用户名: 密码: 验证码:
锗硅酸盐玻璃的制备和发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界,能源危机和环境问题已成为影响人类可持续发展的重大问题,人们迫切希望应用节能环保的新技术,而光学玻璃就是具有这种魅力的新技术之一。锗硅酸盐光学玻璃因具有较低的声子能量,良好的玻璃形成能力以及较高的稀土离子溶解度,在光学领域,尤其是在信息处理,大屏幕显示,军事探测及激光医疗领域有广阔的发展潜力,近年来已引起学者的广泛兴趣。
     本文首先回顾了稀土离子掺杂锗硅酸盐光学玻璃的发展应用及研究现状,在此基础上,采用高温熔融-退火法制备了锗硅酸盐光学玻璃及锗硅酸盐氟氧化物微晶玻璃。通过拉曼光谱,吸收-透过光谱,荧光光谱,X射线衍射等手段研究了氧化锗和氧化硅的比例、二价碱土金属氧化物的含量及种类、Dy203掺杂浓度、热处理时间和热处理温度对锗硅酸盐玻璃和锗硅酸盐氟氧化物微晶玻璃结构和性能的影响。主要得到了以下结果:
     采用高温熔融法制备了不同氧化锗和氧化硅比例的锗硅酸盐玻璃。研究结果表明,在锗硅酸盐玻璃中同时存在[SiO4],[GeO4]以及[SiO4]&[GeO4]昆合网络结构。含不同比例氧化锗和氧化硅的锗硅酸盐玻璃,其Dy3+离子的猝灭浓度和发光强度存在很大不同。当GeO2:SiO2为20 mol%:30mol%, Dy2O3的掺杂浓度为1.00 mo1%时,Dy3+离子的发光强度达到最大。二价碱土金属氧化物主要影响玻璃中[Ge04]网络结构,但玻璃基质中Dy3+离子的发光强度却随着MgO→CaO→BaO的顺序减弱,原因是碱土金属离子半径越小,越能改善玻璃三维网络结构,提高稀土离子的分散率和发光效率。
     通过对锗硅酸盐氟氧化物玻璃进行热处理得到微晶玻璃。XRD结果表明,玻璃中生成了晶粒尺寸为纳米级的Ba3AlF9晶相。玻璃在可见—红外光区有较高的透明度(90%)。580℃下热处理4h后的微晶玻璃其发光强度最强。而对玻璃样品在620℃C热处理后,玻璃中同时析出Ba3AlF9晶相和BaAl2Si2O8杂相,玻璃样品出现浑浊。另外,考察了Dy203掺杂浓度对玻璃析晶行为及光学性能的影响,发现当Dy203掺杂浓度为1.00 mo1%时,玻璃发光强度达到最强,当Dy203掺杂浓度达到3.00 mo1%时,玻璃中没有Ba3AlF9晶相的析出。通过比较未经热处理玻璃样品和经580℃下热处理4h的微晶玻璃样品的发射光谱得知,热处理后微晶玻璃样品的光学性能得到很大的改善。
Nowadays, environment and energy crisis have become international issues. The development of new technology is needed for protecting environment. As one of the most favorite energy-saving materials, optical glass has been paid more and more attention by researchers. Germanosilicate optical glass has been widely used for luminescent materials due to its low phonon energy, good ability of glass formation and high rare earth ions solubility. Recent years, germanosilicate optical glass has been recognized as a promising material in the fields of information processing, LSD, military and laser medicine.
     First, this thesis reviewed the development and application of rare earth ions doped germanosilicate optical glass. Second, the germanosilicate optical glasses and oxyfluoride germanosilicate glass ceramics were prepared by melting-annealing/ quenching/thermal treatment method. The effects of the ratio of SiO2 and GeO2, the kinds of alkaline earth metal oxides, the concentration of Dy2O3, the heat treatment temperature and the heat treatment time on the structure and properties of germanosilicate optical glasses and oxyfluoride germanosilicate glass ceramics were studied by Raman spectra, absorption-transmission spectra, photoluminescence spectra and X-ray diffraction and son on. The details were listed as following:
     The germanosilicate optical glasses with different ratio of SiO2 and GeO2 were prepared by melting-annealing method. The [SiO4] tetrahedron, [GeO4] tetrahedron and [SiO4] & [GeO4] polyhedrons exited together in the germanosilicate glass matrix. The luminescence intensity and quenching concentration of Dy3+ions were different when changing the ratio of SiO2 and GeO2. When the ratio of GeO2 and SiO2 was 20 mol%:30 mol% and the concentration of Dy2O3 was 1.00 mol%, the germanosilicate optical glasses had the strongest luminescence intensity. The kinds and contents of alkaline earth metal oxides had no effects on the structure of glass matrix while they had some effects on the luminescence intensity of Dy2O3. The luminescence intensity of Dy2O3 became lower when alkaline earth metal oxides changed as following:MgO→CaO→BaO. The reason was that the smaller of the cation radius, the better of the glass matrix network was improved, leading to the better dispersibility of Dy3+ions.
