用户名: 密码: 验证码:
基于表面肌电信号的手指活动模式检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人手依靠手指和手掌的配合能够完成各种精巧复杂的动作,在协调运动的时候,各个手指根据动作的不同发挥不同的作用。手指的力量和动作是反映手指协同运动,评价手部运动机能的重要参数。采用传统的传感器测量这些参数存在的缺陷是易受使用环境和场地的限制。由于手指活动受前臂肌肉控制,而肌电信号是反映神经肌肉的功能状态的重要指标,所以利用前臂的表面肌电(sEMG,surface electromyography)信号来间接评价手指的活动模式对运动科学,人机交互,假肢控制,人体工效学,康复训练等许多方面的研究具有重要的学术和实用意义。
     本文首先建立指力检测实验系统,用LabVIEW8.0设计指力反馈系统软件,将指力计检测的指力信息用USB数据采集卡采集到指力反馈系统软件中,给受试者提供力量反馈,指导受试者用力。然后在该系统上分别进行单个手指4N,6N,8N按压动作的实验;食指中指合力为10%,20%,30%最大随意收缩力量(maximum voluntary contraction,MVC)时,两指自然分配力量比例的实验;食指中指合力为30%MVC,力量分配比例为1:1、5:2的实验,采集实验过程中指浅屈肌(flex digitorum superficials ,FDS)、指伸肌(extensor digitorum ,ED)的表面肌电信号,接着对这些动作的sEMG信号进行20-500Hz的滤波,计算FDS,ED的sEMG信号的均方根(RMS), AR系数,C0复杂度,比较相同肌肉不同力量水平时的RMS,食指中指力量比例分配不同时的C0复杂度,通过概率型神经网络(PNN)和学习矢量量化(LVQ)神经网络对食指、中指同等力量水平下的动作进行了分类。
     通过对实验采集的肌电信号的分析,得到以下一些结果:(1)食指、中指分别在4N、6N、8N三种力量水平下动作,其FDS、ED的肌电信号的RMS值随着力量的增加而递增。食指用力时FDS、ED的肌电信号的C0值大于同等力量下中指用力时的C0值;(2)以C0或AR系数为肌电信号的特征值用LVQ网络对同等力量水平下食指中指动作进行分类,准确率在80%以上;(3)以C0或AR系数为肌电信号的特征值用PNN网络分别对同等力量水平下食指中指动作进行分类,除了对4N力量下食指中指动作进行分类的准确率低于80%以外,其余的正确率均在80%以上。(4)对单个个体所有力量水平下的动作进行分类,以RMS和C0复杂度或者RMS和AR系数作为sEMG信号的特征值,采用PNN神经网络,分类正确率最高为95%。(5)食指中指自然力量分配下,合力达10%,20%,30%MVC时,表现为归一化RMS(%RMS)随着力量的增大而增加。(6)受试者食指中指合力为30%MVC,食指中指力量分配比例为1:1,5:2两种情况下,FDS、ED的RMS,C0值,虽然力量分配比例不同,但RMS,C0值无明显差异。
     研究结果表明,sEMG信号与手指动作具有相关性,RMS,AR模型系数,C0复杂度可以作为sEMG信号的特征值,反映肌肉的活动水平,估计手指的活动模式。随着单个手指(食指、中指)力量的增大,或者食指中指合力的增大,肌电信号的RMS值递增。以AR系数或C0复杂度作为指浅屈肌、指伸肌表面肌电信号的特征值,使用LVQ或PNN神经网络可以识别出单指特定力量下动作时是食指在用力还是中指在用力。给食指、中指人为分配不同的力量比例达到某一合力,这种情况下FDS,ED两块肌肉肌电信号的RMS、C0值均未表现出食指中指单独用力时所表现出的差异,同时,食指中指在两种给定的力量分配下,其值没有明显差异。
Fingers and palm could concert to make lots of motion which is skillful and complex, different fingers had different functions according to the variety of the motion. Finger force was an important parameter to reflect finger synergetic motion and evaluate hand movement function. The restriction of environment and situation was the defects of the conventional sensors which had been used to gather the force parameter. Finger motion was controlled by the muscles of forearm, while the sEMG signal reflected the status of the never and muscle, so there might be some relationship between sEMG signal and finger motion, the sEMG (surface electromyography) signal could be used to estimate the motion mode of fingers, and it would play an important role in the research of mechanics, prosthetic hand, and rehabilitation training.
