用户名: 密码: 验证码:
改性CaCu_3Ti_4O_(12)及相关陶瓷的结构与巨介电效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巨介电常数材料在电容器及电子元件小型化等方面有着重要的潜在应用。CaCu3Ti4O12是该类材料的典型代表,其巨介电常数具有温度和频率的稳定性,这一独特的介电性能,使其成为了电介质材料研究的热点之一。为了加深对CaCu3Ti4O12巨介电效应物理本质的理解,同时对其介电性能进行调制,系统研究了改性CaCu3Ti4O12及相关陶瓷的结构、微结构以及介电性能。
     首先,采用固相反应法制备得到单相的Ca1-3x/2NdxCu3Ti4O12(x=0,0.1,0.2)陶瓷。利用宽温宽频分析仪,对样品进行了系统的介电性能测试。发现Ca1-3x/2NdxCu3Ti4O12(x=0,0.1,0.2)陶瓷存在低温与高温两个介电弛豫,低温介电弛豫属于样品的本征行为,且遵循Arrhenius定律,Cu+/Cu2+和Ti3+/Ti4+混价结构应该是形成该介电弛豫的根源。通过X射线光电子能谱测试,进一步证实了Ca1-3x/2NdxCu3Ti4O12 (x=0,0.1,0.2)陶瓷中Cu离子和Ti离子的变价情况。Nd元素在Ca位进行置换,使得样品中的混价结构发生了改变,从而达到调控其介电性能的效果。
     进一步测试不同烧结温度下制备的Ca1-3x/2NdxCu3Ti4O12 (x=0,0.1,0.2)陶瓷的介电性能,发现在Nd元素置换量x=0.1的样品中,陶瓷介电性能对制备条件的敏感性得到了明显的控制。借助扫描电镜观察样品的微观形貌,发现x=0.1样品的微观形貌随烧结温度的改变而发生明显变化,而其介电性能却并未受到微结构变化的影响,始终保持稳定。结构分析表明,在x=0.1样品中,TiO6八面体的倾斜程度最小,Ti-O键长也相应最小,形成了更为紧凑的结构。这一结构特点应是其介电性能制备条件敏感性得到明显控制的原因。
     采用固相反应法制备了SrCu3Ti4O12陶瓷,样品中存在少量的SrTiO3和CuO第二相。介电性能分析表明,SrCu3Ti4O12陶瓷在低温下存在一个明显的介电弛豫,该弛豫属于样品的本征行为。另外,将SrCu3Ti4012陶瓷与Ca1-3x/2NdxCu3Ti4012(x=0,0.1,0.2)陶瓷进行比较,发现SrCu3Ti4O12陶瓷的室温电导明显减小。
Giant dielectric constant materials show great potential in the applications for miniaturization of microelectronic devices. CaCu3Ti4O12 is one of the most typical giant dielectric materials. It indicates a giant dielectric constant which keeps temperature and frequency-independent. So far, intensive investigations have been focused on its giant dielectric characteristics. To investigate the origin of the giant dielectric response in CaCu3Ti4O12 and modify its dielectric characteristics, Nd-substituted CaCu3Ti4O12 and related ceramics were prepared and their structure, microstructure and dielectric characteristics were evaluated.
     First, Ca1-3x/2NdxCu3Ti4O12 (x=0,0.1,0.2) ceramics were prepared by a solid state reaction process and single-phase structures were obtained for all the compositions. Dielectric characteristics of the present ceramics were evaluated in a broad range of temperature and frequency. Two significant dielectric relaxations were observed in the low and high temperature ranges. The low temperature dielectric relaxation following Arrhenius law, should be ascribed to the more intrinsic mechanisms where the mixed-valent structures of Cu+/Cu2+ and Ti3+/Ti4+ might play important roles. Dielectric characteristics of the present ceramics were modified through modifying the mixed-valent structures by Nd-substitution.
     Dielectric characteristics of Ca1-3x/2NdxCu3Ti4O12 (x=0,0.1,0.2) ceramics sintered at various temperatures were also investigated. For samples with x=0.1, the processing dependence of dielectric characteristics was significant controlled. The samples with x=0.1 sintered at various temperatures maintained stable dielectric characteristics even though great changes took place in microstructures. Structure characteristics of the present ceramics were further investigated. Comparing with other compositions, TiO6 octahedron in the samples with x=0.1 tilted less. Correspondingly, Ti-O distance was the smallest. Such compact structure might be responsible for the controlled processing dependence of dielectric characteristics in such sample.
