用户名: 密码: 验证码:
负载型磷化钼(镍)和钼镍硫原子簇合物催化剂的制备、表征和深度加氢脱硫反应性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于更加严格的环境法规的要求,开发新型深度加氢脱硫(HDS)催化剂是催化领域挑战性的课题。本文采用程序升温还原的方法,制备了纯相和负载型的过渡金属磷化钼、磷化镍和磷化镍钼催化剂,并对这些催化剂进行了详细的表征。以CO 为探针分子,用原位红外光谱研究了还原态磷化物催化剂的表面活性位及在硫化条件下的表面活性位的变化。反应结果表明,SiO_2负载的磷化物的DBT HDS 反应活性顺序是:Ni_2P/SiO_2 > Ni-Mo-P/SiO_2 >MoP/SiO2。磷化镍钼催化剂的HDS 活性随着Ni 含量的升高而提高。这不同于金属硫化物、氮化物和碳化物,因为在磷化的Ni 和Mo 原子之间没有观察到明显的协同作用。磷化镍钼催化剂的活性主要是磷化镍的贡献。CO 探针的红外光谱表明,在HDS 反应过程中,磷化物催化剂的体相结构可基本保持,但催化剂表面被部分硫化,形成了MoP_xS_y或NiP_xS_y活性相。这种表面被部分硫化的磷化物催化剂,在温和的条件下,可以重新活化恢复到新鲜态的状态。对于磷化物催化剂,DBT HDS 反应主要经历碳-硫键断裂的直接脱硫(DDS)反应途径,反应主要产物是联苯。本研究表明:磷化物,特别是磷化镍,是具有潜在应用前景的新型深度加氢脱硫催化剂。
    另外,论文工作中还制备了纯相和负载型的过渡金属碳化钼。HDS 反应结果表明,碳化钼催化剂中加入P、Co 和Ni 之后,可以提高催化剂的HDS活性。制备了三核和四核具有簇芯为[Mo_3S_4(H_2O)_9]~(4+)和[Mo_3NiS_4 (H_2O)_(10)]~(4+)的过渡金属钼(镍)硫原子簇合物。金属原子簇合物为前驱体制备的Al2O3 负载的催化剂与传统的NiMoS/Al_2O_3催化剂相比,前者具有更小的金属粒子大小和更高的金属分散程度,且比相应的传统方法制备的硫化物催化剂具有更高的HDS 活性。
Interest in the development of novel catalysts for hydrodesulfurization hasbeen spurred by the need to meet stringent environmental regulations that haverecently been enacted throughout the world. Bulk and supported binary andternary phosphides, molybdenum phosphide, nickel phosphide and nickelmolybdenum phosphide have been prepared by temperature-programmedreduction method and characterized by X-ray diffraction (XRD), BET surface area,CO chemisorption, transmission electron microscopy (TEM) and (31)~P MAS NMRand in-situ infrared spectroscopy (IR). The hydrodesulfurization (HDS) activitiesof dibenzothiophene (DBT) were compared for these phosphide catalysts. In orderto gain insight into the nature of the phosphide catalysts under HDS conditions,the surface sites of reduced and sulfided phosphide catalysts were studied by IRspectroscopy using CO as the probe molecule.
    The activities of the phosphides follow the order Ni_2P/SiO_2 > Ni-Mo-P/SiO_2> MoP/SiO_2. The HDS activities of phosphide catalysts don’t decline with thetime on stream for at least 20 h. Nickel phosphide has the highest HDS activityamong these phosphide catalysts. The Ni sites in the Ni-Mo-P/SiO_2 catalysts playa major role in the conversion of DBT, and the activity of the catalysts increaseswith increasing Ni content. This is different from sulfides, nitrides, and carbides,as no synergetic effect is observed between the phosphided Ni and Mo atoms. Italso suggests that Ni species more easily expose at the surface of the NiMoP
    particles. The suface of a working Ni2P/SiO2 catalyst may be a nickelphosphosulfide (i.e., NiPxSy) phase. This unique surface composition of NiPxSy isassumed to be responsible for the excellent HDS activity of the Ni2P/SiO2 catalyst.The IR results indicate that the surface of these phosphide catalysts is partiallysulfided while the structure of the phosphides is retained under HDS reactionconditions. The sulfided phosphide surface can be fully regenerated to a freshphosphide catalyst under mild conditions. For molybdenum phosphide, nickelphosphide, and nickel molybdenum phosphide catalysts, the transformation ofDBT takes place mainly through direct desulfurization yielding biphenyl. Thiswork demonstrates that the nickel phosphide is potentially a promising catalyst forhydrodesulfurization processing. Bulk and supported transition metal molybdenum carbide were prepared.HDS reaction test results indicate that the addition of P, Co and Ni can increasethe HDS activities of β-Mo2C catalyst. The activities of β-Mo2C catalystgradually decrease with the reaction time on stream, this is different from MoPcatalyst. Molybdenum sulfur clusters with [Mo3S4(H2O)9]4+ and [Mo3NiS4 (H2O)10]4+cores were prepared. The catalyst prepared by the Mo3S4 cluster precursor hassmaller metal particle size, better metal dispersion on the support, and higher HDSactivities than the commercial NiMo sulfide catalyst prepared by traditionalmethod.