     First, an experiment system using for detecting finger force had been established. The LabVIEW-based finger force feedback software was designed, which could display the results of real-time acquisition of finger force and force track. Then, three experiments were conducted: (1) the experiment of single finger pressing at 4N, 6N, 8N; (2) the experiment of index and middle finger combined pressing at 10%, 20%, 30% MVC (maximal voluntary contraction); (3) the experiment of index and middle finger combined pressing force at 30%MVC, and index, middle finger force rate at 1:1 and 5:2. And the sEMG signal of FDS (flex digitorum superficials) and ED (extensor digitorum) was recorded. Next, the sEMG signal was filtered, and RMS (root mean square), AR model coefficient, C0 complexity as the characteristic of sEMG signal was calculated. After that, the RMS value of sEMG signal at different force had been compared, so did the C0 complexity in different force proportion. The motion of index finger or middle finger which pressed at a same force had been classified by the use of PNN (probabilistic neural networks) and LVQ (learning vector quantization) neural network. Some result could be obtained by analyzing the sEMG signal: (1) RMS value of both FDS and ED’s sEMG signal increased with index or middle finger force increased. When index finger pressed, the C0 value of FDS and ED’s sEMG signal was larger than middle finger pressed. (2). Using C0 value or AR coefficient as the input of the LVQ or PNN neural network could classify the motion between index finger and middle finger, and the correct rate was above 80%. (3). Using C0 value or AR coefficient as the input of the PNN neural network could classify the motion between index finger and middle finger, and the correct rate was above 80% except the motion at 4N. (4). For a single subject, The maximum correct recognition rate of all finger force level movement by using RMS and C0 value, or RMS and AR coefficient as the input parameter of PNN neural network could be 95%. (5). RMS value of both FDS and ED increased with index and middle finger combined force increased. (6). The RMS and C0 value didn’t showed differential when index and middle finger combined force at 30%MVC, and index, middle finger force rate at 1:1 and 5:2.
     The results of experiment showed that, a correlation between finger motion and sEMG signal had been represented. As the characteristic of sEMG signal, the RMS value, AR coefficient, and C0 complexity could reflect muscle active level, and could estimate finger motion. When single finger force increased or multi-finger combined force increased, the RMS of sEMG signal would raise. Using C0 value or AR coefficient as the input of the LVQ or PNN neural network could classify the motion between index finger and middle finger. The difference of sEMG signal didn’t represent when index and middle finger combined force at 30%MVC, and index, middle finger force rate at 1:1 and 5:2.
引文
[1] Farid Mobasser, Keyvan Hashtrudi-Zaad. Hand Force Estimation using Electromyography Signals [C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation,2005:2631-2636.
    [2] Marco J.M. Hoozemans , Jaap H. van Diee¨n. Prediction of handgrip forces using surface EMG of forearm muscles [J]. Journal of Electromyography and Kinesiology, 2005, 15: 358-366.
    [3]丁海曙,容观澳,王广志.人体运动信息检测与处理[M].北京:宇航出版社,1992:94-123.
    [4] Osamu Fukuda, Jun Arita, Toshio Tsuji.An EMG-Controlled Omnidirectional Pointing Device [J]. Systems and Computers in Japan, 2006, 37(4):56-63.
    [5] Farid Mobasser, Keyvan Hashtrudi-Zaad. Hand Force Estimation using Electromyography Signals [C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation 2005:2631-2636
    [6] Basmajian H, Luca CJD.Muslce alive: their functions revealed by electromyography [M]. MD: willianms & Wilkins, 1985.
    [7]余洪俊.表面肌电图评价肌肉的功能状况[J].中国临床康复,2002;23(6):3514-3515.
    [8] P. Sbriccoli, I. Bazzucchi, A. Rosponi, et al. Amplitude and spectral characteristics of biceps Brachii sEMG depend upon speed of isometric force generation [J]. Journal of Electromyography and Kinesiology, 2003, 13: 139–147.
    [9]杨红春,王健,张海红.等长收缩诱发肌肉疲劳及恢复过程中表面肌电信号特征变化规律[J].生物物理学报,2005,21(5):385-390.
    [10]齐瑞,严隽陶,房敏,等.脑卒中偏瘫患者肱二、三头肌表面肌电特征的研究[J].中华物理医学与康复杂志, 2006, 28 (6): 399 -401.
    [11] J. Duque, D. Masset, J. Malchaire, Evaluation of handgrip force from EMG measurements [J]. Appl. Ergon. 1995, 26: 61–66.
    [12] Edward A Clancy, Dario Farina, Roberto Merletti.Cross-comparison of time- and frequency- domain methods for monitoring the myoelectric signal during a cyclic, force-varying, fatiguing hand-grip task [J]. Journal of Electromyography and Kinesiology, 2005, 15: 256–265.
    [13] Marco J.M. Hoozemans, Jaap H. van Dieen. Prediction of handgrip forces using surface EMG of forearm muscles [J]. Journal of Electromyography and Kinesiology, 2005, 15 :358–366.
