川大学,2006.
    [11]Kameswari S..Preparation and characterization of fine cobalt metal and oxide Powders.PMAI News leters,1978,4(4):16-21.
    [12]Liu Chueh-Yang, Chen Chia-Fu, Leu Jih-Perng.Fabrication of mesostructured cobalt oxide sensor and its application for CO detector.Electrochemical and Solid-State Letters,2009,12 (4):40-43.
    [13]Kandalkar S.G., Gunjakar J.L., Lokhande C.D..Preparation of cobalt oxide thin films and its use in supercapacitor application.Applied Surface Science,2008, 254 (17):5540-5544.
    [14]Srivastava D.N., Perkas N., Seisenbaeva G.A. et al..Preparation of porous cobalt and nickel oxides from corresponding alkoxides using a sonochemical technique and its application as a catalyst in the oxidation of hydrocarbons.Ultrasonics Sonochemistry,2003,10 (1):1-9.
    [15]Rusovich-Yugai N.S..Effect of dextrin on properties of glazes and ceramic paints and on the reduction of cobalt oxide.Glass and Ceramics,2006,63 (3-4): 89-91.
    [16]Oyman Z.O., Ming W., Van Der Linde R..Oxidation of drying oils containing
    non-conjugated and conjugated double bonds catalyzed by a cobalt catalyst.Progress in Organic Coatings,2005,54 (3):198-204.
    [17]Tronel Frederic, Guerlou-Demourgues Liliane, Menetrier Michel.New spinel cobalt oxides, potential conductive additives for the positive electrode of Ni-MH batteries.Chemistry of Materials,2006,18 (25):5840-5851.
    [18]Smith, C.G..Always the bridesmaid, never the bride:Cobalt geology and resources.Source:Transactions of the Institutions of Mining and Metallurgy, Section B:Applied Earth Science,2001,110 (5-8):75-80.
    [19]丰成友,张德全.中国钴资源及其开发利用概况.矿床地质,2004,23(1):93-98.
    [20]潘彤.我国钻矿矿产资源及其成矿作用.矿产与地质,2003,17(4):516-518.
    [21]于晨,杨晓菲.强中国钴的国际话语权.中国金属通报,2008,(28):34-36.
    [22]Yubko V.M.; Goleva R.V.; Mel'nikov M.E. et aLCobalt minerals in the ocean ferromanganese crusts and nodules.Doklady Akademii Nauk,2002,384 (6): 802-806.
    [23]Scheidweiler, P..Cobalt Resources:Reserves And Availability.Source:Benelux Metall,1981,1:11-16.
    [24]任觉世.工业矿产资源开发利用手册.武汉:武汉工业大学出版社,1993.304-317.
    [25]孙晓刚.世界钴资源的分布和应用.有色金属,2000,(1):38-41.
    [26]中国地质矿产信息研究院.中国矿产.北京:中国建材出版社,1993.352-359.
    [27]刘月有.中国镍钴矿山现代化开采技术.北京:冶金工业出版社,1995.236-243.
    [28]张莓,茹湘兰.我国钴资源特点及开发利用中存在的问题和对策.矿产保护与利用,1993,(3):17-21.
    [29]S. Dunmead.2008 Cobalt Production Statistics.Cobalt News.UK:The Cobalt Development Institute.3-4.
    [30]Kapusta Joel P.T..Cobalt production and markets:A brief overview.JOM,2006, 58 (10):33-36.
    [31]崔乃梁.我国钴生产概述.有色冶炼,1996,25(6):6-10.
    [32]曾刚.世界钴市场分析.有色冶炼,1995,24(5):1-6.
    [33]Zhang Hui, Wu Jianbo, Zhai Chuanxin.From cobalt nitrate carbonate hydroxide hydrate nanowires to porous Co3O4 nanorods for high performance lithium-ion battery electrodes.Nanotechnology,2008,19 (3):035711.
    [34]Ardizzone S., Spinolo G., Trasatti S..Point of zero charge of Co3O4 prepared by thermal decomposition of basic cobalt carbonate.Electrochimica Acta,1995,40 (16):2683-2686.
    [35]Guan Hongyu, Shao Changlu, Wen Shangbin.A novel method for preparing Co3O4 nanofibers by using electrospun PVA/cobalt acetate composite fibers as precursor.Materials Chemistry and Physics,2003,82 (3):1002-1006.