引文
[1] Whitehurst D D, Isoda T, Mochida I. Present state of the art and future challenges in the hydrodesulfurization of polyaromatic sulfur compounds. Adv. Catal. 1998, 42: 345-471.
    [2] Song C S. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal. Today. 2003, 86, 211-263.
    [3] Gates B C, Topsoe H. Reactivities in deep catalytic hydrodesulfurization: challenges, opportunities, and the importance of 4-methyldibenzothiophene and 4,6-dimethyl-dibenzothiophene, Polyhedron 1997, 16, 3213-3217.
    [4] EPA, Control of Air Pollution from New Motor Vehicles Amendment to the Tier-2/Gasoline Sulfur Regulations, US Environmental Protection Agency, April 13, 2001.
    [5] EPA-Diesel RIA, Regulatory Impact Analysis: Heavy-duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements, United States Environmental Protection Agency, Air and Radiation, EPA420-R-00-026, December 2000.
    [6] EPA, EPA Gives the Green Light on Diesel Sulfur Rule, Press Release, United States Environmental Protection Agency, February 28, 2001.
    [7] Service R F. Hydrogen power: Bringing fuel cells down to earth. Science. 1999, 285, 682-685.
    [8] Voss D. Hydrogen power: Company aims to give fuel cells a little backbone. Science. 1999, 285, 683.
    [9] Donath E E, Hoering M. Early coal hydrogenation catalysts. Fuel Process. Technol. 1977, 1, 3-20.
    [10] Donath E E. History of catalysis in coal liquefaction, in: J.R. Anderson, Boudart M (Eds.), Catalysis, vol. 3, Springer, Berlin, 1982, Chapter 1, 1–38.
    [11] Meille V, Schulz E, Lemaire M, Vrinat M. Hydrodesulfurization of alkyldibenzothiophenes over a NiMo/Al2O3 catalyst: Kinetics and mechanism. J. Catal. 1997, 170, 29-36.
    [12] Bataille F, Lemberton J L, Michaud P, Pérot G, Vrinat M, Lemaire M, Schulz E, Breysse M, Kasztelan S. Alkyldibenzothiophenes hydrodesulfuri-zation-promoter effect, reactivity, and reaction mechanism. J. Catal. 2000, 191, 409-422.
    [13] Macaud M, Milenkovic A, Schulz E, Lemaire M, Vrinat M. Hydrode-sulfurization of alkyldibenzothiophenes: evidence of highly unreactive aromatic sulfur compounds. J. Catal. 2000, 193, 255-263.
    [14] Kabe T., Ishihara A., Tajima H. Hydrodesulfurization of sulfur-containing polyaromatic compounds in light oil. End. Eng. Chem. Res. 1992, 31, 1577-1580.
    [15] Depauw G A, Froment G F. Molecular analysis of the sulphur components in a light cycle oil of a catalytic cracking unit by gas chromatography with mass spectrometric and atomic emission detection. J. Chromatogr. 1997, 761, 231-247.
    [16] Ma X L., Sakanish K., Isoda T., Mochida I. Quantum-chemical calculation on the desulfurization reactivities of heterocyclic sulfur-compounds. Energy & Fuels. 1995, 9, 33-37.
    [17] Daage M, Chianelli R R. Structure-function relations in molybdenum sulfide catalysts: The "Rim-Edge" model. J. Catal. 1994, 194, 414-427.
    [18] Ma X, Sakanishi K, Mochida I. Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel. Ind. Eng. Chem. 1994, 33, 218-222.
    [19] Ma X, Sakanishi K, Isoda T, Mochida I. Hydrodesulfurization reactivities of narrow-cut fractions in a gas oil. Ind. Eng. Chem. Res. 1995, 34, 748-754.
    [20] Ma X, Sakanishi K, Isoda T, Mochida I. Comparison of sulfided CoMo/Al2O3 catalysts in hydrodesulfurization of gas oil fractions, Am. Chem. Soc., Div. Petrol. Chem. Prepr. 1994, 39, 622.
    [21] Vrinat M L. The kinetics of the hydrodesulfurization process -a review. Appl. Catal. A 1983, 6, 137-158.
    [22] Aubert C, Durand R, Geneste P, Moreau C. Hydroprocessing of dibenzothiophene, phenothiazine, phenoxathiin, thianthrene, and thioxanthene on a sulfided NiO-MoO3/Al2O3 catalyst. J. Catal. 1986, 97, 169-176.
    [23] Houalla M, Broderick D H, Sapre A V, Nag N K, de Beer V H J, Gates B C, Kwart H. Hydrodesulfurization of methyl-substituted dibenzothiophenes catalyzed by sulfided CoMo/Al2O3. J. Catal. 1980, 61, 523-527.
    [24] Kilanowski D R, Teeuwen H, de Beer V H J, Gates B C, Schuit G C A, Kwart H. Hydrodesulfurization of thiophene, benzothiophene, dibenzothiophene, and related compounds catalyzed by sulfided CoO-MoO3/γ-Al2O3: Low-pressure reactivity studies. J. Catal. 1978, 55, 129-137.