     SrCu3Ti4O12 ceramics were prepared by a solid state reaction process, and the SrCu3Ti4O12 major phase combined with minor amount of SrTiO3 and CuO secondary phase were observed in the present ceramics. A significant dielectric relaxation was observed at low temperature which should originate from some intrinsic mechanism. Comparing with Ca1-3x/2NdxCu3Ti4O12(x=0,0.1,0.2) ceramics, the conductivity of SrCu3Ti4O12 ceramics at room temperature was significantly decreased.
引文
[1]李翰如.电介质物理导论.成都:成都科技大学出版社,1990:6-13,62-69,134-140.
    [2]李宗全,陈湘明.材料结构与性能.杭州:浙江大学出版社,2001:164-166.
    [3]张良莹,姚熹.电介质物理.西安:西安交通大学出版社,2008:65-98.
    [4]殷之文.电介质物理学.北京:科学出版社,2003:1-3,34-49,57-62.
    [5]R.C. Buchanan. Ceramics Materials for Electronics:Processing, Properties, and Applications. New York:Marcel Dekker Inc.,1991, Second Edition:36-40.
    [6]A.R. West, T.B. Adams, F.D. Morrison, D.C. Sinclair. Novel High Capacitance Materials:-BaTiO3:La and CaCu3Ti4012. J. Eur. Ceram. Soc.,2004,24:1439-1448.
    [7]J.S. Kim and S.G. Yoon. High Dielectric Constant (Bao.65Sro.35)(Tio.41Zr0.59)03 Capacitors for Gbit-scale Dynamic Random Access Memory Devices. J. Vac. Sci. Technol. B,2000,18:216-220.
    [8]S. Saha and S.B. Krupanidhi. Dielectric Response in Pulsed Laser Ablated (Ba,Sr)TiO3 Thin Films. J. Appl, Phys.,2000,87:849-854.
    [9]C. Tantigate, J. Lee and A. Safari. Processing and Properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 Thin Films by Pulsed Laser Deposition. Appl. Phys. Lett.,1995,66:1611-1613.
    [10]W. Jo, T.H. Kim, D.Y. Kim and S.K. Pabi. Effects of Grain Size on the Dielectric Properties of Pb(Mg1/3Nb2/3)O3-30 mol% PbTiO3 Ceramics. J. Appl. Phys.,2007,102:074116.
    [11]S. Nabunmee and G. Rujijanagul. Observation of High Dielectric Constants in xPb(Zn1/3Nb2/3)O3)-(0.2-x)Pb(Ni1/3Nb2/3)O3-0.8Pb(Zr1/2Ti1/2)O3 Ternary Solid Solutions. J. Appl. Phys.,2007,102:094108.
    [12]C. Pecharroman, E.B. Fatima and J.S. Moya. New Percolative BaTiO3-Ni Composites with a High and Frequency-independent Dielectric Constant (εr-80000). Adv. Mater.,2001,13(20): 1541-1544.
    [13]Z.M. Dang, Y. Shen and C.W. Nan. Dielectric Behavior of Three-phase Percolative Ni-BaTi03/polyvinylidene Fluoride Composites. Appl. Phys. Lett.,2002,81:4814-4816.
    [14]R. Zhang, L. Gao, H. Wang and J. Guo. Dielectric Properties and Space Charge Behavior in SiC Ceramic Capacitor. Appl. Phys. Lett.,2004,85:2047.
    [15]J. Xu and C.P. Wong. Low-loss Percolative Dielectric Composite. Appl. Phys. Lett.,2005,87: 082907.
    [16]王振平,赵俊斌,李勇,章士瀛.表面层型半导体陶瓷电容器.电子元件与材料.2000,19(5):13-16.
    [17]陈志雄,周方桥,付刚,唐大海.钙钛矿结构陶瓷N型半导化评述.材料导报.2000,14(3): 44-47.
    [18]J.B. Wu, C.W. Nan, Y.H. Lin and Y. Deng. Giant Dielectric Permittivity Observed in Li and Ti Doped NiO. Phys. Rev. Lett.,2002,89:217601.
    [19]J.H. Kim, Y.W. Lee, A. Souchkov, J.S. Lee, H.D. Drew, S.J. Oh, C.W. Nan and E.J. Choi. Infrared Study of Giant Dielectric Constant in Li-and Ti-doped NiO. Phys. Rev. B,2004,70: 172106.
    [20]Y.H. Lin, L. Jiang, R.J. Zhao, and C.W. Nan. High-permittivity Core/Shell Stuctured NiO-based Ceramics and Their Dielectric Response Mechanism. Phys. Rev. B,2005,72:014103.