     The oxyfluoride germanosilicate glass ceramics were prepared by heat treatment method. The XRD results showed that the Ba3AlF9 microcrystal was formed after heat treatment. The crystal size was smaller than 10 nm. The glass ceramic had high visible-IR transmittance (90%) and had the strongest luminescence intensity after heat treated at 580℃for 4 h. When heat treated at 620℃, the samples became opaque due to coexist of the Ba3AlF9 phase and BaAl2Si2O8 phase. The effects of the concentration of Dy2O3 on the crystallization and luminescence property of samples were studied. The results showed that when the concentration of Dy2O3 is 1.00 mol%, the samples had the strongest luminescence intensity. When the concentration of Dy2O3 increased to 3.00 mol%, there was no Ba3AlF9 microcrystal formed in the samples. The sample heat treated at 580℃for 4 h has the better photoluminescence properties than that of without heat treatment because the Dy3+ions dispersed well with low phonon energy environment of Ba3AlF9 nanocrystallines in the oxyfluoride germanosilicate glass ceramics.
引文
[1]Y. Zheng, A.G. Clare. Rare earth doped glasses for conversion of near ultraviolet light to white light. Physics and Chemistry of Glasses,2005,46:467-471.
    [2]J. Wu, S. Jiang, T. Luo, et al. Efficient Thulium-doped-2 p.m Germanate Fiber Laser. IEEE Photonics Technology Letters,2006,18(2):334-336.
    [3]S.Q. Xu, Z.M. Yang, S.X. Dai, et al. Spectral properties oferbium2doped oxyfluoride silicate glasses for broadband optical amplifier. Chinese Physics Letters,2003,20(6):905-908.
    [4]S.Q. Xu, Z.M. Yang, et al. Spectral properties oferbium2doped heavy metal oxyfluoride silicate glasses for broad-band amplification. Chinese Physics,2003,12(9):997-1000.
    [5]林傲祥,戴能利,胡丽丽等.Yb3+掺杂锗硅酸盐玻璃的物理和光谱性质.硅酸盐学报.2004,32(5):620-624.
    [6]冯明良,郭利娅.氟和氯在玻璃生产中的应用.玻璃.2002,165(6):22-24.
    [7]宋博,薛汇丽,曾彬等Yb3+/Er3+双掺氟氧硅酸盐玻璃.武汉理工大学学报.2007,29:198-201.
    [8]Q. Sun, Z.W. Pei, L.S. Chi, et al. The yellow-to-blue intensity ratio(Y/B) of Dy3+ emission. Journal of Alloys and Compounds,1993,192:25.
    [9]黄建华,陈雨金,林炎富等Er3+/Yb3+:Sr3Y2(BO3)4晶体的光谱和激光性质.中国稀土学报.2009,27(2):183-187.
    [10]H.C. Yang, G. Lakshminarayana, S.F. Zhou, Y. Teng, J.R. Qiu. Cyan-white-red luminescence from europium doped Al2O3-La2O3-SiO2 glasses. Optics Express,2008,16(9): 6731-6735.
    [11]G. Lakshminarayana, R. Yang, J.R. Qiu, et al. White light emission from Sm3+/Tb3+codoped oxyfluoride aluminosilicate glasses under UV light excitation. Journal of Physics D-Applied Physics,2009,42(1):015414.
    [12]S. Nishiura, S. Tanabe. Preparation and optical properties of Eu2+and Sm3+co-doped glass ceramic phosphors emitting white color by violet laser excitati on. Journal of the Ceramic Society of Japan,2008,116(1358):1096-1099.
    [13]P. Babu, K.H. Jang, E.S. Kim, L. Shi, H.J. Seo, et al. Spectralinvestigations on Dy3+-doped transparent oxyfluoride glasses and nanocrystalline glass ceramics. Journal of Applied Physics,2009,105(1):013516-6.
    [14]B.Q. Jiang, S.P. Yang, L. Xiao, et al. Application of Lanthanum in Thick Nickel Electroplating on Ni-P Coating of Quartz Optical Fiber Surface. Chinese Journal of Raremetals,2010,34(2):231-236.
    [15]邱关明,黄梁钊,张希艳.稀土光学玻璃.北京:兵器工业出版社,1989.
    [16]汪玉芳,刘玲霞,胡宏祥.稀土发光材料的合成与发展.浙江化工.2005,36(9):28-29.
    [17]孔涛.稀土在光学材料中的应用.中国粉体工业.2009,4:5-6.
    [18]杨武,陈森,高锦章等.镧系配合物的荧光光谱.光谱学与光谱分析.1999,19(2):227-229.
