用户名: 密码: 验证码:
高糖高脂环境下内皮素-1在肾小球系膜细胞与内皮细胞相互关系中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章高糖高脂环境下系膜细胞与内皮细胞间相互作用对细胞外基质产生的影响
     目的:观察不同浓度D-葡萄糖及溶血卵磷脂(LPC)在不同时间点对细胞外基质(ECM)-纤维连接蛋白(Fn)、Ⅳ型胶原(ColⅣ)产生的影响,初步探讨高糖高脂条件下系膜细胞与内皮细胞间相互作用对ECM产生的影响,从细胞间相互作用的角度探讨糖尿病肾病(DN)的发病机制。
     方法:采用微孔底膜套皿法构建系膜细胞与内皮细胞共培养模型,以单独培养的系膜细胞作为对照。实验分为正常对照组(5.5mM D-葡萄糖)、高糖组(10、20、30mm D-葡萄糖)、高脂组(5、10、20mg/LLPC),各组分别培养6h、12h、24h、48h,ELISA法测定细胞上清液Fn、ColⅣ的含量。
     结果
     1.共培养及单培养条件下,与正常对照组相比,在相同时间点上,高浓度D-葡萄糖(10、20、30mm D-葡萄糖)呈浓度依赖方式促进细胞上清液Fn、ColⅣ产生(均P<0.05);高浓度D-葡萄糖(10、20、30mM D-葡萄糖)作用6h、12h、24h、48h均能引起细胞上清液Fn、ColⅣ显著升高(均P<0.05),24h达高峰,48h有所下降;但随作用时间延长,正常对照组细胞上清液Fn、ColⅣ含量无明显变化(P>0.05)。
     2.在共培养及单培养条件下,随作用时间的延长,5、10、20mg/LLPC对细胞上清液中Fn、ColⅣ的分泌均有促进作用(均P<0.05),其中作用24h达平台期,48h与24h相比无明显统计学意义(P>0.05);与正常对照组相比,5、10、20mg/L的LPC在各作用时间点均能引起细胞上清液Fn、ColⅣ的升高(均P<0.05),Fn、ColⅣ含量与LPC浓度成正比。
     3.正常对照组中,共培养时细胞上清液Fn、ColⅣ含量与单培养相比均无显著差异(均P>0.05);高糖(10、20、30mM D-葡萄糖)、高脂(5、10、20mg/L LPC)条件下共培养时Fn、ColⅣ含量均较单培养时明显增高,共培养6、12、24、48h与系膜细胞单培养比较,P均<0.05。
     结论:
     1.高浓度D-葡萄糖及LPC可呈浓度及时间依赖方式促进系膜细胞Fn、ColⅣ的产生。加入内皮细胞与系膜细胞共培养,细胞上清液Fn、ColⅣ含量增加更明显。
     2.高糖高脂环境下,系膜细胞与内皮细胞间可能存在相互作用,促进ECM的合成。
     第二章高糖高脂环境下内皮素-1在系膜细胞与内皮细胞相互关系中的作用
     目的:观察共培养模型中,高糖高脂对内皮细胞内皮素-1(ET-1)表达及细胞上清液Fn、ColⅣ合成的影响,初步探讨内皮细胞生成的ET-1在系膜细胞与内皮细胞相互关系中的作用。
     方法:采用系膜细胞与内皮细胞共培养方式,按照培养条件不同分为6组:正常对照组(5.5mM D-葡萄糖)、高糖组(30mM D-葡萄糖)、甘露醇组(24.5mM甘露醇)、高脂组(20mg/L LPC)、高糖高脂联合作用组(30mM D-葡萄糖+20mg/L LPC)、内皮素受体拮抗剂BQ-123干预组:BQ-123工作浓度分别为0.01μM、0.1μM、1μM。各组均培养24h。ELISA法测定细胞上清液Fn、ColⅣ含量;放免法测定上清液ET-1含量;RT-PCR法检测内皮细胞ET-1 mRNA及系膜细胞ET-1特异性受体-ETRA mRNA的表达。
     结果:
     1.共培养条件下,30mM D-葡萄糖及20mg/L LPC干预24h能促进细胞上清液中Fn、ColⅣ的产生(均P<0.05);相同渗透压的甘露醇对Fn、ColⅣ的分泌均无明显影响(均P>0.05)。高糖高脂联合作用组细胞上清液中Fn、ColⅣ的增加更为明显,与高糖组及高脂组相比较均有统计学意义(均P<0.05)。
     2.与正常对照组相比,D-葡萄糖及LPC刺激均能使内皮细胞ET-1mRNA及蛋白表达增加(P<0.05),高糖高脂联合作用下,上述刺激作用更加明显(P<0.05)。
     3.与正常对照组比较,高糖组、高脂组均可增加系膜细胞ETRAmRNA的表达(均P<0.05),高糖高脂联合作用组ETRA mRNA表达增加更为明显(P<0.05),甘露醇对系膜细胞ETRA mRNA表达无显著影响(P>0.05)。
     4.在共培养模型中,经内皮素受体拮抗剂BQ-123(0.01-1μM)预处理组细胞上清液中ColⅣ及Fn的含量较高糖高脂联合作用组明显减少(均P<0.05),且随拮抗剂浓度的增加,抑制作用愈明显(P<0.05)。BQ-123预处理后,内皮细胞ET-1及系膜细胞ETRA mRNA的表达与高糖高脂联合作用组比较无显著差异(P>0.05)。
     结论:
     1.高糖及高脂能促进系膜细胞与内皮细胞共培养模型中细胞上清液Fn、ColⅣ及内皮细胞ET-1的表达及合成,高糖高脂联合作用组Fn、ColⅣ及ET-1的表达及合成增加更明显。