    [21]Y.H. Lin, R.J. Zhao, J.F. Wang, J.N. Cai, C.W. Nan, Y.T. W and L. Wei, Polarization of High-permittivity Dielectric NiO-based Ceramics. J. Am. Ceram. Soc.,2005,88:1808.
    [22]Y.H. Lin, J.F. Wang, L. Jiang, Y. Chen and C.W. Nan. High Permittivity Li and Al Doped NiO Ceramics. Appl. Phys. Lett.,2004,85:5664-5666.
    [23]N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kito. Ferroelectricity from Iron Valence Ordering in the Charge-frustrated System LuFe2O4. Nature,2005,436:1136-1138.
    [24]J.Y. Park, J.H. Park, Y.K. Jeong, H.M. Jang. Dynamic Magnetoelectric Coupling in "Electronic Ferroelectric" LuFe2O4. Appl. Phys. Lett.,2007,91:152903.
    [25]B.K. Bang, T. Kouh, C.S. Kima. Magnetic Property and Charge Ordering Effect in Polycrystalline LuFe2O4. J. Appl. Phys.,2008,103:07E307.
    [26]K. Oka, M. Azuma, N. Hayashi, S. Muranaka, Y. Narumi, K. Kindo, S. Ayukawa, M. Kato, Y. Koike, Y. Shimakawa, M. Takano. Charge and Magnetic Orderings in the Triangular-lattice Antiferromagnet InFe2O4. J. Phys. Soc. Jpn.,2008,77:064803.
    [27]J. Rivas, B. Rivas-Murias, A. Fondado and J. Mira. Dielectric Response of the Charge-ordered Two-dimensional Nickelate La1.5Sr0.5NiO4.Appl. Phys. Lett.,2004,85: 6224-6226.
    [28]X.Q. Liu, S.Y. Wu, X.M. Chen, and H.Y. Zhu. Giant Dielectric Response in Two-dimensional Charge-ordered Nickelate Ceramics. J. Appl. Phys.,2008,104:054114.
    [29]X.Q. Liu, Y.J. Wu, X.M. Chen, and H.Y. Zhu. Temperature-stable Giant Dielectric Response in Orthorhombic Samarium Strontium Ceramics. J. Appl. Phys.,2009,105:054104.
    [30]I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya and L. Jastrabik. High Dielectric Permittivity in AFe1/2B1/2O3 Nonferroelectric Perovskite Ceramics (A=Ba, Sr, Ca; B=Nb,Ta, Sb). J. Appl. Phys.,2003,93:4130-4136.
    [31]W.H. Jung, J.H. Lee, J.H. Sohn, H.D. Nam and S.H. Cho. Dielectric Loss Anomaly in Ba(Fe1/2B1/2)O3 Ceramics. Mater. Lett.,2002,56:334-338.
    [32]S. Saha and T.P. Sinba. Structural and Dielectric Studies of BaFe1/2B1/2O3. J. Phys.:Condens. Matter.,2002,14:249-258.
    [33]S. Saha and T.P. Sinba. Low-temperature Scaling Behavior of BaFe1/2B1/2O3. Phys. Rev. B., 2002,65:134103.
    [34]Z. Wang, X.M. Chen, L. Ni and X.Q. Liu. Dielectric Abnormities of Complex Perovskite Ba(Fe1/2Nb1/2)O3 Ceramics over Broad Temperature and Frequency Range. Appl. Phys. Lett., 2007,90:022904.
    [35]Z. Wang, X.M. Chen, L. Ni, Y.Y. Liu and X.Q. Liu. Dielectric Relaxations in Ba(Fe1/2Ta1/2)O3 Giant Dielectric Constant Ceramics. Appl. Phys. Lett.,2007,80:102905.
    [36]M.A. Subramanian, D. Li, N. Duan, B.A. Reisner and A.W. Sleight. High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases. J. Solid State Chem.,2000,151:323-325.
    [37]A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt and S.M. Shapiro. Giant Dielectric Constant Response in a Copper-titanate. Solid State Commun.,2000,115: 217-220.
    [38]M.A. Subramanian and A.W. Sleight. ACu3Ti4012 and ACu3Ru4O12 Perovskites:High Dielectric Constants and Valence Degeneracy. Solid State Sci.,2002,4:347-351.
    [39]C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto and A.P. Ramirez. Optical Response of High-dielectric-constant Perovskite-related Oxide. Science,2001,293:673-676.