    [36]Nethravathi C., Sen Sonia, Ravishankar N. et al..Ferrimagnetic nanogranular Co3O4 through solvothermal decomposition of colloidally dispersed monolayers of a-cobalt hydroxide.Journal of Physical Chemistry B,2005,109 (23): 11468-11472.
    [37]胡雷,刘志宏.四氧化三钴粉末的制备与应用现状.粉末冶金材料科学与工程,2008,13(4):195-200.
    [38]徐志军,初瑞清,李国荣,等.喷雾热分解合成技术及其在材料研究中的应用.无机材料学报,2004,19(6):1240-1248.
    [39]Ni Yonghong, Ge Xuewu, Zhang Zhicheng, et al..A simple resuction-oxidation route to prepare Co3O4 nanocrystals.Materials Research Bulletin,2006,36: 2383-2387.
    [40]王海北,王玉芳,蒋开喜,等.研究加压湿法直接合成四氧化三钴.科学技术与工程,2005,5(16):1184-1186.
    [41]H.C.Zeng, Y.Y.Ling.Synthesis of Co3O4 spinel at ambient conditions.J. Mater Res.,2000,15 (6):1250-1253.
    [42]Gialiana F., Leonardo F..Precipitation of spherical Co3O4 particles.J. of Colloid and Interface Sci.1995,170:169-175.
    [43]张国福.纳米粒子的化学制备方法及应用.甘肃高师学报.2003,2:39-41.
    [44]Drasovean Romana, Monteiro Regina; Fortunato Elvira, et al..Optical properties of cobalt oxide films by a dipping sol-gel process. Journal of Non-Crystalline Solids,2006,352 (9-20):1479-1485.
    [45]Mustapha El Baydi, Gerard Poillerat, Jean-Luc Rehspringer, etal.,.A Sol-Gel Route for the preparation of Co3O4 Catalyst for oxygen electrocatalysis in
    Alkaline medium.Journal of Solid State Chemistry,1994,109:281-288.
    [46]Subhash Thota, Ashok Kumar, Jitendra Kumar.Optical, electrical and magnetic properties of Co3O4 nanocrystallites obtained by thermal decomposition of sol-gel derived oxalates.Materials Science and Engineering B:Solid-State Materials for Advanced Technology,2009,164 (1):30-37.
    [47]韩立安,常琳,牟国栋,等.Co3O4纳米颗粒的溶胶凝胶法制备及磁性.西安科技大学学报,2008,28(3):602-604.
    [48]王小慧,王子忱,李熙,等.超微粒Co3O4的合成与表征.高等学校化学学报,1991,12,(11):1421-1424.
    [49]马剑华.纳米材料的制备方法.温州大学学报.2002,2:79-82.
    [50]Ronalds Sapieszko, Egon Matijevic.Preparation of well defined colloidal particles by thermal decomposition of metal chelates Ⅱ cobalt and nickel.Corrosion-Nace,1980,36(10):522-530.
    [51]杨幼平,黄可龙,刘人生,等.水热-热分解法制备棒状和多面体状四氧化三钴.中南大学学报(自然科学版),2006,37(6):1103-1106.
    [52]张卫民,宋新宇,李大枝,等.水热条件对立方状Co3O4形貌的影响.高等学校化学学报,2004,25(5):797-801.
    [53]张卫民,孙思修,俞海云,等.水热-固相热解法制备不同形貌的四氧化三钴纳米微粉.高等学校化学学报,2003,24(12):2151-2154.
    [54]B.Basavalingu, J.A.K.Tareen, G.T.Bhanadage.Thermo dynamic properties of Co(OH)2 from hydrothermal equilibrium in cobalt oxide system.Journal of Materials Science Letters,1986, (5):1227-1229.
    [55]Sugimoto T., Matijevic E..Colloidal cobalt hydrous oxides preparation and properties of monodispersed Co3O4.J. Inorg. Nucl. Chem.,1979,41:165-172.
    [56]Suraj Kumar Tripathy, Maria Christy, Nam-Hee Park.Hydrothermal synthesis of single-crystalline nanocubes of Co3O4.Materials Letters,2008,62 (6-7): 1006-1009.
