用户名: 密码: 验证码:
基于Voronoi图的圆度误差评定算法及系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工业生产和制造中,大多数零件的几何形状包含有圆形部分,因此圆度误差的评定具有重要意义。圆度误差评定是检测产品质量、保证加工精度的关键环节之一。目前关于圆度误差评定的方法主要有线性代数法、非线性优化法、随机优化算法、遗传算法、穷举法和基于计算几何的方法等,但均无法快速简捷地求出符合国际标准定义的圆度误差。
     本文研究了Voronoi图的性质,分析了Voronoi图在圆度误差评定领域中的应用,通过最近Voronoi图和最远Voronoi图的性质得出了下述结论:对于测量平面上的一组测量点集,当外接圆圆心在其最远Voronoi图上移动时对应的外接圆半径单调收敛,并最终收敛到最小外接圆圆心;当内接圆圆心在其最近Voronoi图上移动时对应的内接圆半径局部单调增大,并最终增大到局部最大内接圆圆心;当区域圆圆心在其最近Voronoi图或最远Voronoi图上移动时对应的区域圆半径差局部单调收敛,并最终收敛到局部最小区域圆圆心。在此基础上提出了一种基于Voronoi图的评定圆度误差的最小外接圆法、最大内接圆法和最小区域圆法,给出了详细的程序流程图,在Windows XP环境中利用Visual C++ 6.0编制了相应的程序,给出了具体的圆度误差评定算例,并与符合定义的穷举法进行了比较。
     目前,广泛应用于测量领域的光栅位移传感器通过分立的数显箱实现结果显示,其存在系统灵活性差、不便与其他设备接口和难以实现自动测量等缺点。本文针对此现状,提出了一种基于USB2.0的虚拟光栅数显系统。
     研究结果表明利用本文提出的算法求得的结果和理论结果一致,时间复杂度为线性,而且具有简单直观和误差不累积的特点。当用于采样点较多的圆度误差评定时,本文提出的方法具有明显的计算速度优势。基于USB2.0的虚拟光栅数显系统能够满足采集数据的要求。
In industrial production and manufacturing, roundness error evaluation is one of the key measures to detect the product quality and guarantee the machining precision. At present, the existing algorithms for roundness error evaluation mainly include the linear algebra approach, the nonlinear optimization method, the random optimization algorithm, the genetic algorithm, the stochastic optimization approach, the exhaustive approach, and the computational geometry based approachs. However, none of the above mentioned methods can rapidly and simply find the roundness error according to the definition given by the ISO.
     In this paper, the characteristics of the Voronoi diagram, as well as the roundness error evaluation utilizing the Voronoi diagram, are studied. According to the analysis, for a given measured point set in a plane, it can be found that (1) the radius of the circumscribed circle decreases monotonously when its center moves from any point on the farthest Voronoi diagram to the minimum circumscribed circle center along the farthest Voronoi edges, (2) the radius of the inscribed circle increases monotonously when its center moves from any point on the nearest Voronoi diagram to the centre of the local maximum inscribed circle along the nearest Voronoi edges, and (3) the radius difference of the zone ring decreases monotonously when its center moves from the minimum circumscribed circle center to the centre of the local minimum zone circle along the nearest or the farthest Voronoi edges. On this basis, an algorithm accessing the minimum circumscribed circle for roundness based on the farthest Voronoi diagram, an algorithm accessing the maximum inscribed circle for roundness based on the nearest Voronoi diagram and an algorithm accessing the minimum zone circle for roundness based on the nearest and the farthest Voronoi diagram are proposed. In addition, the detailed flow charts of the algorithms and the corresponding software with Visual C++ 6.0 in Windows XP environment are presented. Furthermore, the examples to evaluate the roundness error with the developed software based on the algorithms proposed in this paper as well as the comparision with the exhaustive approach are shown.
     At present, the grating displacement sensors, widely used in the field of measurement, display the result through separating digital readout. Based on the traditional readout of the grating displacement sensors, not only the system flexibility is poor, but also the interface with other equipments is inconvenient. Keep this in mind, a virtual grating digital readout based on USB 2.0 is presented.