    [25] Singhall G H, Espino R L, Sobel J E, Huff, Jr G A. Hydrodesulfurization of sulfur heterocyclic compounds kinetics of dibenzothiophene. J. Catal. 1981, 67, 457-468.
    [26] Mochida I, Sakanishi K, Ma X L, Nagao S, Isoda T. Clean fuels production deep hydrodesulfurization of diesel fuel: Design of reaction process and catalysts. Catal. Today. 1996, 29, 185-189.
    [27] Olguin Orozco E, Vrinat M. Kinetics of dibenzothiophene hydrodesulfurization over MoS2 supported catalysts: modelization of the H2S partial pressure effect. Appl. Catal. A 1998, 170, 195-206.
    [28] Broderick D H, Gates B C. AIChE Journal. 1981, 27(4), 663.
    [29] Lacroix M, Dumonteil C, Breysse M, Kasztelan S. Hydrogen activation on alumina supported MoS2 based catalysts: Role of the promoter. J. Catal. 1999, 185, 219-222.
    [30] Jobic H, Clugnet G, Lacroix M, Yuan S, Mirodatos C, Breysse M. Identification of new hydrogen species adsorbed on ruthenium sulfide by neutron spectroscopy. J. Am. Chem. Soc. 1993, 115(9), 3654-3657.
    [31] Shafi R, Hutchings G J. Hydrodesulfurization of hindered dibenzothiophenes: an overview. Catal. Today. 2000, 59, 423-442.
    [32] Knudsen K G, Cooper B H, Topsoe B H H. Catalyst and process technologies for ultra-low sulfur diesel. Appl. Catal. A 1999, 189, 205-215.
    [33] Farag H, Mochida I, Sakanishi K. Fundamental comparison studies on hydrodesulfurization of dibenzothiophenes over CoMo-based carbon and alumina catalysts. Appl. Catal. A 2000, 194, 147-157.
    [34] Pawelec B, Mariscal R, Fierro J L G, Greenwood A, Vasudevan P T. Carbon-supported tungsten and nickel catalysts for hydrodesulfurization and hydrogenation reactions. Appl. Catal. A 2001, 206, 295-307.
    [35] Segawa K, Takahashi K, Satoh S. Development of new catalysts for deep hydrodesulfurization of gas oil. Catal. Today. 2000, 63, 123-131.
    [36] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature. 1992, 359,
     710-712.
    [37] Reddy K M, Song C. Synthesis of mesoporous molecular sieves: influence of aluminum source on Al incorporation in MCM-41. Catal. Lett. 1996, 36, 103-109.
    [38] Reddy K M, Song C. Synthesis of mesoporous zeolites and their application for catalytic conversion of polycyclic aromatic hydrocarbons. Catal. Today. 1996, 31, 137-144.
    [39] Reddy K M, Wei B, Song C. Mesoporous molecular sieve MCM-41 supported Co–Mo catalyst for hydrodesulfurization of petroleum resides. Catal. Today. 1998, 43, 261-272.
    [40] Song C, Reddy K M. Mesoporous molecular sieve MCM-41 supported Co–Mo catalyst for hydrodesulfurization of dibenzothiophene in distillate fuels. Appl. Catal. A 1999, 176, 1-10.
    [41] Song C, Reddy K M. In: Murugesan V, Arabindoo B, Palanichamy M (Eds.). Recent Trends in Catalysis. Narosa Publishing House, New Delhi, India, 1999, Chapter 1, pp. 1–13.
    [42] Turaga U, Song C. Deep hydrodesulfurization of diesel and jet fuels using mesoporous molecular sieve-supported Co–Mo/MCM-41 catalysts. Am. Chem. Soc., Div. Fuel Chem. Prepr. 2001, 46, 275.
    [43] Song C, Reddy K M, Leta H, Yamada M, Koizumi N. Mesoporous aluminosilicate molecular sieve MCM-41 as support of Co–Mo catalysts for deep hydrodesulfurization of diesel fuels. In: Song C, Hsu S, Mochida I (Eds.). Chemistry of Diesel Fuels. Taylor & Francis, New York, 2000, Chapter 7, p. 139.
    [44] Bonde S E, Chapados D, Gore W L, Dobbear G., Skov E, NPRA 2000 Annual Meeting, AM-00-25, San Antonio, Texas; March 26-28, 2000.
    [45] Peninger R S, Demeter J C, Schwarz E A, Rock K L. The European Refinery Technology Conference, Rome, Italy, November 13-15, 2000.
    [46] Monticello D J. Riding the fossil fuel biodesulfurization wave. Chemtech 1998, 28 (7), 38-45.
    [47] Shiflett W K A. User’s guide to the chemistry, kinetics and basic reactor engineering of hydroprocessing, Proceedings of the Fifth International Conference on Refinery Processing, AIChE 2002 Spring National Meeting, New Orleans, 2002, March, pp. 101–122.
    [48] Tops?e H, Clausen B S, Massoth F E.In “Catalysis Science and Technology”(Anderson J R and Boudart M, eds.), Vol. 11, Springer-Verlag, New York, 1996.
    [49] Startsev A N. The mechanism of HDS catalysis. Catal. Rev. -Sci. Eng. 1995, 37(3), 353-423.
    [50] Chianelli R R, Daage M, Ledoux M J. Fundamental studies of transition-metal sulfide catalytic materials. Adv. Catal. 1994, 40, 177-232.
