用户名: 密码: 验证码:
全长UTRN在肺癌发生中的细胞生物学作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题组前期研究发现Utrophin(UTRN)是一个候选的抑癌基因,并在多种肿瘤中表达下调或缺失。鉴于UTRN基因能够编码除了2个全长转录本A和B外,还可能编码包括短转录本Up71和Up140在内的7个变异体,本研究采用半定量RT-PCR方法分析了短转录本Up71和Up140在15种人肺癌细胞系中的表达,结果表明Up71和Up140的表达不影响对UTRN全长转录本的研究。同时,本研究检测全长UTRN(FL-UTRN)在以上15种肺癌细胞系中的表达缺失情况,结果表明FL-UTRN可能在NCI-H69、NCI-H82和NCI-H446细胞中完全表达缺失。另外,本研究采用荧光定量PCR技术检测了FL-UTRN在19种人肺癌细胞系的表达,与正常人胚肺成纤维细胞MRC5和正常成人肺组织比较,结果显示FL-UTRN在NCI-H520、NCI-H661等细胞中表达水平显著增高。此外,本研究分析了FL-UTRN在26例非小细胞肺癌临床病例中的表达,与正常癌旁组织比较,FL-UTRN在19例肺癌组织中表达明显下调。结合已有的细胞定位研究结果,FL-UTRN在其高表达的人肺癌细胞系中存在于细胞核,提示核表达的FL-UTRN在肺癌发生中的可能起重要作用。
     已有研究证实,在非肿瘤细胞中FL-UTRN表达于细胞膜,但是在前期研究中,同时发现FL-UTRN在NCI-H520等人肺癌细胞系中发生了核转位,在细胞膜上无表达。为了进一步研究FL-UTRN在细胞核中的继发功能,本研究采用RNAi技术沉默NCI-H520细胞中核表达的FL-UTRN,与对照组比较,核FL-UTRN表达沉默的NCI-H520细胞的增殖能力没有显著改变,但是在软琼脂中形成的细胞集落显著增大。另外,作为参照实验,本研究采用RNAi技术同时沉默了在小鼠成纤维细胞NIH3T3中质膜表达的FL-UTRN,在其表达沉默前后,NIH3T3细胞的增殖能力以及黏着斑分子α-actinin、vinculin和paxillin的表达和定位无显著改变。以上研究结果提示,相比质膜表达的FL-UTRN,核FL-UTRN表达沉默可能增强了肺癌细胞的恶性程度。因此,核表达的FL-UTRN可能作为一个候选抑癌基因的产物在细胞核内行使功能,为深入探讨UTRN与肺癌发生的关系提供了新的思路。
In previous study, we demonstrated that Utrophin(UTRN) is a candidate tumor suppressor gene,and the low expression or deletion of UTRN occurred in various tumor tissues. In addition, in light of the transcripts of UTRN gene containing full-length transcripts A and B, also seven isoforms including short transcripts Up71 and Up140, we detected the expression of short transcripts Up71 and Up140 in 15 lung cancer cell lines by RT-PCR. The results showed that the expression of Up71 and Up140 did not effect the investigation on the full-length transcripts of UTRN in this study. At the same time, we detected full-length UTRN(FL-UTRN) in the 15 lung cancer cell lines by RT-PCR. The results suggested that the FL-UTRN maybe absent in H69, H82 and H446 cells. Otherwise, we analyzed the expression of full-length transcripts in 19 lung cancer cell lines by real-time PCR. The results showed that the expression of FL-UTRN in several lung cancer cell lines, including NCI-H520 and NCI-H661, much higher than that in MRC5 cells and lung tissue of mormal adults. In addition, the expression of FL-UTRN was detected in 26 paired non-small-cell lung cancer specimens by real-time PCR. The results suggested that the expression level of the FL-UTRN in tumor was significantly lower than in corresponding adjacent normal tissues. Together with the analysis of the cellular location, FL-UTRN was expressed in the nuclears of which lung cancer cell lines the expression of the FL-UTRN were high. The results above implied that the FL-UTRN which expressed in the nuclears maybe play a important role in lung cancer cells.