    [40]M.H. Cohen, J.B. Neaton, L.X. He and D. Vanderbilt. Extrinsic Models for the Dielectric Response of CaCu3Ti4O12. J. Appl. Phys.,2003,94:3299-3306.
    [41]Y. Zhu, J.C. Zheng, L. Wu, A.I. Frenkel, J. Hanson, P. Northrup, and W. Ku. Nanoscale Disorder in CaCu3Ti4O12:A New Route to the Enhanced Dielectric Response. Phys. Rev. Lett., 2007,99:037602.
    [42]C.C. Wang and L.W. Zhang. Polaron Relaxation Related to Localized Charge Carriers in CaCu3Ti4O12. Appl. Phys. Lett.,2007,90:142905.
    [43]L. Ni and X.M. Chen. Dielectric Relaxations and Formation Mechanism of Giant Dielectric Constant Step in CaCu3Ti4O12 Ceramics. Appl. Phys. Lett.,2007,91:122905.
    [45]D.C. Sinclair, T.B. Adams, F.D. Morrison and A.R. West. CaCu3Ti40]2:One-step Internal Barrier Layer Capacitor. Appl. Phys. Lett.,2002,80(12):2153-2155.
    [46]P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus and A. Loid. Nonintrinsic Origin of the Colossal Dielectric Constants in CaCu3Ti40,2. Phys. Rev. B,2004,70:172102.
    [47]M.H. Whangbo, M.A. Subramanian. Structural Model of Planar Defects in CaCu3Ti4O12 Exhibiting a Giant Dielectric Constant. Chem. Mater.,2006,18:3257-3260.
    [48]D.S. Fu, H. Taniguchi, T. Taniyama, M. Itoh and S.Y. Koshihara. Origin of Giant Dielectric Response in Nonferroelectric CaCu3Ti4O12:Inhomogeneous Conduction Nature Probed by Atomic Force Microscopy. Chem. Mater.,2008,20:1694-1698.
    [49]P. Delugas, P. Alippi, V. Fiorentini and V. Raineri. Reorientable Dipolar CuCa Antisite and Anomalous Screening in CaCu3Ti4012. Phys. Rev. B,2010,81:081104(R).
    [50]J.C. Zheng, A.I. Frenke, L. Wu, J. Hanson, W. Ku, E.S. Bozin, S.J.L. Billinge and Y.M. Zhu. Nanoscale Disorder and Local Electronic Properties of CaCu3Ti4O12:An Integrated Study of Electron, Neutron, and X-ray Diffraction, X-ray Absorption Fine Structure, and First-principles Calculations. Phys. Rev. B,2010,81:144203.
    [51]P.R. Bueno, R. Tararan, R. Parra, E. Joanni, M.A. Ram(?)rez, W.C. Ribeiro, E. Longo and J.A. Varela. A Polaronic Stacking Fault Defect Model for CaCu3Ti4O12 Material:An Approach for the Origin of the Huge Dielectric Constant and Semiconducting Coexistent Features. J. Phys. D:Appl. Phys.,2009,42:055404 (9pp).
    [52]L. Feng, X..M. Tang, Y.Y. Yan, X.Z. Chen, Z.K. Jiao, and G.H. Cao. Decrease of Dielectric Loss in CaCu3Ti4O12 Ceramics by La Doping. Phys. Stat. Sol. (a),2006,203:No.4, R22-R24.
    [53]L. Ni, X.M. Chen. Enhanced Giant Dielectric Response in Mg-substituted CaCu3Ti4O12 Ceramics. Solid State Commun.,2009,149:379-383.
    [54]S.W. Choi and S.H. Hong, Y.M. Kim. Effect of Al Doping on the Electric and Dielectric Properties of CaCu3Ti4O12. J. Am. Ceram. Soc.,2007,90:4009-4011.
    [55]T.B. Adams, D.C. Sinclair and A.R. West. Giant Barrier Layer Capacitance Effects in CaCu3Ti4O12 Ceramics. Adv. Mater.,2002,14:NO.18,1321-1323.
    [56]L. Ni, X.M. Chen, X.Q. Liu and R.Z. Hou. Microstructure-dependent Giant Dielectric Response in CaCu3Ti4O12 Ceramics. Solid State Commun.,2006,139:45-50.
    [57]B. Shri Prakash and K.B.R. Varma. Effect of Sintering Conditions on the Dielectric Properties of CaCu3Ti4O12 and La2/3Cu3Ti4012 Ceramics:A Comparative Study. Physica B,2006, 382:312-319.