     2.ET-1特异性受体拮抗剂BO-123呈浓度依赖方式抑制高糖高脂所致的系膜细胞ECM合成增加,高糖高脂所致的ECM产生增加可能部分由ET-1介导。
     3.高糖高脂可促进系膜细胞ETRA表达,加重ET-1对肾脏的损害。
     4.高糖高脂条件下,内皮细胞分泌的ET-1可能对系膜细胞产生影响,促进ECM的合成及释放。
     第三章高糖高脂环境下内皮素-1促进细胞外基质合成的作用机制及氯沙坦的干预作用
     目的:通过研究高糖高脂条件下ET-1对人肾小球系膜细胞内PKCβI/PDGF-B信号通路及其下游靶基因Fn、ColⅣ的影响,进一步探讨DN发病的分子机制及氯沙坦的肾脏保护作用。
     方法:
     1.采用体外系膜细胞单培养方式,按培养条件分为正常对照组、ET-1组、ET-1+RG50864组、ET-1+LY333531组、高糖高脂+ET-1组、高糖高脂+ET-1+RG50864组、高糖高脂+ET-1+LY333531组、高糖高脂+ET-1+氯沙坦组;各组细胞分别培养24h。RT-PCR法检测系膜细胞PDGF-B mRNA的表达;Western-blot法检测系膜细胞PDGF-B蛋白表达水平;ELISA法检测上清液Fn、ColⅣ的蛋白含量。
     2.取处于对数生长期的系膜细胞分为正常对照组、ET-1组、ET-1+LY333531组、高糖高脂+ET-1组、高糖高脂+ET-1+LY333531组、高糖高脂+ET-1+氯沙坦组;各组细胞分别培养24h。RT-PCR法检测系膜细胞PKCβI mRNA的表达;Western-blot法检测系膜细胞PKCβI蛋白表达水平;细胞免疫荧光检测系膜细胞PKCβI蛋白的表达及分布。
     结果:
     1.ET-1刺激能促进上清液Fn、ColⅣ的产生及系膜细胞内PDGF-B mRNA及蛋白表达(P<0.05);高糖高脂对此有协同作用(P<0.05)。酪氨酸蛋白激酶抑制剂RG50864可以抑制高糖高脂条件下ET-1所致的Fn、ColⅣ产生增加(P<0.05),但其对系膜细胞PDGF-B mRNA及蛋白表达无明显影响(P>0.05)。
     2.与正常对照组相比,ET-1能上调系膜细胞内PKCβI mRNA及蛋白表达(P<0.05),ET-1刺激后,细胞免疫荧光显示,PKCβI蛋白表达增强,且发生胞膜及胞核转位;高糖高脂对此有协同作用。PKCβI抑制剂LY333531干预能显著下调系膜细胞PKCβI、PDGF-B mRNA及蛋白的表达,减少下游靶基因Fn、ColⅣ的产生(P<0.05)。
     3.与高糖高脂+ET-1组比较,氯沙坦干预可显著下调系膜细胞PKCβI及PDGF-B mRNA和蛋白表达(P<0.05),明显减少细胞上清液中Fn、ColⅣ的产生(P<0.05)。
     结论:
     1.高糖高脂条件下,ET-1所致系膜细胞ECM产生增加可能由PKCβI信号通路依赖产生的PDGF-B部分介导。
     2.高糖高脂条件下,氯沙坦可抑制高糖高脂条件下ET-1对PKCβI/PDGF-B通路的激活,从而减少下游靶基因Fn、ColⅣ的产生,发挥肾脏保护作用。
Part 1.The effect of high glucose and lysophosphatidylcholine on the role of extracellular matrix accumulation via the interaction of mesangial cells and endothelial cells
     Objective:To investigate the interaction between mesangial cells and endothelial cells under different concentrations of glucose and lysophosphatidylcholine(LPC) at different time points,further explored the mechanism of diabetic nephropathy through examining concentration of fibronectin(Fn) and collagen typeⅣ(ColⅣ) in culture media.
     Methods:The model of intercellular interaction between mesangial cells and endothelial cells was established using Millicell membrane culture dish.The mesangial cells were cultured separately or co-cultured with endothelial cells and divided into three guoups:control,high glucose (10,20,30mM glucose) and LPC(5,10,20mg/L LPC),each group was cultured for 6,12,24,48 hours respectively.The concentration of Fn and ColⅣin culture media was determined by enzyme-linked immunosorbent assay(ELISA).