    [57]胡国荣,刘智敏,方正升,等.喷雾热分解技术制备功能材料的研究进展.功能材料,2005,36(3):335-339.
    [58]Do Youp Kim, Seo Hee Ju, Hye Young Koo. Synthesis of nanosized Co3O4 particles by spray pyrolysis. Journal of Alloys and Compounds,2006,417 (1-2):
    254-258.
    [59]郭学益,冯庆明,郭秋松.工艺条件对溶液雾化氧化法制备四氧化三钴粉末的影响.粉末冶金材料科学与工程,2009,14(5):320-325.
    [60]郭学益,田庆华,冯庆明,郭秋松.一种溶液雾化氧化的专用装置.中国专利,200910042853.0,2009-03-06.
    [61]郭学益,田庆华,冯庆明,郭秋松.溶液雾化氧化制备单一或复合金属氧化物的方法及专用装置.中国专利,200920063526.9,2009-03-12.
    [62]V.R. Shinde, S.B. Mahadik, T.P. Gujar.Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis.Applied Surface Science,2006,252(20):7487-7492.
    [63]卿波.尿素均匀沉淀法制备单分散四氧化三钴粉末:[硕士学位论文].长沙:中南大学,2007.
    [64]段炼.碳铵化学沉淀法制备高品质氧化钴粉末:[硕士学位论文].长沙:中南大学,2008.
    [65]P.Jeevanandam, Yu.Koltypin, A.Gedanken, et al..Synthesis of a-cobalt(Ⅱ) hydroxide using ultrasound radiation.Materials Chemistry,2000,10:511-514.
    [66]T.Ishikawa, E.Matijevic.Formation of uniform particles of cobalt compounds and cobalt.Colloid Polym. Sci.,1991,269:179-186.
    [67]李亚栋,贺蕴普,李龙泉,等.液相控制沉淀法制备纳米级Co3O4微粒.高等学校化学学报,1999,20(4):519-522.
    [68]郭学益,田庆华,易宇,李治海.臭氧弥散氧化沉淀-热分解制备钴氧化物粉末的方法.中国专利,200910042533.5,2009-01-19.
    [69]郭学益,田庆华,易宇,李治海.臭氧超声弥散氧化装置.中国专利,200920062971.3,2009-01-19.
    [70]田庆华,郭学益,易宇,李治海.臭氧弥散氧化处理低浓度含钴废水的方法.中国专利,200910042532.0,2009-01-19.
    [71]Ke Xingfei, Cao Jieming, Zheng Mingbo, et al.Molten salt synthesis of single-crystal Co3O4 nanorods.Materials Letters,2007,61 (18):3901-3903.
    [72]Zhao Z.W., Guo Z.P., Liu H.K..Non-aqueous synthesis of crystalline Co3O4 powders using alcohol and cobalt chloride as a versatile reaction system for controllable morphology.Journal of Power Sources,2005,147(1-2):264-268.
    [73]中华人民共和国行业标准.YS/T256-2000.氧化钴.国家有色金属工业局, 2001-03-01.
    [74]王开毅,成本诚,舒万银.溶剂萃取化学.长沙:中南工业大学出版社,1991.75-76.
    [75]Meites L..An introduction to chemical equilibrium and kinetics.Pergamon Press,1981.31-33.
    [76]周炳珍.用P204和P507脱出含钴废料中的杂质生产高纯度氯化钴.有色金属(冶炼部分),2002,6:16-17.
    [77]张波.用P204在氯化物体系萃取净化工艺的研究.有色冶炼(重金属),2001,4(2):16-19.
    [78]吴声,廖春生,贾江涛,等.P507体系反萃取条件对平衡负载稀土量的研究.中国稀土学报,2006,24(2):134-138.
    [79]王保贞.水污染控制工程.北京:高等教育出版社,1996.76-80.
    [80]Hanaki K, Hong Z, Matsuo.Production of nitrous oxide gas during de nitrification of waste water. Water Science and Technology,1992,26:1027.
    [81]刘旭娃,邱显扬,危青,等.从V2O5生产废水中脱除氨氮的研究.广东有色金属学报,2006,16(2):84-87.
    [82]孙锦宜.含氮废水处理技术与应用.北京:化学工业出版社,2003.33-35.