    [51] Sánchez-Delgado R A. Breaking C-S bonds with transition metal complexes. A review of molecular approaches to the study of the mechanisms of the hydrodesulfurization
     reaction. J. Mol. Catal. 1994, 86, 287-307.
    [52] Girgis M J, Gates B C. Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing. Ind. Eng. Chem. Res. 1991, 30(9), 2021-2058.
    [53] Harris S, Chianelli R R. In “Theoretical Aspects of Heterogeneous Catalysis”(Mffat J B, ed.), Catalyst Ser., P. 206, Van Nostrand-Reinhold, New York, 1990.
    [54] Gates B C, Katzer J R, Schuit G C A. “Chemistry of Catalytic Processes.”McGraw-Hill, New York, 1979, 390-445.
    [55] Weisser O, Landa S. “Sulfide Catalysts, Their Properties and Applications.”Pergamon, New York, 1973.
    [56] Voorhoeve R J H, Stuiver J C M. Kinetics of hydrogenation on supported and bulk nickel-tungsten sulfide catalysts. J. Catal. 1971, 23, 228-235.
    [57] Ratnasamy P, Silvasanker S. Catal. Rev. –Sci. Eng. 1980, 22, 401.
    [58] Schuit G C A, Gates B C. AIChE J. 1973, 19, 417.
    [59] Voorhoeve R J H. Electron spin resonance study of active centers in nickel-tungsten sulfide hydrogenation catalysts. J. Catal. 1971, 23, 236-242.
    [60] Farragher A L. Symposium on the role of solid state chemistry in catalysis. New orleans meeting. 1977.
    [61] Tops?e N Y, Tops?e H. Characterization of the structures and active sites in sulfided CoMo/Al2O3 and NiMo/Al2O3 catalysts by NO chemisorption. J. Catal. 1983, 84, 386-401.
    [62] Tops?e H, Clausen B S, Candia R, Wivel C, M?rup S. In situ M?ssbauer emission spectroscopy studies of unsupported and supported sulfided Co-Mo hydrodesulfurization catalysts: Evidence for and nature of a Co-Mo-S phase J. Catal. 1981, 68, 433-452.
    [63] Wivel C, Candia R, Clausen B S, M?rup S, Tops?e H. On the catalytic significance of a CoMoS phase in CoMo/Al2O3 hydrodesulfurization catalysts: Combined in situ M?ssbauer emission spectroscopy and activity studies. J. Catal. 1981, 68, 453-463.
    [64] Wivel C, Clausen B S, Candia R, M?rup S, Tops?e H. M?ssbauer emission studies of calcined CoMo/Al2O3 catalysts: Catalytic significance of Co precursors. J. Catal. 1984, 87, 497-513.
    [65] Tops?e H, Clausen B S. Catal. Rev. –Sci. Eng. 1984, 26, 395.
    [66] S?rensen O, Clausen B S, Candia R, Tops?e H. Hrem and Aem studies of hds catalysts: Direct evidence for the edge location of cobalt in Co-Mo-S. Appl. Catal. 1985, 13, 363-372.
    [67] Bouwens S M A M, Vanzon F B M, Vandijk M P, Vanderkraan A M, Debeer V H J, Vanveen J A R, Koningsberger D C. J. Catal. 1994, 146, 375-393.
    [68] Topsoe H, Clausen B S, Massoth F E. Hydrotreating catalysis: Science and technology. Springer, Berlin, 1996, 310.
    [69] Prins R. Catalytic hydrodenitrogenation. Adv. Catal. 2001, 46, 399-464.
    [70] Byskov L S, Hammer B, Norskov J K, Clausen B S, Topsoe H. Sulfur bonding in MoS2 and Co–Mo–S structures. Catal. Lett. 1997, 47, 177-182.
    [71] Byskov L S, Norskov J K, Clausen B S, Topsoe H, Edge termination of MoS2 and Co–Mo–S catalyst particles. Catal. Lett. 2000, 64, 95-99.
    [72] Helveg S, Lauritsen J V, L?gsgaard E, Stensgaard I, N?rskov J K, Clausen B S, Tops?e H, Besenbacher F. Atomic-scale structure of single-layer MoS2 nanoclusters. Phys. Rev. Lett. 2000, 84, 951-954.
    [73] Lauritsen J V, Helveg S, L?gsgaard E, Stensgaard I, Clausen B S, Tops?e H, Besenbacher F. Atomic-scale structure of Co–Mo–S nanoclusters in hydrotreating catalysts. J. Catal. 2001, 197(1), 1-5.
    [74] Chen J G. Carbide and nitride over layers on early transition metal surface: Preparation, characterization and reactivities. Chemical Rev. 1996, 96, 1477-1498.
    [75] Levy R L, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis. Science. 1973, 181, 547-549.
    [76] Oyama S T. Preparation and catalytic properties of transition metal carbides and nitrides. Catal. Today. 1992, 15, 179-200.
    [77] Oyama S T. Novel catalysts for advanced hydroprocessing: transition metal phosphides. J. Catal. 2003, 216, 343-352.
    [78] Johansson L I. Electronic and structural properties of transition-metal carbide and nitride surface. Surf. Sci. Reports. 1995, 21, 177-250.