     Results:
     (1) Both in monolayer and co-culture cell culture,the concentration of Fn and ColⅣhad no significant change in control group at different time points(P>0.05).With the same cultured time,the level of Fn and ColⅣof high glucose was higher than that of control group in co-culture and monolayer cell culture(P<0.05),and the expression intensity increased in a concentration-dependent manner;The concentration of Fn and ColⅣin culture media treated with high glucose for 6,12,24,48 hours respectively increased in a time-dependent manner(P<0.05), arrived peak level at 24h,then decreased slightly at 48 h.
     (2) Compared with control group,the concentration of Fn and ColⅣincreased in LPC group from 6h time point,the expression intensity enhanced in a time-dependent manner(P<0.05),arrived peak level at 24 h; 5,10,20mg/L LPC could increase the secrection of Fn and ColⅣin culture media in a concentration-dependent manner(P<0.05).
     (3) In control group,the level of Fn and ColⅣbetween co-culture and monolayer cells culture had no significant difference(P>0.05). Exposed to high glucose or LPC,the concentration of Fn and ColⅣin co-cultured cells was higher than that in monolayer cells culture at 6,12, 24,48h time points(P<0.05).
     Conclusions:
     (1) Both in co-culture and monolayer cell culture,high glucose and LPC increases the concentration of Fn and ColⅣin a concentration and time-dependent manner.
     (2) On the condition of high glucose and LPC,there is some kind of interaction between mesangial cells and endothelial cells which can increase the excretion of extracellular matrix.
     Part 2.Effect of endothelin-1 on the interaction between human mesangial cells and endothelial cells on the condition of high glucose and LPC
     Objective:To investigate the effect of endothelin-1 on the role of extracellular matrix accumulation via the interaction between mesangial cells and endothelial cells on the condition of high glucose and LPC through examining expression of endothelin-1(ET-1),Fn and ColⅣin co-cultured cell culture.