     The FL-UTRN distributed at the periphery of the plasma membrane in the non-tumorous cells according to the previous study. However, the FL-UTRN was found nuclear translocation in several lung cancer cell lines including NCI-H520, and non-expression at the periphery of plasma membrane. For further studying the secondum function of the FL-UTRN in nuclears, the FL-UTRN was silenced by RNAi. there was no obvious change of the capability of proliferation of the NCI-H520 cells, which the nuclear FL-UTRN was silenced, except for an increasing tendency of the colons size in the soft agar. Besides, as the controlled experiment, the FL-lUTRN distributed at the periphery of the plasma membrane in NIH3T3 cells was silenced by RNAi. It was found that there was no obvious change of the capability of proliferation and the the anchorage-independent growth, and the expression and subcellular location of the focal adhesion molecules includingα-actinin, vinculin and paxillin. The results above implied that the expression silence of nuclear FL-UTRN maybe enhance the malignant degree of the lung cancer cells according to the FL-UTRN at the periphery of the plasma membrane. Above data demonstrated that nuclear FL-UTRN maybe act as the product of a tumor suppressor gene in the nuclears. Our studies provide new insight into the relation between UTRN and tumorigenesis.
引文
1 http://www.lungcancercoalition.org/cancer_facts.htmL
    2 N. Wilking, B. Jonsson. A Pan-European Comparison regarding Patient Access to Cancer Drugs, Karolinska Institute in collaboration with Stockholm School of Economics, Stockholm, Sweden, 2005.
    3 S. Sato, Y. Nakamura, E. Tsuchiya. Difference of Allelotype between Squamous Cell Carcinoma and Adenocarcinoma of the Lung. Cancer Res.1994,54:5652~5655.
    4 M. Shiseki, T. Kohno, R. Nishikawa. Frequent Allelic Losses on Chromosomes 2q, 18q, and 22q in Advanced Non-Small Cell Lung Carcinoma. Cancer Res.1994,54:5643~5648.
    5 J. S. Wiest, W. A. Franklin, J. T. Otstot. Identification of a Novel Region of Homozygous Deletion on Chromosome 9p in Squamous Cell Carcinoma of the Lung: the Location of a Putative Tumor Suppressor Gene. Cancer Res.1997,57:1~6.
    6 K. M. Fong, P. V. Zimmerman, P. J. Smith. Correlation of Loss of Heterozygosity at 11p with Tumour Progression and Survival in Non-Small Cell Lung Cancer. Genes Chromosomes Cancer.1994,10:183~189.
    7 K. M. Fong, P. V. Zimmerman, P. J. Smith. Tumor Progression and Loss of Heterozygosity at 5q and 18q in Non-Small Cell Lung Cancer. Cancer Res. 1995,55:220~223.
    8 K. M. Fong, Y. Kida, P. V. Zimmerman. Loss of Heterozygosity frequently Affects Chromosome 17q in Non-Small Cell Lung Cancer. Cancer Res.1995,55:4268~4272.
    9 T. Mitsudomi, T. Oyama, K. Nishida. Loss of Heterozygosity at 3p in Non-Small Cell Lung Cancer and its Prognostic Implication. Clin Cancer Res.1996,2:1185~1189.
    10 Sutherland, A. J. Smith, C. A. Moores. An atomic Model for Actin Binding by the CH Domains and Spectrin-Repeat Module of Utrophin and Dystrophin. J Mol Biol.2003,329:15~33.
    11 M. Pearce, D. J. Blake, J. M. Tinsley. The Utrophin and Dystrophin Genes Share Similarities in Genomic Struclule. Hum. Molec. Genet,1993,2:1765~1772.
    12 O. Anthony Gramolini, Guy Bélanger, J. BernardJasmin. Distinct Regions in the 3′untranslated Region are Responsible for Targeting and Stabilizing Utrophin Transcripts in Skeletal Muscle Cells.Journal of Cell Biology, 2001,154(6):1173~1183.
    13 E. Vitold Galkin, Albina Orlova, S. Margaret. The Utrophin Actin-Binding DomainBinds F-Actin in Two Different Modes: Implications for the Spectrin Superfamily of Proteins. Journal of Cell Biology, 2002,157(2):243~251.