    [79] Demczyk B G, Choi J G, Thompson L T. Surface structure and composition of high surface area molybdenum nitride. Appl. Surf. Sci. 1994, 78, 63-69.
    [80] Hada K, Nagai M, Omi S. Characterization and HDS activity of cobalt molybdenum nitrides. J. Phys. Chem. B 2001, 105, 4084-4093.
    [81] Calais J L. Band structure of transition metal compounds. Adv. Phys. 1977, 26, 847-885.
    [82] Neckel A. Recent investigation on the electronic structure of the fourth and fifth group transition metal monocarbides, mononitrides and monoxides. Int. J. Quantum Chem. 1983, 23(4), 1317-1353.
    [83] Volpe L, Boudart M. Compounds of molybdenum and tungsten with high specific surface area I nitrides. J. Solid State Chem. 1985, 59, 332-347.
    [84] Volpe L, Boudart M. Compounds of molybdenum and tungsten with high specific surface area II carbides. J. Solid State Chem. 1985, 59, 348-356.
    [85] Kim J H, Kim K L.A study of preparation of tungsten nitride catalysts with high surface area. Appl. Catal. A 1999, 181, 103-111.
    [86] Li S, Lee J S. Molybdenum nitride and carbide prepared from heteropoly-acids 1. preparation and characterization. J. Catal. 1996, 162, 76-87.
    [87] Kapoor R, Oyama S T. Synthesis high surface area vanadium nitride. J. Solid State Chem. 1992, 99, 303-312.
    [88] Yu C C, Ramanathan S, Sherif F, Oyama S T. Structural, surface and catalytic properties of a new bimetallic V-Mo oxynitride catalyst for hydrodenitrogenation. J. Phys. Chem. 1994, 98, 13038-13041.
    [89] Yu C C, Ramanathan S, Oyama S T. New catalysts for hydroprocessing: bimetallic oxynitrides MI-MII-O-N (MI, MII = Mo, W, V, Nb, Cr, Mn, and Co) part I. Synthesis and characterization. J. Catal. 1998, 173, 1-9.
    [90] Ramanthan S, Yu C C, Oyama S T. New catalysts for hydroprocessing: bimetallic oxynitrides II. Reactivity studies. J. Catal. 1998, 173, 10-16.
    [91] Mordenti D, Brodzki D, Djéga-Mariadassou G. New synthesis of Mo2C 14 nm in average size supported on a high specific surface area carbon material. J. Solid State Chem. 1998, 141, 114-120.
    [92] Zachwieja V, Jacobs H. CuTaN2, a copper (I) tantalum (V) nitride with delafossite structure. Eur. J. Solid State Inorg. Chem. 1991, 28(5), 1055-1062.
    [93] Bem D S, Zurloye H C. Synthesis of the new ternary transition metal nitride FeWN2 via ammonolysis of a solid state oxide precursor. J. Solid State Chem. 1993, 104, 467-469.
    [94] Bem D S, Gibson C P, Zurloye H C. Synthesis of intermetallic nitrides by solid state precursor reduction. Chem. Mater. 1993, 5(4), 397-399.
    [95] Kim D W, Lee D K, Ihm S K. CoMo bimetallic nitride catalysts for thiophene HDS. Catal. Lett. 1997, 43, 91-95.
    [96] Li Y, Zhang Y, Raval R, Li C, Zhai R, Xin Q. The modification of molybde-num nitrides: the effect of the second metal component. Catal. Lett. 1997, 48, 239-245.
    [97] Hyeon T, Fang M, Suslick K S. Nanostructure molybdenum carbides: Sonochemical synthesis and catalytic properties. J. Am. Chem. Soc. 1996, 118, 5492-5493.
    [98] Li S, Lee J S, Hyeon T, Suslick K S. Catalytic hydrodenitrogenation of indole over molybdenum nitride and carbides with different structure. Appl. Catal. A 1999, 184, 1-9.
    [99] Mitao T, Shishikuka I, Matsuoka M, Nagai M. CVD synthesis of alumina-supported molybdenum carbide catalyst. Chem. Lett. 1996, 561-562.
    [100] Nagai M, Suda T, Oshikawa K, Hirano N, Omi S. CVD preparation of alumina-supported tungsten nitride and its activity for thiophene hydrodesulfurization. Catal. Today. 1999, 50, 29-37.
    [101] Bécue T, Manoli J M, Potvin C, Djéga-Mariadassou G. Preparation, characterization, and catalytic behavior of molybdenum oxynitride supported on EMT zeolite (NaEMT and HEMT) catalyst. J. Catal. 1997, 170, 123-131.
    [102] Bécue T, Manoli J M, Potvin C, Davis R J, Djéga-Mariadassou G. Preparation, characterization, and catalytic activityof molybdenum carbide or nitride supported on platinum clusters dispersed in EMT zeolite. J. Catal. 1999, 186, 110-122.
    [103] Nagai M, Takada J, Omi S. XPS Study of nitrided molybdena/titania catalyst for the hydrodesulfurization of dibenzothiophene. J. Phys. Chem. B 1999, 103, 10180-10188.