     The research results show that not only the algorithms proposed in this thesis can access the roundness error according with the definition, but also the time complexity is linear without error accumulation. The larger the scale of the sampling points of the measured point set is, the more apparent the predominance of the computing speed of the algorithm proposed in this thesis is. The virtual grating digital readout system based on USB 2.0 can meet the need of data acquisition.
引文
[1]何贡.互换性与技术测量[M].北京:中国计量出版社, 2000.
    [2]陈于萍,高晓康.互换性与技术测量[M].北京:高等教育出版社, 2002.
    [3]汪嘉业,杨承磊. Voronoi图理论与应用新成果[J].国际学术动态, 2007, (3): 3-5.
    [4]刘金义,刘爽. Voronoi图应用综述[J].工程图学学报, 2004, (2): 125-132.
    [5] Aurenhammer F. Voronoi diagrams—a survey of a fundamental data structure[J]. ACM Computing Surveys, 1991, (23): 345-405.
    [6] Fortune S. Computing in Euclidean Geometry[M]. World Scientific, 1992.
    [7] Okabe A, Boots B, Sigojara K. Spatial tessellations: concepts and applications of Voronoi diagrams[M]. John Wiley & Sons, 1992.
    [8]杨璞,易发令,刘王飞,杨远发.使用Dirichlet自由变形算法实现三维人脸及其变形[J].计算机技术与发展, 2006, (11): 131-133.
    [9] Yue L, Tan C L. Constructing area Voronoi diagram in document images[J]. Document Analysis and Recognition, 2005, (1): 342-346.
    [10]裴继红,杨火亘,谢维信.一种用于模式识别的多色Voronoi图[J].系统工程与电子技术, 2004, (7): 963-966.
    [11] Berg M D, Kreveld M V, Overmars M, Schwarzkopf O,邓俊辉(译). Computational Geometry: Algorithms and Applications (Second Edition)[M].北京:清华大学出版社, 2005.
    [12]李珂,王正平.多架无人机的协同攻击航路规划[J].航空计算技术, 2006, (9): 98-101.
    [13]杨丽徙,朱向前,陈根永,王金凤.基于Voronoi图的变电站优化规划方法[J].电力系统及其自动化学报, 2006, (5): 10-13.
    [14]周培德.计算几何—算法设计与分析(第2版)[M].北京:清华大学出版社, 2005.
    [15] Joseph O’Rourke.计算几何:C语言描述(英文版第2版)[M].北京:机械工业出版社, 2005.
    [16]李刚,马东辉,苏经宇.基于加权Voronoi图的城市地震应急避难所责任区的划分[J].建筑科学, 2006, (3): 55-59.
    [17]王继华.钻孔电集Voronoi图在矿产储量自动计算应用与研究[J].煤炭技术, 2006, (5): 110-111.
    [18]扈海波,孙建宝,陈云浩,李京.采用Voronoi网络模型实现空间数据的精确校正[J].计算机工程与应用, 2005, (9): 154-155.
    [19]何彬彬,郭达志,方涛.基于空间统计学的空间关联挖掘[J].计算机工程, 2006, (3):20-22.
    [20]闫兵,刘碧波.基于Voronoi图理论的自由边界型腔加工路径规划[J].计算机辅助设计与图形学报, 1999, (11): 66-69.
    [21] Chen Y Q, Wang Z M, Liang J S. Automatic dynamic locking in mobile actuator sensor networks by central Voronoi tessellations[J]. Mechatronics and Automation, 2005, (3): 1630-1635.
    [22]尚志恩,徐宁. Voronoi图在蜂窝制移动通信系统中的应用[J].电子技术, 2002, (29): 37-39.
    [23] Swanson K, Lee D T, Wu V L. An optimal algorithm for roundness determination on convex polygons[J]. Computational Geometry, 1995, (5): 225-235.
    [24]卢波,葛修润,王水林.自然单元法数值积分方案研究[J].岩石力学与工程学报, 2005, (6): 1917-1924.
    [25]樊广佺,曲文龙,杨炳儒.平面点集凸壳的一个性质[J].地理与地理信息科学, 2008, (1): 46-48.