    [19]L.X. Yu, H. Liu, M. Nogami, et al. The photoluminescent properties of Eu3+in MgO-Ga2O3-SiO2 nanocrystalline glass-ceramic. Journal of Physics and Chemistry of Solids,2010,71:1656-1659.
    [20]Y.B. Qiao, X.F. Liu, Q. Zhang, et al. Synthesis and luminescence properties of YVO4:Eu nanocrystals grown in nanoporous glass. Material Letters,2010,64:1306-1308.
    [21]A. Tarafder, A.R. Molla, B. Karmakar. Effects of nano YAG (Y3Al5O12) crystallization on the structure and photoluminescence properties of Nd3+doped K2O-SiO2-Y2O3-Al2O3 glasses. Solid State Sciences,2010,12:1756-1763.
    [22]N.K. Giri, D.K. Rai, S.B. Rai. White light upconversion emissions from Tm3+, Ho3+, Yb3+ codoped tellurite and germanate glasses on excitation with 798 nm radiation. Journal of Applied Physics,2008,104(11):113107-5.
    [23]N.K. Giri, D.K. Rai, S.B. Rai. Multicolor upconversion emission from Tm3+, Ho3+, Yb3+ codoped tellurite glass on NIR excitations. Applied Physics B,2008,91:437-441.
    [24]G. Lakshminarayana, H.C. Yang, J.R. Qiu. White light emission from Tm3+/Dy3+co-doped oxyfluoride germanate glasses under UV light excitation. Journal of Solid State Chemistry, 2009,182:669-676.
    [25]M.J. Dejneka, et al. PNAS,2003,100:389-393.
    [26]孙家跃,杜海燕.固体发光材料.北京:化学工业出版社,2005:55-63.
    [27]陈珍霞.LED用低熔点发光玻璃的研究[硕士学位论文].武汉:武汉理工大学工学,2010.
    [28]G.L. Zhao, H.D. Xi, et al. Study on photoluminescence properties of oxyfluoride germanate Glass. Journal of Non-Crystalline Solids, In press, Corrected Proof (2010).
    [29]K.H. Mahmoud. Spectroscopic and radiative properties study of Nd3+doped cadmium phosphate glasses. Physica B-condensed matter,2010,405:4746-4749.
    [30]Y. Gandhi, I.V. Kityk, M.G. Brik, et al. Influence of tungsten on the emission features of Nd3+,Sm3+ and Eu3+ions in ZnF2-WO3-TeO2 glasses. Journal of Alloys and Compounds. 2010,508:278-291.
    [31]C. Zhu, Y. Yang, X. Liang, S. Yuan, G. Chen. Rare earth ions doped full-color luminescence glasses for white LED. Journal of Luminescence,2007,126(2):707-710.
    [32]臧竞存,祁阳,刘燕行.固体白光照明和稀土发光材料.材料导报.2006,20(7):6-9.
    [33]李晓丽,张忠义.稀土发光材料在节能照明领域中的发展概况.稀土.2008,29(2):69-71.
    [34]张鹏君,戴世勋,曹莹等.Tm3+/Dy3+共掺硫卤玻璃中红外发光和能量传递研究.光谱学与光谱分析.2010, 30(9):2321-2325.
    [35]Q. Luo, X.S. Qiao, X.P. Fan, et al. Luminescence behavior of Ce3+and Dy3+codoped oxyfluoride glasses and glass ceramics containing LaF3 nanocrystals. Journal of Applied Physics,2009,105(4):043506-5.
    [36]H.C. Yang, G. Lakshminarayana, S.F. Zhou, Y. Teng, J.R. Qiu. Cyan-white-red luminescence from europium doped Al2O3-La2O3-SiO2 glasses. Optics Express,2008,16(9):6731-6735.
    [37]J.E.C. Silva, G.F. Sa, et al. Red, green and blue light generation in fluoride glasses controlled by double excitation. Journal of Alloys and Compounds,2001,323-324.
    [38]M. Liao, L. Hu, Y. Fang, J. Zhang, H. Sun, S. Xu, and L. Zhang. Up-conversion properties of Er3+, Yb3+ and Tm3+codoped fluorophosphate glasses. Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy,2007,68(3):531-535.
    [39]G. Lin, B. Zhu, S.F. Zhou, H.C. Yang, J.R. Qiu. Tunable luminescence of CaO-Al2O3-GeO2 glasses. Optics Express.2007,15(25):16980-16985.
    [40]李秀明.锗酸盐氟氧化物玻璃的制备及性能研究[硕士学位论文].杭州:浙江大学材料系,2010.
    [41]J.R. Qiu, K.K. jima, et al. Infrared fem-to second laser pulsed-induced permanent reduct ion of Eu3+ to Eu2+ in a fluo rozirconate glass. Optics Letters,1999,24(11):786-788.