    [104] Brungs A J, York A P E, Claridge J B, Márquez-Alvarez C, Green M L H. Dry reforming of methane to synthesis gas over supported molybdenum carbide catalysts. Catal. Lett. 2000, 70, 117-122.
    [105] Nagai M, Nakauchi R, Ono Y, Omi S. CVD preparation of alumina-supported niobium nitride and its activity for thiophene hydrodesulfurization. Catal. Today. 2000, 57, 297-304.
    [106] Zhang Y, Xin Q, Rodriguez-Ramos I, Guerrero-Ruiz A. Temperature dependence of the pseudomorphic transformation of MoO3 toγ-Mo2N. Materials Research Bulletin. 1999, 34(1), 145-156.
    [107] Wise R S, Markel E J. Catalytic NH3 decomposition by topotactic molybdenum oxides and nitrides: effect on temperature programmed γ-Mo2N synthesis. J. Catal. 1994, 145, 335-343.
    [108] Wise R S, Markel E J. Synthesis of high surface area molybdenum nitride in mixtures of nitrogen and hydrogen. J. Catal. 1994, 145, 344-355.
    [109] Choi J G, Curl R L, Thompson L T. Molybdenum nitride catalyst 1. influence of the synthesis factors on structural properties. J. Catal. 1994, 146, 218-227.
    [110] Volpe L, Boudart M. Ammonia synthesis on molybdenum nitride. J. Phys. Chem. 1986, 90, 4874-4877.
    [111] Choi J G. Ammonia decomposition over vanadium carbide catalysts. J. Catal. 1999, 182, 104-116.
    [112] Choi J G, Brenner J R, Colling C W, Demczky B G, Dunning J L, Thompson L T. Synthesis and charaterization of molybdenum nitride hydronitrogenation catalysts. Catal. Today. 1992, 15, 201-222.
    [113] Markel E J, Van Zee J W. Catalytic hydrodesulfurization by molybdenum nitride. J. Catal. 1990, 126, 643-657.
    [114] Aegerter P A, Quigley W W C, Simpson G J, Ziegler D D, Logan J W, McCrea K R, Glazier S, Bussell M E. Thiophene hydrodesulfurization over alunima-supported molydenum carbides and nitride catalysts: adsorption sites, catalytic activities, and nature of the active surface. J. Catal. 1996, 164, 109-121.
    [115] McMrea K R, Logan J W, Tarbuck T L, Heiser J L, Bussell M E. Thiophene hydrodesulfurization over alunima-supported molybdenum carbides and nitride catalysts: effect of Mo loading and phase. J. Catal. 1997, 171, 255-267.
    [116] Dhandapani B, Ramanathan S, Yu C C, Fruhberger B, Chen J G, Oyama S T. Synthesis, characterization, and reactivity studies of supported Mo2C with phosphorus additive. J. Catal. 1998, 176, 61.
    [117] Chu Y, Wei Z, Yang S, Li C, Xin Q, Min E. NiMoNx/γ-Al2O3 catalyst for HDN of pyridine. Appl. Catal. A 1999, 176, 17-26.
    [118] Schlatter J C, Oyama S T, Metcalfe, III J E, Lambert, Jr J M. Catalytic behavior of selected transition-metal carbides, nitrides and borides in the hydrodenitrogenation of quinoline. Ind. Eng. Chem. Res. 1988, 27, 1648-1653.
    [119] Colling C W, Thompson L T. The structure and function of supported molybdenum nitride hydrodenitrogenation catalysts. J. Catal. 1994, 146, 193-203.
    [120] Miga K, Stanczyk K, Sayag C, Brodzki D, Djéga-Mariadassou G. Bifuntional behavior of bulk MoOxNy and nitrided supported NiMo catalyst in hydrodenitrogenation of indole. J. Catal. 1999, 183, 63-68.
    [121] Ribeiro F H, Boudart M, Betta R A D, Iglesia E. Catalytic reaction of n-alkanes on β -Mo2C and WC: the effect of surface oxygen on reaction pathways. J. Catal. 1991, 130, 498-513.
    [122] Iglesia E, Ribeiro F H, Boudart M, Baumgartner J E. Synthesis, characterization and catalytic properties of clean and oxygen modified tungsten carbides. Catal. Today. 1992, 15, 307-337.
    [123] Pham-Huu C, Leloux M J, Guille J. Reactions of 2-and 3-methylpentane, methylcyclopentane, cyclopentane, and cyclohexane on activated Mo2C. J. Catal. 1993, 143, 249-261.
    [124] York A P E, Pham-Huu C, Gallo P D, Leloux M J. Molybdenum oxycarbide hydrocarbon isomerization catalysts: cleaner fuels for the future. Catal. Today. 1997, 35, 51-57.
    [125] Neylon M K, Choi S, Kwon H, Curry K E, Thompson L T. Catalytic properties of early transition metal nitrides and carbides: N-hydrogenolysis, dehydrogenation and isomerization. Appl. Catal. A 1999, 183, 253-263.
    [126] Bouchy C, Pham-Huu C, Heinrich B, Chaumount C, Leloux M J. Microstructure and characterization of a highly selective catalyst for the isomerization of alkanes: a molybdenum oxycarbide. J .Catal. 2000, 190, 92-103.