    [83]刘文龙,钱仁渊,包宗宏.吹脱法处理高浓度氨氮废水.南京工业大学学报,2008,30(4):56-59.
    [84]陈莉荣,戴宝成,武文斐,等.吹脱法处理稀土氯铵废水试验研究.金属矿山,2007,(9):101-102.
    [85]中华人民共和国标准.GB8978-1996.污水综合排放标准.国家环境保护局,1998-01-01
    [86]何岩,赵由才,周恭明.高浓度氨氮废水脱氮技术研究进展.工业水处理,2008,28(1):1-4.
    [87]张显贵.合成氨厂氨氮排放水处理技术探讨.中国清洁生产,1998,1(12):17-18.
    [88]李健昌,封丹,罗仙平,等.氨氮工业废水处理技术现状和展望.四川有色金属,2008,(3):14,24,34,44,53.
    [89]胡继峰,刘怀.含氨废水处理技术及工艺设计方案.水处理技术,2003,29(4):244-246.
    [90]毛悌和.化工废水处理技术.北京:化学工业出版社,2001.102-139.
    [91]Leavic S..Nitrogen removal from fertilizer wastewater by ion exchange.Journal Environmental Research,2000,34(1):185-190.
    [92]仝武刚,王继徽.高浓度氨氮废水治理技术.污染防治技术,2002,15(2):24-27.
    [93]Soare Lucica Cristina, Lemaitre Jacques, Bowen Paul.A thermodynamic model for the precipitation of nanostructured copper oxalates.Journal of Crystal Growth,2006,289 (1):278-285.
    [94]Yang Hee-Jung, Yum Seong Soo.Effects of prescribed initial cloud droplet spectra on convective cloud and precipitation developments under different thermodynamic conditions:A modeling and observational study.Atmospheric Research,2007,86 (3-4):207-224.
    [95]JU Shao-hua, TANG Mo-tang, YANG Sheng-hai.Thermodynamics and technology of extracting gold from low-grade gold ore in system of NH4Cl-NH3-H2O.Transactions of Nonferrous Metals Society of China (English Edition), 2006,16 (1):203-208.
    [96]周小兵,代建清,蔡进红.化学共沉淀法制备NiCuZn铁氧体前驱体的热力学分析.硅酸盐学报,2009,37(1):23-28.
    [97]Ju Shao-Hua, Tang Mo-Tang, Yang Sheng-Hai, et al..Thermodynamics of Cu(II)-NH3-NH4Cl-H2O system.Transactions of Nonferrous Metals Society of China (English Edition),2005,15 (6):1414-1419.
    [98]何显达,郭学益,李平,等.从人造金刚石触媒酸洗废液中回收镍、钴和锰.湿法冶金,2005,24(3):150-154.
    [99]FAN Youqi, ZHANG Chuanfu, ZHAN Jing, et al..Thermodynamic equilibrium calculation on preparation of copper oxalate precursor powder. Transactions of Nonferrous Metals Society of China (English Edition),2008,18(2):454-458.
    [100]Huang Kai, Guo Xueyi, Zhang Duomo. Study on the thermodynamic equilibrium of Ni(II)-NH3-C2O42--H2O system and its application to the precipitation of ultrafine nickel oxalate particles.TMS Annual Meeting,2004, EPD Congress 2004-Proceedings of the Symposium Sponsored by the Extraction and Processing Division of the Minerals, Metals and Materials Society, TMS:467-475.
    [101]彭忠东,杨建红,邹忠,等.共沉淀法制备掺杂氧化锌压敏陶瓷粉料热力学分析.无机材料学报,1999,14(5):733-738.
    [102]张保平,张金龙,唐谟堂,等.共沉法制备锰锌软磁铁氧体前躯体的热力学分析.江西有色金属,2005,19(2):35-37.
    [103]苏继桃,苏玉长,赖智广,等.共沉淀法制备镍、钻、锰复合碳酸盐的热力学分析.硅酸盐学报,2006,34(6):695-698.
    [104]Smith R M, Matell A E.Critical Stability Constants Inorganic Complexes. New York:Plenum Press,1976.1132-1145.
    [105]姚允斌,解涛,高英敏.物理化学手册.上海:上海科学技术出版社,1985.855-868.