     Methods:The model of intercellular interaction between mesangial cells and endothelial cells was established and divided into six groups: control,mannitol,high glucose,LPC,high glucose and LPC, BQ-123(0.01μM,0.1μM,1μM),each group was cultured for 24 hours. The concentration of Fn and ColⅣin culture media was determined by ELISA,ET-1 in supernatant was detected by radio-immunoassay,ET-1 mRNA of endothelial cells and ETRA mRNA of mesangial cells was measured by reverse transcription polymerase chain response(RT-PCR).
     Results:
     (1) When mesangial cells were co-cultured with endothelial cells cultured for 24 hours,the concentration of Fn and ColⅣin culture media increased in high glucose group and LPC group(P<0.05).Compare with high glucose group and LPC group,the expression of Fn and ColⅣincreased significantly in high glucose and LPC group(P<0.05),but there was no significant difference between mannitol group and control group(P>0.05).
     (2) Compared with control group,ET-1 increased remarkably in high glucose group and LPC group(P<0.05),the stimulating effect was more pronounced in high glucose and LPC group(P<0.05).
     (3) In co-culture cell culture,compared with control group,ETRA mRNA expression of mesangial cells in high glucose group and LPC group increased remarkably(P<0.05),the stimulating effect was more pronounced in high glucose and LPC group(P<0.05).
     (4) Compared with high glucose and LPC group,ET-1 receptor antagonist BQ-123 could inhibit Fn and ColⅣsecretion in a dosedependent manner in co-cultured model(P<0.05),but BQ-123 had no effect on the expression of ET-1 and ETRA(P>0.05).
     Conclusions:
     (1) The expression of Fn,ColⅣand ET-1 is found to be remarkably increased on the condition of high glucose and LPC in co-cultured mode.
     (2) ET-1 receptor antagonist BQ-123 can inhibit the secretion of Fn and ColⅣin a dose-dependent manner.ET-1 may play an important role in extracellular matrix accumulation on the condition of high glucose and LPC.
     (3) The expression of ETRA in mesangial cells is promoted by high glucose and LPC,which can enlarge the biological effect of ET-1.
     (4) ET-1 produced by endothelial cells may have an important impact on mesangial cells,which can improve the synthesis of extracellular matrix.
     Part 3.The mechanism of extracellular matrix accumulation induced by endothelin-1 on the condition of high glucose and LPC and the intervention effect of losartan
     Objective:To define whether ET-1 activated protein kinase CβI/ platelet- derived growth factor-B(PKCβI/PDGF-B) signaling pathway to mediate extracellular matrix accumulation,further explored the molecular mechanism of diabetic nephropathy and the intervention effect of losartan.
     Methods:
     (1) Mesangial cells were cultured seperately and divided into eight groups:control,ET-1,ET-1 + RG50864,ET-1 + LY333531,high glucose and LPC+ ET-1,high glucose and LPC + ET-1 + RG50864,high glucose and LPC + ET-1 + LY333531,high glucose and LPC + ET-1 + losartan, and each group was cultured for 24 hours.Fn and ColⅣin supernatant was detected by ELISA,the expression of PDGF-B mRNA was measured by RT-PCR and PDGF-B protein expression was detected by Westernblot.
     (2) The monolayer mesangial cells were divided into six groups: control,ET-1,ET-1 + LY333531,high glucose and LPC + ET-1,high glucose and LPC + ET-1 + LY333531,high glucose and LPC + ET-1 + losartan,and each group was cultured for 24 hours.Fn and ColⅣin supernatant was detected by ELISA,the expression of PKCβ1 mRNA was measured by RT-PCR,the protein expression of PKCβI was detected by Western-blot and immunofluorescence.