    [127] Hao Z, Wei Z, Wang L, Li X, Li C, Min E, Xin Q. Selective hydrogenation of ethyne on γ-Mo2N.Appl. Catal.A1999, 192, 81-84.
    [128] Guerrero R A, Zhang Y, Bachiller B B, Rodriguez R I. Hydrogenation of crotonaldehyde over carbon-supported molybdenum nitrides. Catal. Lett. 1998, 55, 165-168.
    [129] Rodrigues J A J, Cruz G M, Bugli G, Boudart M, Djéga-Mariadassou G. Nitride and carbide of molybdenum and tungsten as substitutes of iridium for the catalysts used for space communication. Catal. Lett. 1997, 45, 1-3.
    [130] Brayner R, Dj éga-Mariadassou G, Cruz G M, Rodrigues J A J. Hydrazine decomposition over niobium oxynitride with macropores generation. Catal. Today. 2000, 57, 225-229.
    [131] Haddix G W, Reimer J A. Bell A T. Characterization of H2 adsorbed on -Mo2N by NMR spectroscopy. J. Catal. 1987, 108, 50-54.
    [132] Yang S, Li C, Xu J, Xin Q. Surface sites of alumina-supported molybdenum nitride characterized by FTIR, TPD-MS and volumetric chemisorption. J. Phys. Chem. B 1998, 102, 6986-6993.
    [133] Yang S. Study of supported molybdenum nitride catalysts: preparation, characterization and hydrotreating reaction, Ph. D thesis, Dalian institute of chemical physics, Chinese Academy of Sciences, 1997.
    [134] Yang S, Li C, Xu J, Xin Q. In situ probing of surface sites on supported mo-lybdenum nitride catalyst by CO adsorption. Chem. Commun. 1997, 1247-1248.
    [135] Haddix G W, Bell A T, Reimer J A. Characterization of CO adsorbed on γ-Mo2N by NMR spectroscopy. Catal. Lett. 1988, 1, 207-212.
    [136] Ko E I, Maddix R J. Effects of adsorbed carbon and oxygen on the chemisorption of H2 and CO on Mo(100)-C. Surf. Sci., 1981, 109, 221-238.
    [137] Yang S, Li Y, Ji C, Li C, Xin Q. Temperature-programmed desorption of CO and NO over Mo2N. J. Catal.1998, 174, 34-42.
    [138] Zhang M, Hwu H H, Buelow M T, Chen J G, Ballinger T H, Andersen P J. Decomposition of NO on tungsten carbide and molybdenum carbide surface. Catal. Lett. 2001, 77, 29-34.
    [139] Haddix G W, Jones D H, Reimer J A, Bell A T. Characterization of NH3 adsorbed on γ-Mo2N by NMR spectroscopy. J. Catal. 1988, 112, 556-564.
    [140] Wei Z, Xin Q, Grange P, Delmon B. TPD and TPR studies of molybdenum nitride. J. Catal. 1997, 168, 176-182.
    [141] Nagai M, Goto Y, Irisawa A, Omi S. Catalytic activity and surface properties of nitrided molybdenum-alumina for carbazole hydrodenitrogenation, J. Catal. 2000, 191, 128-137.
    [142] Solymosi F, Bugyi L, OszkóA. Formation and reactions of CH3 species over Mo_2C/Mo(111) surface. Catal. Lett. 2000, 57, 103-107.
    [143] Cserényi J, óvári L, Bánsági T, Solymosi F. Adsorption and reaction of CH3Cl on Mo_2C based catalyst. J. Mol. Catal. A 2000, 162, 335-343.
    [144] Frühberger B, Chen J G. Reaction of ethylene with clean and carbidemodi-fied Mo(110): converting surface reaction of molybdenum to Pt-group metals. J. Am. Chem. Soc. 1996, 118, 11599-11609.
    [145] Haddix G W, Bell A T, Reimer J A. NMR studies of model hydrodenitroge-nation catalysis: Acetonitrile hydrogenation on γ-Mo_2N. J. Phys. Chem. 1989, 93, 5859-5865.
    [146] Chen J G. Selective Activation of C-H and C=C bonds on metal carbides: A comparison of reactions of n-butane and 1,3-butadiene on vanadium carbide films on V(110). J. Catal. 1995, 154, 80-90.
    [147] Liu N, Rykov S A, Hwu H H, Buelow M T, Chen J G. Modifying surface reactivity by carbide formation: Reaction pathways of cyclohexene over clean and carbide-modified W(111). J. Phys. Chem. B 2001, 105, 3894-3902.
    [148] Armstrong P A, Bell A T, Reimer J A. Comparison of the dynamics and orientation of chemisorbed benzene and pyridine on γ-Mo2N, J. Phys. Chem. 1993, 97, 1952-1960.
    [149] Rodriguez J A, Dvorak J, Jirsak T. Chemistry of SO2, H2S, and CH3SH on carbide-modified Mo(110) and Mo2C powders: Photoemission and XANES studies. J. Phys. Chem. B 2000, 104, 11515-11521.
    [150] Rodriguez J A, Dvorak J, Jirsak T. Chemistry of thiophene on Mo(110), MoCx and MoSx surfaces: photoemission studies. Surf. Sci. 2000, 457, L413-420.