    [106]JA迪安.兰氏化学手册.北京:科学出版社,2003.1587-1599.
    [107]Donald D Wangman, Willian H Evans, Vivian B Parker.NBS化学热力学性质表.北京:中国标准出版社,1998.798-809.
    [108]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用.长沙:中南工业大学出版社,1986.393-398.
    [109]黄凯.可控缓释沉淀-热分解法制备超细氧化镍粉末的粒度和形貌控制研究:[博士学位论文].长沙:中南大学,2003.
    [110]田庆华,黄凯,郭学益.纳米铁酸锌的制备研究.矿冶工程,2005,25(2):46-48.
    [111]奚梅成.数值分析方法.合肥:中国科学技术大学出版社,1996.214-240.
    [112]Luo Zhenlin, Lu Menglin, Bao Jun.Co-precipitation synthesis of gadolinium gallium garnet powders using ammonium hydrogen carbonate as the precipitant.Materials Letters,2005,59 (10):1188-1191.
    [113]Li Jiguang, Ikegami Takayasu, Lee Jong-Heun.Reactive yttrium aluminate garnet powder via coprecipitation using ammonium hydrogen carbonate as the precipitant. Journal of Materials Research,2000,15(9):1864-1867, September 2000.
    [114]Nielsen A. H., Thorkild H.J., Vollertsen J..Effects of pH and iron concentrations on sulfide precipitation in wastewater collection systems.Water Environment Research,2008,80 (4):380-384.
    [115]Lewis Alison, Swartbooi Ashton.Factors affecting metal removal in mixed
    sulfide precipitation.Chemical Engineering and Technology,2006,29 (2): 277-280.
    [116]黄明雯,宋鹂,张金朝.液相沉淀法制备草酸钴粉体的研究.无机盐工业,2008,40(4):31-34.
    [117]Zhou Bozhu, Zhou Guohong, An Liqiong. Morphology-controlled synthesis of yttrium hafnate by oxalate co-precipitation method and the growth mechanism. Journal of Alloys and Compounds,2009,481 (1-2):434-437.
    [118]Xiu, Zhimeng, Li Jiguang, Li Xiaodong.Nanocrystalline scandia powders via oxalate precipitation:The effects of solvent and solution pH.Journal of the American Ceramic Society,2008,91 (2):603-606.
    [119]侯铁翠,李智慧,卢红.改进草酸盐共沉淀法制备钛酸钡超细粉体的研究.航空材料学报,2008,28(1):49-52.
    [120]翟秀静,肖碧君,李乃军.还原与沉淀.北京:冶金工业出版社,2008.408-409.
    [121]马荣骏.湿法冶金原理.北京:冶金工业出版社,2007.670-671.
    [122]代云,徐远志,刁微之.氧化钴生产过程的非草酸盐沉钻工艺研究之一碳铵(反加)法自氯化钴溶液中沉钴.云南冶金,2007,36(3):32-36.
    [123]Haq Ikram, Akhtar, Khalida.Preparation and characterization of uniformly coated particles by homogeneous precipitation (cobalt compounds on nickel compounds).Advanced Powder Technology,2000,11 (2):175-186.
    [124]朱学文,廖列文,崔英德.均匀沉淀法制备纳米四氧化三钻微粉.无机盐工业,2002,34(1):3-4.
    [125]王胜,吉鸿安.电池级氧化钴制备新工艺.有色金属,2008,60(2):29-32.
    [126]柳松,古国榜.微细氧化钴粉的研制.矿冶工程,2007,27(3): 69-71.
    [127]黄明雯,宋鹂,张金朝.草酸钴对钴蓝颜料性能的影响.华东理工大学学报(自然科学版),2008,34(4):533-536.
    [128]高晋,王洪军.前驱物颗粒的形貌对钴粉形貌的影响.稀有金属与硬质合金,2002,30(2):15-18.
    [129]李志尊,雷永泉.粉末粒度对储氢电极电化学性能的影响.军械工程学院学报,1999,11(3):53-57.
    [130]陈立新,徐建红.粉末粒度对贮氢合金Mm(NiCoMnTi)5电化学性能的影响.
    稀有金属材料与工程,1998,27(6):376-378.