     Results:
     (1)The expression and secretion of ColⅣ,Fn and PDGF-B increased remarkably at 24h after ET-1 stimulation(P<0.05),the stimulating effect could be enlarged by high glucose and LPC(P<0.05). Addition of a tyrosine kinase inhibitor RG50864 to cells could prevent ET-1-induced Fn and ColⅣprotein up-secretion(P<0.05),but RG50864 had no effect on the PDGF-B mRNA and protein expression of mesangial cells(P>0.05).
     (2)After ET-1 stimulation,HMC PKCβ1 mRNA and protein expression was up-regulated compared with control(P<0.05),and immunofluorescence demonstrated that ET-1-induced PKCβ1 transmitting from cytoplasm to nucleus and membrane,and the stimulating effect could be enlarged by high glucose and LPC(P<0.05). Further more,LY333531 could prevent ET-1-induced Fn and ColⅣprotein up-secretion through attenuating PKCβI and PDGF-B expression of mesangial cells(P<0.05).
     (3)Compared with high glucose and LPC + ET-1 group,losartan could decrease PKCβI and PDGF-B expression(P<0.05),partly prevented ET-1-induced extracellular matrix secretion on the condition of high glucose and LPC(P<0.05).
     Conclusions:
     (1) ET-1 stimulates human glomerular mesangial cells extracellular matrix secretion may by activating PKCβI/PDGF-B signaling on the condition of high glucose and LPC.
     (2) Losartan can protect kidney by inhibitting PKCβI/PDGF-B signaling and decreasing the extracellular matrix secretion.
引文
[1]Kanwar YS,Wada J,Sun L,et al.Diabetic nephropathy:mechanisms of renal disease progression.Exp Biol Med,2008,233(1):4-11.
    [2]Mooradian AD.Dyslipidemia in type 2 diabetes mellitus.Nat Clin Pract Endocri- nol Metab,2009,5(3):150-159.
    [3]Zhang JJ,Wang B,Liu ZJ.Effects of human peritoneal mesothelial cells on angio- genesis factor expression and secretion of ovarian carcinoma cells.Zhonghua Zhong Liu Za Zhi,2006,28(10):737-740.
    [4]王颖航,王耀献,赵宗江.肾炎防衰液对5/6肾切除大鼠肾组织FN表达的影响.北京中医药大学学报,2007,30(5):409-412.
    [5]杨政国.I、Ⅳ型胶原和肾脏疾病.国外医学:泌尿系统分册,2005,25(5):78-82.
    [6]Kimura M,Asano M,Abe K,et al.Role of atrophic changes in proximal tubular cells in the peritubular deposition of type Ⅳ collagen in a rat renal ablation model.Nephrol Dial Transplant,2005,20(8):1559-1565.
    [7]Kang JH,Chae YM,Park KK,et al.Suppression of mesangial cell proliferation and extracellular matrix production in streptozotocin-induced diabetic rats by Spl decoy oligodeoxynucleotide in vitro and in vivo.J Cell Biochem,2008,103(2):663-674.
    [8]Woo V,Ni LS,Hak D,et al.Effects of losartan on urinary secretion of extracellu- lar matrix and their modulators in type 2 diabetes mellitus patients with microal- buminuria.Clin Invest Med,2006,29(6):365-372.
    [9]Zheng JM,Zhu JM,Li LS,et al.Rhein reverses the diabetic phenotype of mesangial cells over-expressing the glucose transporter(GLUT1) by inhibiting the hexosamine pathway.Br J Pharmacol,2008,153(7):1456-1464.
    [10]Kanwar YS,Wada J,Sun L,et al.Diabetic nephropathy:mechanisms of renal disease progression.Exp Biol Med(Maywood),2008,233(1):4-11.
    [11]Sato S,Kawamura H,Takemoto M,et al.Halofuginone prevents extracellular matrix deposition in diabetic nephropathy.Biochem Biophys Res Commun, 2009, 379(2): 411-416.
    [12] Ban CR, Twigg SM. Fibrosis in diabetes complications: pathogenic mechanisms and circulating and urinary markers. Vasc Health Risk Manag, 2008, 4(3): 575- 596.