    [26]毋河海.凸壳原理在点群目标综合中的应用[J].测绘工程, 1997, (6): 1-6.
    [27]文尚猛,王峰,李晓梅,周兴铭.平面点集的O(lnN)步凸壳算法[J].计算机学报, 1997, (20): 828-831.
    [28]陈兴波.凸壳顶点集在支持向量分类机中的应用研究[D].广东:暨南大学, 2006.
    [29]蒋联源.凸壳算法及其应用研究[D].广西:广西师范大学, 2007.
    [30]刘纪远,王新生,庄大方,张稳,胡文岩.凸壳原理用于城市用地空间扩展类型识别[J].理学报, 2003, (58): 885-892.
    [31]刘书桂,杨芳,陶晋.计算几何在测试测量技术中的应用—求解最小外接圆[J].工程图学学报, 2000, (3): 83-88.
    [32] ANSI/ASME Y14.5M, Dimensioning and tolerancing[S]. 1982.
    [33] ISO/R 1001-1983, Technical drawings–Geometrical tolerancing–Guidelines[S].
    [34]闵莉,吴玉厚,富大伟.圆度误差的现状及展望[J].沈阳建筑工程学院学报, 1999, (15): 273-276.
    [35] Jywe W Y, Liu C H, Chen C K. The min–max problem for evaluating the form error of a circle [J]. Measurement, 1999, (26): 273-282.
    [36]傅成昌.形位误差检测技术问答[M].北京:机械工业出版社, 1990.
    [37] Guu S M, Tsai D M. Measurement of roundness: a nonlinear approach[J]. Proceedings of the National Science Council, Republic of China, Part A, 1999, (23): 348-352.
    [38]曹麟祥,王丙甲.圆度检测技术[M].北京:国防工业出版社, 1998.
    [39]汪恺,唐保宁.形位公差原理和应用(第二版)[M].北京:机械工业出版社, 1991.
    [40]熊有伦.精密测量中的数学方法[M].北京:中国计量出版社, 1989.
    [41]廖平,陆敬舜.用遗传算法精确计算圆度误差[J].南京航空航天大学学报, 1999, (31): 393-397.
    [42]田社平.基于遗传算法的圆度误差评价[J].计量技术, 2004, (4): 3-5.
    [43]朱庆保.评定圆度误差的模拟退火自适应变异遗传算法[J].南京师范大学学报, 2005, (5): 1-4.
    [44] Chen M C, Tsai D M, Tseng H Y. A stochastic optimization approach for roundness measurements[J]. Pattern Recognition Letters, 1999, (20): 707-719.
    [45] Olivio N, AndreLuis C B. Utilization of Voronoi diagrams for circularity algorithms[J]. Precision Engineering, 1997, (20): 188-195.
    [46]刘书桂,杨芳,邹志华,陈友林.计算几何在测试测量技术中的应用—求解最大内接圆[J].仪器仪表学报, 1998, (19): 576-80.
    [47] Lai K W, Wang J. A computational geometry approach to geometric tolerancing[A]. Proceedings of the 16th North American Manufacturing Research Conference[C], 1988, 376-379.
    [48] Roy U, Zhang X Z. Establishment of a pair of concentric circles with the minimal radial separation for assessing roundness error[J]. Computer-Aided Design, 1992, (24): 161-168.
    [49] Le V B, Lee D T. Out-of-roundness problem revisited[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, (13): 217-223.
    [50] Swanson K, Lee D T, Wu V L. An optimal algorithm for roundness determination on convex polygons[J]. Computational Geometry, 1995, (5): 225-235.
    [51] Roy U, Zhang X Z. Development and application of voronoi diagrams in the assessment of roundness error in an industrial environment[J]. Computers & Industrial Engineering, 1994, (26): 11-26.
    [52] Huang J. An exact solution for the roundness evaluation problems[J]. Precision Engineering, 1999, (23): 2-8.
    [53]崔长彩,崔长彩,黄富贵,张认成,李兵.粒子群优化算法及其在圆度误差评定中的应用[J].计量学报, 2006, (10): 317-320.
    [54]侯静.利用最小外接圆法评定圆度误差[J].内蒙古师范大学学报(自然科学汉语版), 2006, (9): 290-292.