    [131]曾艳,谢光远,王齐军.洗涤介质对共沉淀Mg-PSZ粉体性能的影响.武汉科技大学学报,2008,31(4):414-417.
    [132]Gong Hua, Tang Ding-Yuan, Huang Hui, et al.Agglomeration control of Nd:YAG nanoparticles via freeze drying for transparent Nd:YAG ceramics. Journal of the American Ceramic Society,2009,92 (4):812-817.
    [133]Wang Baohe, Zhang Wenbo, Zhang Wei, et al.Influence of drying processes on agglomeration and grain diameters of magnesium oxide nanoparticles.Drying Technology,2007,25 (4):715-721.
    [134]黄艳华,谢志刚,贺跃辉,等.草酸盐共沉淀前驱体的热分解过程.粉末冶金材料科学与工程,2007,12(1):35-38.
    [135]Majumdar S., Sharma I.G, Bidaye A.C, et al.A study on isothermal kinetics of thermal decomposition of cobalt oxalate to cobalt.Thermochimica Acta,2008, 473 (1-2):45-49.
    [136]Salavati-Niasari Masoud, Mir Noshin, Davar Fatemeh.Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate. Journal of Physics and Chemistry of Solids2009,70 (5):847-852.
    [137]Maecka B., Drozdz-Ciesla E., Maecki A..Non-isothermal studies on mechanism and kinetics of thermal decomposition of cobalt(II) oxalate dihydrate.Journal of Thermal Analysis and Calorimetry,2002,68(3):819-831.
    [138]黄利伟.草酸钴分解机理的研究.有色金属(冶炼部分),2005,(3):31-33.
    [139]黄利伟,周传让.草酸钴的氧化条件对氧化钴及还原钴粉性能的影响.有色金属(冶炼部分),2005,(2):40-43.
    [140]黄利伟,尹春雷.温度对草酸钴分解过程的影响.有色金属(冶炼部分),2006,(5):48-52.
    [141]黄利伟.影响草酸钴分解速度及钴粉粒度的因素.有色金属(冶炼部分),2007,(1):41-45.
    [142]傅小明,戴起勋,吴晓东.草酸钴还原过程的相变研究.硬质合金,2004,21(1):10-13.
    [143]杨幼平,黄可龙,刘人生,等.水热-热分解法制备棒状和多面体状四氧化三钴.中南大学学报(自然科学版),2006,37(6):1103-1106.
    [144]廖春发,梁勇,陈辉煌.由草酸钴热分解制备Co3O4及其物性表征.中国有色金属学报,2004,14(12):2131-2136.
    [145]高晋,王洪军.前驱物颗粒的形貌对钴粉形貌的影响.稀有金属与硬质合金,2002,30(2):15-18,27.
    [146]Luop, Niehto, Schwartzaj, et al.Surface characteriszationg of nanostructured metal and ceramic particles.Materials Science and Engineering,1995, (A204):59.
    [147]Pampachr, Haberkck.Ceramic Powders.Amsterdam:Elsevier Sientific Pub.Company,1983.623-650.
    [148]冯拉俊,刘毅辉,雷阿利.纳米颗粒团聚的控制.微纳电子技术,2003,(7/8):536-542.
    [149]罗电宏,马荣骏.对超细粉末团聚问题的探讨.湿法冶金,2002,21(2):57-61.
    [150]刘志强,李小斌,彭志宏.湿化学法制备超细粉末过程中的团聚机理及消除方法.化学通报,1999,(7):54-57.
    [151]汪信,忻新泉,戴安邦,等.一些草酸铁盐的电子结构与热稳定性的关系.分子科学与化学研究,1982,(6):15-22.
    [152]Dollimore D, Griffiths D L, Nicholson D.The thermal decomposition of oxalates.Part Ⅱ.Thermogravimetic analysis of various oxalates in air and in nitrogen.Thermochimica Acta,1991,177:59-75.
    [153]田庆华,李钧,郭学益。草酸钴热分解行为及其热力学分析.矿冶工程,2009,29(4):67-69,73.
    [154]梁英教,车荫昌.无机物热力学计算数据手册.沈阳:东北大学出版社,1993.88,113-115,281.
    [155]胡荣祖,高胜利,赵凤起,等.热分析动力学(第二版).北京:科学出版社,2008.1-18.