    [151] Wei Z, Xin Q, Grange P, Delmon B. XPS and XRD studies of fresh and sulfided Mo2N. Appl. Surf. Sci. 1998, 135, 107-114.
    [152] Kapoor R, Oyama S T, Frühberger B, Devries B D, Chen J G. Chracteriza-tion of early transition-metal carbides and nitrides by NEXAFS. Catal. Lett. 1995, 34, 179-189.
    [153] Zhu J, Guo J, Zhai R, Bao X, Zhang X, Zhuang S. Preparation and adsorption properties of Mo2N model catalyst. Appl. Surf. Sci. 2000, 161, 86-93.
    [154] Frapper G, Pélissier M, Hafner J. CO adsorption on molybdenum nitrides γ-Mo2N(100) surface: formation of N = C = O species? A density functional study. J. Phys. Chem. B 2000, 104, 11972-11976.
    [155] Aronsson B, Lundstr?m T, Rundqvist S. Borides, Silicides and Phosphides. Methuen, London/Wiley, New York, 1965.
    [156] Corbridge D E C. Studies in Inorganic Chemistry, fourth ed., Vol. 10, Elsevier, Amsterdam, 1990.
    [157] Gopalakrishnan J, Pandey S, Rangan K K. Convenient route for the synthesis of transition-metal pnictides by direct reduction of phosphate, arsenate, and antimonate precursors. Chem. Mater. 1997, 9, 2113-2116.
    [158] Xie Y, Su H L, Qian X F, Liu X M, and Qian Y T. A mild one-step solvothermal route to metal phosphides (Metal = Co, Ni, Cu). J. Solid State Chem. 2000, 149, 88-91.
    [159] Jarvis Jr. R F, Jacubinas R M, Kaner R B. Self-propagating metathesis routes to metastable group 4 phosphides. Inorg. Chem. 2000, 39, 3243-3246.
    [160] Li W, Dhandapani B, Oyama S T. Molybdenum phosphide: A novel catalyst for hydrodenitrogenation. Chem. Lett. 1998, 207-208.
    [161] Clark P, Li W, Oyama S T. Synthesis and activity of a new catalyst for hydroprocessing: Tungsten phosphide. J. Catal. 2001, 200, 140-147.
    [162] Clark P, Wang X, and Oyama S T.Characterization of silica-supported molybdenum and tungsten phosphide hydroprocessing catalysts by (31)~P nuclearmagnetic resonance spectroscopy. J. Catal. 2002, 207, 256-265.
    [163] Phillips D C, Sawhill S J, Self R, Bussell M E. Synthesis, characterization, and hydrodesulfurization properties of silica-supported molybdenum phosphide catalysts. J. Catal. 2002, 207, 266-273.
    [164] Rodriguez J A, Kim J Y, Hanson J C, Sawhill S J, Bussell M E. Physical and chemical properties of MoP, Ni2P, and MoNiP hydrodesulfurization catalysts: Time-resolved X-ray diffraction, density functional, and hydrodesulfurization activity studies. J. Phys. Chem. B 2003, 107, 6276-6285.
    [165] Zuzaniuk V, Prins R. Synthesis and characterization of silica-supported transition-metal phosphides as HDN catalysts. J. Catal. 2003, 219, 85-96.
    [166] Oyama S T, Wang X, Lee Y K, Chun W J. Active phase of Ni2P/SiO2 in hydropro- cessing reactions. J. Catal. 2004, 221, 263-273.
    [167] Muetterties E L, Sauer J C. Catalytic properties of metal phosphides. I. Qualitative assay of catalytic properties. J. Am. Chem. Soc. 1974, 96, 3410.
    [168] Nozaki F, Tokumi M. Hydrogenation activity of metal phosphides and promoting effect of oxygen. J. Catal. 1983, 79, 207-210.
    [169] Nozaki T, Kitoh F, Sodesawa T, Promoting effect of oxygen for hydrogenation of butadiene over Ni2P catalyst. J. Catal. 1980, 62, 286-293.
    [170] Li H, Dai W L, Wang W, Fang Z, Deng J F. XPS studies on surface electronic characteristics of Ni–B and Ni–P amorphous alloy and its correlation to their catalytic properties. Appl. Surf. Sci. 1999, 152, 25-34.
    [171] Wang W J, Qiao M H, Li H, Deng J F. Amorphous NiP/SiO2 aeroge: Its preparation, its high thermal stability and its activity during the selective hydro-genation of cyclopentadiene to cyclopentene. Appl. Catal. 1988, 166, L243-247.
    [172] Li H, Wang W, Zong B, Min E, Deng J F. Skeletal Ni-P amorphous alloy (R-Ni-P) as a hydrogenation catalyst. Chem. Lett. 1998, 371-372.
    [173] Robinson W R A M, van Gestel J N M, Korányi T I, Eijsbouts S, van der Kraan A M, van Veen J A R, de Beer V H J. Phosphorus promotion of Ni(Co)-containing Mo-free catalysts in quinoline hydrodenitrogenation. J. Catal. 1996, 161, 539-550.
    [174] Stinner C, Prins R, Weber Th. Formation, structure, and HDN activity of unsupported molybdenum phosphide. J. Catal. 2000, 191, 438-444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700