    14 Rachel Blitzblau, K. Elizabeth Storer, H. Michele Jacob. Dystrophin and Utrophin Isoforms are Expressed in Glia, but not Neurons, of the Avian Parasympathetic Ciliary Ganglion. BRAIN RESEARCH. 2008,1218:21~34.
    15 E. A. Burton, J. M. Tinsley, P. J. HoLfeind.A Second Promoter Provides an Alternative Target for the Rapeutic Up-Regulation of Utrophin in Duchenne Muscular Dystrophy.Prec Nail Acad Sci USA,1999,96:14025~14030.
    16 C. Jimenez Mallebrera, K. Davies, W. PIItt. A Study of Short Utrophin Isoforms in Mice Deficient for Ful1-Length Utrophin. Mamm Genome.2003,14:47~60.
    17 James Wilson, Wendy Putt, Cecilia Jimenez. Up71 and Up140, Two Novel Transcripts of Utrophin are Homologues of Short Forms of Dystrophin. Humam Molecular Genetics, 1999, 8(7):1271~1278.
    18 Cecilia Jimenez Mallebrera, Kay Davies, Wendy Putt. A Study of Short Utrophin Isoforms in Mice Deficient for Full-Length Utrophin. Mammalian Genome.2003,14: 47~60.
    19 A. Richard Zuellig, C. Beat Bornhauser, Irene Knuesel. Identification and Characterisation of Transcript and Protein of a New Short N-Terminal Utrophin Isoform. Journal of Cellular Biochemistry. 2000,77:418~431.
    20 F. G. Giancotti. Integrin Signaling: Specificity and Control of Cell Survival and Cell Cycle Progression. Curr Opin Cell Biol. 1997,9: 691~700.
    21 M. Kim, T. A. Springer. Bidirectional Transmembrane Signaling by Cytoplasmic Domain Separation in Integrins. Science. 2003:1720~1725.
    22 Takashi Kijima, Gautam Maulik, C. Patrick Ma. Regulation of Cellular Proliferation, Cytoskeletal Function, and Signal Transduction through CXCR4 and c-Kit in Small Cell Lung Cancer Cells. Cancer Research. 2002,62:6304~6311.
    23 A. S. Dhillon, S. Hagan, O. Rath. MAP Kinase Signalling Pathways in Cancer. Oncogene. 2007,26,3279~3290.
    24 S. M. Keyse. Dual-specificity MAP Kinase Phosphatases (MKPs) and Cancer. Cancer Metastasis Rev. 2008,27,253~261.
    25 A. Jordan, L. Wilson. Microtubules and Actin Filaments: Dynamic Targets for Cancer Chemo- Therapy. Curr Opin Cell Biol.1998,10:123~130.
    26 D. A. Lauffenburger , A. F. Horwitz. Cell Migration: a Physically Integrated Molecular Process. Cell, 1996,84(3):359~369.
    27 A. Viel. Alpha-Actinin and Spectrin Structures : an Unfolding Family Story. FEBS Lett ,1999, 460(3):391~394.
    28陈凌,郑祥雄. CD40发夹siRNA真核表达载体构建及其对CA46细胞CD40表达的影响.细胞与分子免疫学杂志, 2005, 2l(2):163~166.
    29 R. Garzon, F. Pichiorri, T. Palumbo. Micro RNA Fingerprints during Human Megakaryocytopoiesis. PANS,2006,103(13):5078~5083.
    30 M. T. Hemann, J. S. Fridman, J. T. Zilfou. An Epiallelic Series of p53 Hypomorphs Created by Stable RNAi Produces Distinct Tumor Phenotypes in vivo.Nat Genetics, 2003,33(3):396~400.
    31 V. Kevin Morris, W. Simon, L. Chan. Small Interfering RNA-Induced Transcriptional Gene Silencing in Human Cells. Science. 2004,305:1289~1292.