    [156]Celis K., Van Driessche I., Mouton R., et al.Kinetics of consecutive reactions in the solid state:Thermal decomposition of oxalates.Key Engineering Materials,2001,206-213 (1):807-810.
    [157]Ninan K.N..Kinetics of solid state thermal decomposition reactions.Journal of thermal analysis,1997,35 (4):1267-1278.
    [158]潘云祥,管翔颖,冯增媛.用双外推法讨论固态草酸钴二水合物脱水过程的动力学机理.高等学校化学学报,1999,20(7):1091-1096.
    [159]Zhang Jianjun, Ren Ning, Bai Jihai.Non-isothermal Kinetics of the First-stage Decomposition Reaction of Cobalt Oxalate Dihydrate.Chemical Research in Chinese Universities,2005,21(4):501-504.
    [160]N. Koga, J. Malek, J Sestak, et al.Data Treatment in Non-isothermal Kinetics and Diagnostie Limits of Phenomenological Models.Netsu Sokutei,1993,20 (4):210-223.
    [161]Della Torre Edward, Bennett Lawrence H., Fry Richard A., et al. Preisach-Arrhenius model for thermal aftereffect.IEEE Transactions on Magnetics,2002,38 (511):3409-3416.
    [162]Sahin O., Ozdemir M., Aslanoglu M., et al.Calcination kinetics of ammonium pentaborate using the Coats-Redfern and genetic algorithm method by thermal analysis.Industrial and Engineering Chemistry Research,2001,40 (6):1465-1470.
    [163]Balek V., Murat M.The emanation thermal analysis of kaolinite clay minerals.Thermochimica Acta,1996,282 (2):385.
    [164]Budrugeac P., Segal E.Applicability of the Kissinger equation in thermal analysis. Journal of Thermal Analysis and Calorimetry,2007,88(3):703-707.
    [165]田庆华,李治海,郭学益,P350选择萃取草酸钴沉淀母液中的草酸,中南大学学报(自然科学版),2009,27(4):884-890.
    [166]田庆华,郭学益,李治海,等.从草酸废水中综合回收酸及有价金属的方法.专利申请号:200910042961.8,2009年3月25日.
    [167]Andreozzi R., Isola A., Capro V., Marotta R., Tufano V..The use of manganese dioxide as a heterogeneous catalyst for oxalic acid ozonation in aqueous solution.Applied Catalysis A:General,1996,138:75-81.
    [168]竹湘峰,许新华,王天聪.Fe(Ⅲ)/O3体系对草酸的催化氧化.浙江大学学报(理学版),2004,31(3):322-325.
    [169]赵雷,孙志忠,马军.蜂窝陶瓷催化臭氧化降解水中草酸的研究.环境科学,2007,28(11):2533-2538.
    [170]Faria, P.C.C., Orfao, J.J.M., Pereira, M.F.R..Activated carbon catalytic ozonation of oxamic and oxalic acids.Applied Catalysis B:Environmental,
    2008,79 (3):237-243.
    [171]刘正乾,马军,赵雷.载Pt石墨催化臭氧化降解水中草酸的研究.环境科学,2007,28(6):1258-1263.
    [172]赵怡,朱仲良,王韬,等.高锰酸钾氧化反应中若干基本问题的探讨.实验室研究与探索,2003,22(4):52-54.
    [173]王树民,杨更亮,刘海燕.硫酸铅法回收土霉素发酵废液中的草酸.河北大学学报(自然科学版),2003,23(1):45-47.
    [174]王树民.天然防暴剂与土霉素废液中回收草酸的研究:[硕士论文].石家庄:河北大学,2003.
    [175]杨久义,赵风青,张士莹.从制药厂废水中提取草酸的工艺研究.现代化工2000,20(7):40-42.
    [176]Haselhuhn Frank, Kind Matthias.Pseudo-polymorphic behavior of precipitated calcium oxalate.Chemical Engineering and Technology,2003,26(3):347-353.
    [177]彭存尧,李平安,党捧仙.从土霉素废母液中回收草酸.河南化工,2001(5):31-32.
    [178]Benitez Isa O., Talham Daniel R..Calcium oxalate monohydrate precipitation at membrane lipid rafts. Journal of the American Chemical Society,2005,127 (9):2814-2815.