    [55]郝宏伟,刘顺芳,范淑果.最小区域法评定圆度误差的计算机实现方法[J].河北科技大学学报, 2006, (6): 150-154.
    [56]范淑果.最小区域圆法评定圆度误差的程序设计技术[J].计量与测试技术, 2006, (5): 4-5.
    [57]刘顺芳,石建玲.最大内接法评定圆度误差值的快速、精确算法[J].计量技术, 2006, (3):17-19.
    [58]王晓慧,李占魁,袁哲俊.圆度、圆柱度在线测量及补偿控制实验研究[J].哈尔滨工业大学学报, 1995, (27): 114-117.
    [59]郝宏伟,于荣贤,解景浦,范淑果.最小外接法评定圆度误差值的程序设计技术[J].河北科技大学学报, 2005, (12): 295-298.
    [60]宋甲午,张国玉,安志勇,李成志,景红薇,高玉军.圆度误差的激光扫描非接触测量方法[J].兵工学报, 2000, (21): 61-63.
    [61]蒋平,陈于萍.圆度误差测量数据的自动采集与处理[J].机械设计与制造工程, 2002, (31): 76-77.
    [62]岳奎.最小二乘圆法评定圆度误差的程序设计[J].工具技术, 2006, (4): 79-80.
    [63]傅师伟.圆度误差测量的一种新方法[J].计量与测试技术, 2004, (9): 7-9.
    [64] Li Z F, Cui C C, Che R S, Huang Q C, Ye D. Comparison of genetic algorithm based evaluation of roundness with evaluation of roundness based on least squared method[J].光学精密工程, 2003, (11): 256-261.
    [65] Sun Y Q, Che R S. Novel method for solve maximum inscribed circle[J].光学精密工程, 2003, (4): 181-185.
    [66] Cui C C, Che R S, Dong Y E. Circularity Error Evaluation Using Genetic Algorithm[J].光学精密工程, 2001, (9): 499-505.
    [67] Chetwynd D G. Roundness measurement using limacons[J]. Precision Engineering, 1979, (1): 137-141.
    [68] Drebin G R. Using entropy to determine the roundness of rock articles[A]. Signal Processing Proceedings[C], 2000, (2): 1399-1404.
    [69] Fung E H K, Leung S K S. Roundness error compensation in lathe turning through 2-D ARMAX model based FCC[J]. Control Systems Technology, 2002, (10): 902-911.
    [70] Roy U, Zhang X Z. "The only correct method to evaluate roundness" comments from Roy and Zhang[J]. Computers Ind Eng, 1995, (28): 423.
    [71] Tian Y Z, Li M, He Y Y, Wu G H, Li W, Fang M L. Research on In-Process Measuring Method for Crankshaft, Intelligent Control and Automation[A]. WCICA[C], 2006, (1): 4995-4998.
    [72] Kitamura M, Enomoto Y, Kaneda J, Komuro M. Cogging torque due to roundness errors of the inner stator core surface[J]. Magnetics, IEEE, 2003, (39): 1622-1625.
    [73] Yan L W, Yu T. Control for Roll Shape in NC Roll Grinder Based on Neural Network[A]. Intelligent Systems Design and Applications[C], 2006, (1): 57-61.
    [74]王化祥.传感器原理与应用[M].天津:天津大学出版社, 2002.
    [75]金喜平,刘雪艳,葛岷.锁相倍频式光栅检测系统及其应用[J].制造技术与机床, 2000, (11): 32-34.
    [76]尤婷,李培江.基于DSP的光栅传感器信号同步采集与细分处理[J].机电工程, 2006, (7): 27-29.
    [77]闫丽,段发阶,方志强.基于CPLD芯片的光栅信号细分模块的设计[J].计量技术, 2005, (10): 5-8.
    [78]金锋,卢杨,王文松,张玉平.光栅四倍频细分电路模块的分析与设计[J].北京理工大学学报, 2006, (12): 1073-1076.
    [79]楼俊,付绍军,徐向东,何世平.用于位移传感器的全息平面变间距光栅设计与制作研究[J].物理学报, 2006, (12): 6405-6409.