    [58]T.B. Adams, D.C. Sinclair and A.R. West. Influence of Processing Conditions on the Electrical Properties of CaCu3Ti4O12 Ceramics. J. Am. Ceram. Soc.,2009,89(10):3129-3135.
    [59]S. Kwon and D.P. Cann. Influence of the Processing Rates and Sintering Temperatures on the Dielectric Properties of CaCu3Ti4O12 Ceramics. J. Electroceram.,2010,24:231-236.
    [60]W.X. Yuan. Investigation on the Decomposable Process and the Secondary Liquid Phase Effect on the Dielectric Properties of CaCu3Ti4O12 Ceramics. J. Phys. D:Appl. Phys.,2009,42: 175401 (6pp).
    [61]T.T. Fang and H.K. Shiau. Mechanism for Developing the Boundary Barrier Layers of CaCu3Ti40,2. J. Am. Ceram. Soc.,2004,87(11):2072-2079.
    [62]S.F. Shao, J.L. Zhang, P. Zheng, W.L. Zhong, and C.L. Wang. Microstructure and Electrical Properties of CaCu3Ti4O12 Ceramics. J. Appl. Phys.,2006,99:084106.
    [63]S. Kwon and D.P. Cann. Relationship among the Phase Equilibria, Microstructures, and Dielectric Properties of CaCu3Ti4012 Ceramics via Different Sintering Time. J. Mater. Sci.,2009, 44:4117-4123.
    [64]W.Q. Ni, X.H. Zheng and J.C. Yu. Sintering Effects on Structure and Dielectric Properties of Dielectrics CaCu3Ti4O12. J. Mater. Sci.,2007,42:1037-1041.
    [65]J. Sebald, S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, S. Riegg, A. Reller, A. Loidl. Colossal Dielectric Constants:A Common Phenomenon in CaCu3Ti4O12 Related Materials. Solid State Commun.,2010,150:857-860.
    [66]W.T. Hao, J.L. Zhang, Y.Q. Tan and W.B. Su. Giant Dielectric-Permittivity Phenomena of Compositionally and Structurally CaCu3Ti4O12-Like Oxide Ceramics. J. Am. Ceram. Soc.,2009, 92(12):2937-2943.
    [67]倪磊.CaCu3Ti4O12陶瓷的巨介电效应及其调控[博士学位论文].杭州:浙江大学材料系,2009:42-53.
    [68]B.S. Prakash and K.B.R. Varma. Effect of Sintering Conditions on the Microstructural, Dielectric, Ferroelectric and Varistor Properties of CaCu3Ti4012 and La2/3Cu3Ti4O12 Ceramics belonging to the High and Low Dielectric Constant Members of ACu3M4O12 (A=alkali, alkaline-earth metal, rare-earth metal or vacancy, M=transition metal) Family of Oxides. Appl. Phys. Lett.,2007,90:082903.
    [69]B.S. Prakash and K.B.R. Varma. Ferroelectriclike and Pyroelectric Behavior of CaCu3Ti4012 Ceramics. Physica B,2008,403:2246.
    [70]D. Chakravarty, P. Singh, S. Singh, D. Kumar, O. Parkash. Electrical Conduction Behavior of High Dielectric Constant Perovskite Oxide LaxCai-3x/2Cu3Ti4O12. J. Alloys and Compd.,2007, 438:253-257.
    [71]O. Parkash, D. Kumar, A. Goyal, A. Agrawal, N. Mukherjee, S. Singh and P. Singh. Electrical Behavior of Zirconium Doped Calcium Copper Titanium Oxide, J. Phys. D:Appl. Phys., 2008,41:035401.
    [72]J. Li, M.A. Subramanian, H.D. Rosenfeld, C.Y. Jones, B.H. Toby and A.W. Sleight. Clues to the Giant Dielectric Constant of CaCu3Ti4O12 in the Defect Structure of "SrCu3Ti4O12". Chem. Mater.,2004,16:5223-5225.
    [73]W. Li and R.W. Schwartz. Dielectric Response of Sr Doped CaCu3Ti4O12 Ceramics. Appl. Phys. Lett.,2007,90:112901.
    [74]R. Schmidt and D.C. Sinclair. Anomalous Increase of Dielectric Permittivity in Sr-Doped CCTO Ceramics Ca1-xSrxCu3Ti4O12 (0≤x≤0.2). Chem. Mater.,2010,22:6-8.
    [75]W. Li, S.Y. Qiu, N. Chen, B.F. Liu, G.P. Du. Enhanced Dielectric Properties and Sinterability of CaCu3Ti4O12 Ceramics by Sr2+ Doping. Physica B,2010,405:1193-1196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700