    [179]戴猷元,张瑾.有机废水萃取处理技术.北京:化学工业出版社,2006.26-30.
    [180]TANG Hong-ping, YANG Ming-de, HE Pei-jiong. Mechanism of extraction of oxalic acid by quaternary ammonium salt.Chinese Journal of Process Engineering,2002,2 (6):506-511.
    [181]秦炜,刘国俊,余立新,等.三辛胺萃取草酸的溶剂再生研究.清华大学学报,2000,40(10):43-46.
    [182]秦炜,张英,罗学辉,等.草酸与乙醛酸的萃取分离.化工学报,2001,52(2):135-139.
    [183]秦炜,曹雁青,戴猷元.络合萃取法从稀溶液中提取草酸.高校化学工程学报,2001,15(3):282-285.
    [184]秦炜,曹雁青,罗学辉,等.三辛胺萃取草酸的机理.化工学报,2001,52(5):414-419.
    [185]曹雁青,秦炜,戴猷元.三辛胺萃取草酸的第3相特性.化工学报,2003,
    54(5):585-589.
    [186]Wu Bin, Wang Kaiyi, Zhang Xianglin.Synergistic extraction of Zn(II) with 1-phenyl-3-methyl-4-benzoyl-pyrazol-5-one(PMBP) and di(1-methylheptyl) methyl phosphonate (P350).ACTA CHIMICA SINICA,1986,44 (5):516-519.
    [187]Junmei Zhao; Yan Bai; Deqian Li; Wei Li Extraction of Rare Earths(III) from Nitrate Medium with Di-(2-ethylhexyl) 2-ethylhexyl Phosphonate and Synergistic Extraction Combined with 1-Phenyl-3-Methyl-4-Benzoy 1-Pyrazolone-5 Separation Science and Technology,2006,41 (13):3047-3063.
    [188]冯静.P350萃取色谱分离无火焰原子吸收光谱法测定地球化学样品中的铟.岩矿测试,2005,24(2):138-140.
    [189]贾琼,李德谦,牛春吉.1-苯基-3-甲基-4-苯甲酰基-吡唑酮-5与中性磷(膦)萃取剂协同萃取镧B.分析化学,2004,32(11):1421-1425.
    [190]Junmei Zhao, Shulan Meng, Deqian Li. Synergistic extraction of rare earths(III) from chloride medium with mixtures of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 and di-(2-ethylhexyl)-2-ethylhexylphosphonate.Journal of Chemical Technology & Biotechnology,2006,81 (8):1384-1390.
    [191]范梅英,甲基膦酸二甲庚酯(P350)色层分离—α谱测量U234/U238和Th230/Th232的活度比,核化学与放射化学,1990,12(1):59-64.
    [192]江瑜,张忠信.甲基膦酸二甲庚酯萃取色谱法分离金、铂的研究.分析化学,1994,22(8): 794-797.
    [193]戴猷元,/秦炜,张瑾,等.有机物络合萃取技术(修订版).北京:化学工业出版社,2008.33-40.
    [194]Tamada J A, Kertes A S. King C J, Extraction of carboxylic acids with amine extractants.1. Equilibria and law of mass action modeling. Industrial and Engineering Chemistry Research.1990,29(7):1319-1326.
    [195]印永嘉.物理化学简明手册.北京:高等教育出版社,1988.460-500.
    [196]King C J. Separation process based on reversible chemical complexation// Rousseau R W. Handbook of Separation Process Technology. New York:John Wiley & Sons Inc.,1987:760-774.
    [197]戴猷元,杨义燕,徐丽莲,等.基于可逆络合反应的萃取技术——极性有机物稀溶液的分离.化工进展,1991,10(1):30-34.
    [198]张瑾,戴猷元.络合萃取的“摆动效应”及应用.现代化工,1999,19(3):8-11.
    [199]Tamada J A, King C J, Extraction of carboxylic acids with amine extractants.3. Effect of temperature, water coextraction, and process considerations Industrial and Engineering Chemistry Research.1990,29(7):1333-1338.
    [200]单欣昌,秦炜,戴猷元.萃取剂相对酸(碱)度对极性有机物络合萃取平衡的影响.高校化学工程学报,2005,19(5):593-597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700