    [14] Dori Peleg, Eyal Braiman, Elad Yom-Tov ,et al.Classification of Finger Activation for Use ina Robotic Prosthesis Arm [C]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2002, 10( 4):290-293.
    [15]胡晓,王志中,任小梅.小波变换和非线性分析在表面肌电信号中的应用及进展[J].北京生物医学工程,2006,25(1):105-108.
    [16] Osamu Fukuda, Toshio Tsuji. A Human-Assisting Manipulator Teleoperated by EMG Signals and Arm Motions [C]. IEEE transactions on robotics and automation, 2003, 19(2): 210-222
    [17] Hideaki Touyama, Koichi Hirota, Michitaka Hirose. Implementation of Electromyogram Interface in CABIN Immersive Multiscreen Display [C]. Proceedings of the IEEE Virtual Reality Conference, 2006.
    [18] Ewa Gustafsson, Mats Hagberg. Computer mouse use in two different hand positions: exposure, comfort, exertion and productivity [J]. Applied Ergonomics, 2003, 34: 107–113.
    [19]王奎,刘建红,周志宏,方芳,等. iEMG评价举重运动员力量素质的研究[J].解放军体育学院学报, 2005, 24(1), 92-94.
    [20]王健,杨红春,刘加海.疲劳相关表面肌电信号特征的非疲劳特异性研究[J].航天医学与医学工程, 2004, 17(1): 39-43.
    [21]王飞,罗志增.基于功率谱的表面EMG信号运动模式识别[J].杭州电子科技大学学报2005, 25(1): 37-40.
    [22] Jianguo Cui, Xu Wang. The Application of Wavelet Transform and Neural Network to Surface Electromyographic Signals for Pattern Recognition [C]. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, September, 2005: 5009-5012.
    [23]杨志家,赵光宙.肌电信号的相空间分析[J].生物物理学报, 1998, 14(2): 257-261.
    [24] Yanli Meng, Bingzheng Liu, Yuping Liu. A Comprehensive Nonlinear Analysis of Electromyogram [C]. Preoceedings of the 23rd Annual EMBS International Conference, 2001: 1078-1081
    [25] Pavitra Padmanabhan, Sadasivan Puthusserypady. Nonlinear Analysis of EMG Signals– A Chaotic Approach [C]. Proceedings of the 26th Annual International Conference of the IEEE EMBS, 2004, 608-611.
    [26]颜志国,王志中,胡晓.复杂度和小波包变换在运动模式识别中的应用[J].医疗卫生装备, 2006, 27(1): 33-37.
    [27]刘春玲,王旭.基于定量递归分析(RQA)方法的肌电信号处理[J].计算机工程与应用,2007, 43(1): 204-205.
    [28] Anninos PA, Adamopoulos AV, Kotini A, et al. Nonlinear analysis of brain activity in magnetic influenced Parkinson patients [J]. Brain Topography, 2000, 13(2): 135-144.
    [29]任志军,田心.脑电高阶Lyapunov指数的估计及其仿真计算[J].中国生物医学工程学报,2005, 24(6): 676-680.
    [30] J. Z. Wang, R. C. Wang, F. Li, et al. EMG Signal Classification for Myoelectric Teleoperating a Dexterous Robot Hand [C]. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.2005:5931-5933.
    [31]李醒飞,杨晶晶,史颖.基于肌电信号的手臂运动状态的辨识[J].中国生物医学工程学报, 2005, 24(4): 416-420
    [32]崔建国,王旭,李忠海.支持向量机在表面肌电信号模式分类中的应用[J].东北大学学报(自然科学版), 2006, 27(3): 280-283.
    [33]谢洪波,马从斌,王志中.基于灰色系统理论的表面肌电分类.生物医学工程学杂志, 2004, 21(6): 901-906.
    [34]刘博,张玉茹,任大伟.人手食指运动学建模[J].机器人, 2007, 29(3): 214-218.
    [35]范伟,余麟,刘昭博.气动人工肌肉驱动仿人灵巧手的设计[J].机床与液压, 2006, 8: 62-65.
    [36]周士枋,丁伯坦.运动学[M].北京:华夏出版社, 2005.
    [37]卢祖能,曾庆杏,李承宴,等.实用肌电图学[M].北京:人民卫生出版社, 2000.
    [38]汤小芙.临床肌电图学[M].北京:北京医科大学、中国协和医科大学联合出版社, 1995.
    [39] Li ZM, Latash ML, Zatsiorsky VM. Force sharing among fingers as a model of the redundancy problem [J]. Exp Brain Res 1998, 119: 276–286.
    [40] M.L. Latash, Z.M. Li, V.M. Zatsiorsky, A principle of error compensation studied within a taskof force production by a redundant set of fingers [J]. Exp. Brain Res. 1998, 122: 131–138.