    [80]高振东,邱丹,王钰.通用单片微机光栅测控电路[J].测控技术, 1999, (18): 50-52.
    [81]邓中亮.多功能智能光栅检测装置[J].仪器仪表学报, 1994, (15): 97-104.
    [82]蒋向前,肖少军,谢铁邦,李柱.光栅技术在纳米测量中的应用[J].仪器仪表学报, 1995, (16): 374-378.
    [83]吕海宝,杜列波,楚兴春.基于虚拟仪器技术的光栅位移测量系统[J].仪表技术与传感器, 2004, (12): 23-25.
    [84]吴泽勇,樊庆文.一种基于CPLD的图像动态采集方法[J].中国测试技术, 2006, (5): 86-88.
    [85]韩克镇,孙全颖,王洪运.基于PLC的光栅位移测量技术的研究[J].哈尔滨理工大学学报, 2005, (5): 43-45.
    [86]周箭.虚拟仪器及其技术研究[J].浙江大学学报(自然科学版), 2000, (34): 686-689.
    [87] National Instruments Corporation, Virtual Instrument White Book[M]. 2003.
    [88] Goldberg H. What is virtual instrumentation[J]. Instrumentation & Measurement Magazine, 2000, (3): 10-13.
    [89] Cristaldi L, Ferrero A, Piuri V. Programmable instruments, virtual instruments, and distributed measurement systems: what is really useful, innovative and technically sound?[J]. Instrumentation & Measurement Magazine, 1999, (2): 20-27.
    [90]黄学文,周敬泉.虚拟仪器技术的现状与前景[J].电测与仪表, 2004, (41): 5-8.
    [91]曹玲芝.现代测试技术及虚拟仪器[M].北京:北京航空航天大学出版社, 2004.
    [92] Korrapati R, Anderson J A, Swain N K, Swain M. System modeling using virtual instruments[A]. Proceedings IEEE SoutheastCon[C], 2002, 121-126.
    [93]张雅丽,王宝光,赵海文.虚拟仪器在电液伺服系统故障诊断中的应用[J].仪器仪表学报, 2003, (2): 256-257.
    [94]裘正军,宋海燕,何勇,林丽兰.基于虚拟仪器的农田信息采集与处理系统[J].浙江大学学报(工学版), 2006, (11): 1931-1936.
    [95] Teng J H, Chan S Y, Lee J C, Lee R. A LabVIEW based virtual instrument for power analyzers[A]. IEEE International Conference on Power System Technology[C], 2000, (1): 179-184.
    [96]徐云,杨川.基于串行通信的主从式虚拟仪器技术[J],仪器仪表学报, 2003, (24): 291-294.
    [97] Bucci G, Germano A, Landi C. Virtual instrument based on real-time measurement apparatus[A]. Instrumentation and Measurement Technology Conference[C], 1994, (1): 357-360.
    [98] Huang S J, Tseng P S. A WWW-based virtual instrument software for electric power measurement with Java enhancement[A]. Power Engineering Society Summer Meeting[C], 2002, (3): 1160-1164.
    [99] Young C P, Devaney M J, Wang S C. Universal serial bus enhances virtual instrument-based distributed power monitoring[J]. Instrumentation and Measurement, IEEE, 2001, (50): 1692-1697.
    [100] Caldara S, Nuccio S, Spataro C. Measurement uncertainty estimation of a virtual instrument[A]. Instrumentation and Measurement Technology Conference[C], 2000, (3): 1506-1511.
    [101]马伟.计算机USB系统原理及其主/从机设计[M].北京:北京航空航天大学出版社, 2004.
    [102]王春晓,伍川辉,于艳军.带USB接口的智能测量仪表的设计[J].中国测试技术, 2006, (6): 135-137.
    [103]王强,张志文. USB2.0多路脉冲数据采集系统开发[J].西安工业大学学报, 2006, (10): 431-434.
    [104]马春雷.基于EZ-USB的虚拟示波器设计[J].国外电子测量技术, 2006, (12): 31-33.
    [105]袁刚.虚拟数字分度头及相关技术的研究[D].重庆:重庆大学, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700