    32 Y. Li, J. Huang, Y. L. Zhao. UTRN on Chromosome 6q24 is Mutated in Multiple Tumors. Oncogene.2007:1~9.
    33 A. Reynolds, D. Leake, Q. Boese. Rational siRNA Design for RNA Interference. Nature Biotechnology. 2004, 22(3):326~330.
    34 M. Amarzguioui, H. Prydz. An Algorithm for Selection of Functional siRNA Sequence. Biochemical and Biophysical Research Communications. 2004, 316:1050~1058.
    35葛艳丽,王志荣,郭丽坤. GSTM1基因缺失及hMSH2蛋白表达与胃癌发病相关性研究.中外健康文摘:临床医师.2008, 2.
    36王磊,吴小候,罗春丽. hepaCAM基因缺失突变体对膀胱癌细胞的生物学影响.肿瘤. 2008, 28(6):463~467.
    37葛云洁,刘明霞,栾念旭.肺癌中FHIT基因缺失和p53蛋白表达的研究.中国误诊学杂志. 2006, 6(6):1013~1014.
    38 C. M. Acevedo, M. Henriquez, M. R.Emmert. Loss of Heterozygosity on Chromosome Arms 3p and 6q in Microdissected Adenocarcinomas of the Uterine Cervix and Adenocarcinoma in situ. Cancer. 2002,94:793~802.
    39 N. B. Atkin, Z. Jackson. Clonal Chromosome Changes including a del(6q) in a Possible Early Lymphoma. Cancer Genet. Cytogenet.1996,92:87~89.
    40 M. C. Chang, S. Xiao, Vania Nosé. Clinicopathologic and Immunohistochemical Correlation in Sporadic Pancreatic Endocrine Tumors: Possible Roles of Utrophin and Cyclin D1 in Malignant Progression. Hum Pathol. 2007,38:732~740.
    41 J. Z. Gasiorowski, D. A. Dean. Mechanisms of Nuclear Transport and Interventions. Adv Drug Deliv Rev, 2003,55(6):703~716.
    42 R. Fagerlund, L. Kinnunen, M. Kohler. NF-κB is Transported into the Nucleus by Importinα3 and Importinα4 . J Biol Chem, 2005,280(16):15942~15951.
    43 I. Kotera, T. Sekimoto, Y. Miyamoto. ImportinαTransports CaMKIV to the Nucleus without Utilizing Importinβ. EMBO J,2005,24(5):942~951.
    44陈英玉,孙荣华,韩文玲.凋亡相关蛋白TFAR19在TF-1细胞凋亡中出现细胞核转位.北京大学学报(医学版). 2001, 33:97~100.
    45 N. S. Chang, J. Doherty, A. Ensign. Molecular Mechanisms underlying WOX1 Activation during Apoptotic and Stress Responses. Biochemical Pharmacology. 2003,66:1347~1354.
    46 N. D. Marchenko, Z. Alexander, M. M. Ute. Death Signal-induced Localization of p53 Protein to Mitochondria. J. Biol. Chem. 2000,275:16202~16212.
    47 K. P. Janssen, P. Alberici, H. Fsihi. APC and Oncogenic KRAS are Synergistic in Enhancing Wnt Signaling in Intestinal Tumor Formation and Progression. Gastroenterology. 2006, 131: 1096~1109.
    48胡华军,邵健忠,许正平.α辅肌动蛋白的结构和功能.中国生物化学与分子生物学报. 2005, 21(1): 1~7.
    49 D. F. Kely, D. W. Taylor, C. Bakolitsa. Structure of the Alpha-Actinin Vinculin Head Domain Complex Determined by Cryo-Electron Microscopy. J Mol Biol, 2006, 357(2):562~573.
    50 W. Akerley, J. E. Jr. Herndon, A. P. Lyss. Induction Paclitaxel/Carboplatin Followed by Concurrent Chemoradiation Therapy for Unresectable stage : Non-Small-Cell Lung Cancer: a Limited-Access Study-CALGB 9534. Clin lung Cancer,2005,7(1): 47~53.
    51 O. Nicholas Deakin, E. Christopher Turner. Paxillin Comes of Age. Journal of Cell Science. 2008,121: 2435~2444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700