    [41] Zatsiorsky VM, Li ZM, Latash ML. Enslaving effect in multi-finger force production [J]. Exp Brain Res, 2000, 131:187–195.
    [42] Z.M.Li, V.M. Zatsiorsky, M.L.Latashb, et al. Anatomically and experimentally based neural networks modeling force coordination in static multi-finger tasks [J]. Neurocomputing, 2002,47: 259–275.
    [43] FRANCISCO J. VALERO-CUEVAS. Predictive Modulation of Muscle Coordination Pattern Magnitude Scales Fingertip Force Magnitude Over the Voluntary Range [J]. Journal of Neurophysiology, 2000, 83:1469-1479.
    [44]机械仿生手像真手一样灵活[EB/01]. http://tech.qianlong.com/33443/2007/07/20/3402@3957520.htm, 2007-07-20.
    [45]侯国屏,王珅,叶齐鑫. LabVIEW7.1编程与虚拟仪器设计[M].北京:清华大学出版社, 2005.
    [46]何健,戴曙光,穆平安,等.基于LabVIEW的多道电生理系统中数据的采集与处理[J].仪表技术, 2005, 2:56-57.
    [47]韩海晖.基于USB实现多路脉冲治疗仪监控技术[J].计算机工程与设计, 2005,8(26): 2243-2248.
    [48] P. Sbriccoli a, I. Bazzucchi a, A. Rosponi, et al. Amplitude and spectral characteristics of biceps Brachii sEMG depend upon speed of isometric force generation [J]. Journal of Electromyography and Kinesiology, 2003, 13: 139–147.
    [49]王飞,罗志增.基于AR模型和BP网络的表面EMG信号模式分类[J].华中科技大学学报(自然科学版), 2004,32: 100-102;
    [50] Yang Cao, Zhijie Cai, Enhua Shen. Quantitative analysis of brain optical images with 2D C0 complexity measure [J]. Journal of Neuroscience Methods, 2007, 159: 181–186.
    [51]胡晓,王志中,任小梅.小波变换和非线性分析在表面肌电信号中的应用及进展[J].北京生物医学工程, 2006, 25(1): 105-108.
    [52]杨福生,高上凯.生物医学信号处理[M].北京:高等教育出版社, 1995.
    [53]胡广书.数字信号处理-理论、算法与实现[M].北京:清华大学出版社, 2003.
    [54]秦川,王志中,王刚,等.利用AR模型参数分析损伤神经的针电极肌电信号[J].生物医学工程学杂志, 2004, 21(4): 636-639.
    [55]陈芳,顾凡及,徐京华,等.一种新的人脑信息传输复杂性的研究[J].生物物理学报,1998; 14(3):508-512
    [56] Rapp P E, Schmah T I. Dynamical analysis in clinical practice [A]. In: Lehnertz K,Arnhold J.
    [57] Berger P, et al , Eds . Chaos in Brains [M]. Singapore: World Scientific, 2000.
    [58]沈恩华,蔡志杰,顾凡及.C0复杂度的数学基础[J].应用数学和力学2005; 26(9): 1083-1090.
    [59]刘加海,王丽,王健.基于相空间、熵和复杂度变化的表面肌电信号分析[J].浙江大学学报(理学版), 2006,33(2):182-186.
    [60] Lempel A , Ziv J. On complexity of finite sequences [C]. IEEE Transactions on Information Theory, 1976, IT22(1): 75-81.
    [61] Pincus S M. Approximate entropy as a measure of system complexity [C]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(6): 2297 -2301.
    [62] Specht D F. Probabilistic neural networks [J]. Neural Networks, 1990, 3: 109一118.
    [63]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005,7:67-83
    [64]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社, 2005.
    [65] Hermie J. Hermens, Bart Freriks, Catherine Disselhorst-Klug, et al. Development of recommendations for SEMG sensors and sensor placement procedures [J]. Journal ofElectromyography and Kinesiology, 2000;10: 361–374.
    [66]殷玮玮,鄂一鸣,吴乐南.一种改进的概率神经网络用于信源——信道联合编码[J].通讯和计算机,2005, 2(6): 68-70.
    [67]蔡立羽,王志中,张海虹.表面肌电信号的复杂度特征研究[J].航天医学与医学工程, 2004, 13(2): 124-127.
    [68] Kentaro NAGATA, Keiichi ADNO, Masafumi YAMADA, et al.A Classification Method of Hand Movements Using Multi Channel Electrode [C].. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, September , 2005: 2375-2378.
    [69] Didier Staudenmann, Idsart Kingma, Andreas Daffertshofer.Improving EMG-Based Muscle Force Estimation by Using a High-Density EMG Grid and Principal Component Analysis [C]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53(4): 712-719.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700