    [42]K. Hirao, S. Todorki, D.H. Cho, N. Soga. Room temperature persistent hole burning of Sm2+ in oxide glass. Optics Letters,1993,18(19):1586-1587.
    [43]H.B. Sun, Y. Xu, J. Saulius, et al. Arbitrary lattice photonic crystals created by multi photon micro-fabrication. Optics Letters,2001,26(6):325-327.
    [44]S. Baccaro, R. Dalligna, P. Fabeni, et al. Ce3+ or Tb3+ doped phosphate and silicate scintillating glasses. Journal of Luminescence,2000,87:673-675.
    [45]王大巍,果世驹,任海霞,殷声.光学偏振玻璃的发展.光学技术.2002,28(2):128-131.
    [46]王耀祥.光学玻璃的发展及其应用.应用光学.2005,26(5):61-66.
    [47]M.W. Brian, P.B. NORMAN, J.R. Donald, et al. Optical properties of Tm3+ions in alkali germanate glass. Journal of Non-Crystalline Solids,2006,352(50-51):5344-5352.
    [48]G.X. Cao, F.Y. LIN, H.F. HU, et al. A new fluorogermante glass. Journal of Non-Cryst alline Solids,2003,326-327:170-176.
    [49]马红萍,徐时清,姜中宏.Er3+掺杂氧氟锗硅酸盐玻璃的频率上转换研究.硅酸盐学报.2004,32(11):1433-1436.
    [50]G.S. Henderson, D.R. Neuville, B. Cochain, et al. The structure of GeO2-SiO2 glasses and melts:A Raman spectroscopy study. Journal of Non-Crystalline Solids,2009,355:468-474.
    [51]G. Tamman. The states of aggregation, New York:D.Van Nostrand,1925:86.
    [52]楼贤春.锂铝硅系统透明微晶玻璃的研制[博士学位论文].武汉:武汉理工大学工学,2005.
    [53]张常建,肖卓豪,卢安贤.透明微晶玻璃的研究现状与展望.材料早报:综述篇.2009,23(7):38-43.
    [54]侯朝霞,苏春辉.光功能微晶玻璃应用与研究进展.激光与光电子学进展.2006, 43(2):18-22.
    [55]宁青菊,贺海燕,陈平.微晶玻璃的制备与应用.陶瓷工程.2000,12:38.
    [56]Y.H. Wang, J.C. Ohwaki. New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency up-conversion. Appled physics letters.1993,64(24):3268-3272.
    [57]M.J. Dejneka. The luminescence and structure of novel transparent oxyfluoride glass ceramics. Journal of Non-Crystalline Solids,1998,239:149-155.
    [58]P.A. Tick, N.F. Borrelli, et al. New transparent glass ceramics for 1300nm amplifier application. Journal of Appled Physics,1995,78(11):6367-6374.
    [59]F.C. Guinhos, P.C. Nobrega, et al. Compositional dependence of up-conversion process in Tm3+-Yb3+codoped oxyfluoride glass ceramics. Journal of Alloys and Compounds,2001, 323-324.
    [60]M. Mortier, F. Auzel. Rare earth doped transparent glass ceramics with high cross-section. Journal of Non-Crystalline Solid,1999,256-257.
    [61]谢为民等.极性巅晶玻璃的恒温定向析晶.硅酸盐学报.1997,2(1):115-118.
    [62]K.E. Scharch, A.B. Khg. Nature,1997,266:706.
    [63]B. Harald, R. Jacques, R. Daniel, et al. Chemical Geology.2006,229:96.
    [64]G.X. Cao, F.Y. Lin, H.F. Hu, et al. Non-Crystalline Solids,2003,3262327:170.
    [65]杨南如.无机非金属材料测试方法.武汉:武汉工业大学出版社,1996,3:187.
    [66]M. Nogami, T. Hagiwara, G. Kawamura, et al. Redox equilibrium of samarium ions doped in Al2O3-SiO2 glasses. Journal of Luminescence,2007,124(2):291-296.
    [67]雷炳富,刘应亮,唐功本等.Y2O2S:Sm3+发光材料在不同激发波长的浓度特征.光谱学与光谱分析.2004,24(11):1302-1304.
    [68]A.P. Stephen, L.L. Chase, L.K. SMITH, et al. Infrared cross-section measurements for crystals doped with Er3+, Tm3 and Ho3+. IEEE J Quantum Electron,1992,28(11): 2619-2630.
    [69]X.L. ZOU, T. Hisayoshi. Evaluation of spectroscopic properties of Yb3+ doped glasses. Physical Review B,1995,52 (22):15889-15897.
    [70]X. Liang, Y. Yang, C. Zhu, et al. Luminescence properties of Tb3+-Sm3+codoped glasses for white light emitting diodes. Applied physics letters,2007,91(9):091104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700