    [13] Ikehara K, Tada H, Kuboki K, et al. Role of protein kinase C-angiotensin Ⅱ pathway for extracellular matrix production in cultured human mesangial cells exposed to high glucose levels. Diabetes Res Clin Pract, 2003, 59(l):25-30.
    [14] Schnaper HW, Hayashida T, Hubchak SC, et al. TGF-beta signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol, 2003, 284 (2): F243-F252.
    [15] Moorhead JF, Chan MK, E1-Nahas M, et al. lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet, 1982, 2(8311): 1309-1310.
    [16] McGarry JD. Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes, 2002, 51(1):7-18.
    [17] Nosadini R, Tonolo G. Blood glucose and lipid control as risk factors in the progression of renal damage in type 2 diabetes. J Nephrol, 2003, 16(Suppl 7): S42- S47.
    [18] Chen Y, Ruan XZ, Li Q, et al. Inflammatory cytokines disrupt LDL-receptor feedback regulation and cause statin resistance: a comparative study in human hepatic cells and mesangial cells. Am J Physiol Renal Physiol, 2007, 293(3): F680-F687.
    [19] Blom IE, Goldschmeding R, LeaskA. Gene regulation of connective tissue growth factor: new targets for antifibrotic therapy. Matrix Biol, 2002, 21(6): 473-482.
    [20] Song CY, Kim BC, Hong HK, et al. Oxidized LDL activates PAI-1 transcription through autocrine activation of TGF-beta signaling in mesangial cells. Kidney Int, 2005, 67 (5): 1743-1752.
    [21] Lee HS, Song CY. Oxidized Low-Density Lipoprotein and Oxidative Stress in the Development of Glomerulosclerosis. Am J Nephrol, 2008,29(1):62-70.
    [22] Mjihara N, Sakka Y, Takeda M, et al. Association between plasma oxidized low-density lipoprotein and diabetic nephropathy.Diabetes Res Clin Pract,2002,50(2):109-114.
    [23]Han JH,Chunhua C,Kim SM.Attenuation of Lysophosphatidylcholine-induced suppression of ANP release from hypertrophied atria.Hypertension,2004,43(2):243-248.
    [24]Rong JX,Berman JW,Taubman MB,et al.Lysophosphatidylcholine stimulates monocyte chemoattractant protein-1 gene expression in rat aortic smooth muscle cells.Arterioscler Thromb,Vasc Biol,2002,22(10):1617-1623.
    [25]Terasawa K,Nakajima T,Iida H.Nonselective cation currents regulate membrane potential of rabbit coronary arterial cell modulation by Lysophosphatidylcholine.Circulation,2002,106(11):3111-3119.
    [26]L(?)pez-Ongil S,Diez-Marqu(?)s ML,Griera M,et al.Crosstalk between mesangial and endothelial cells:angiotensin Ⅱ down-regulates endothelin- converting enzyme 1.Cell Physiol Biochem,2005,15(1-4):135-144.
    [27]王筠,邓红等.高糖对人肾小球系膜细胞TGF-β1mRNA表达的的影响及茶多酚对其干预作用.东南大学学报,2005,24(1):20-23.
    [1]Ji Z,Huang C,Liang C,et al.Protective effects of blocking renin-angiotensin system on the progression of renal injury in glomerulosclerosis.Cell Mol Immunol,2005,2(2):150-154.
    [2]Kuo HT,Shin SJ,Kuo MC,et al.Effects of specific endothelin-1 receptor antagonists on proliferation and fibronectin production of glomerular mesangial cells stimulated with Angiotensin Ⅱ.Kaohsiung J Med Sci,2006,22(8):371-376.
    [3]Andrey Sorokin,Donald E.Kohan.Physiology and pathology of endothelin-1 in renal mesangium.Am J Physiol Renal Physiol,2003,285(4):F579-F589.
    [4]Neuhofer W,Pittrow D.Role of endothelin and endothelin receptor antagonists in renal disease.Eur J Clin Invest,2006,36(Suppl 3):78-88.
    [5]Zanatta CM,Canani LH,Silveiro SP,et al.Endothelin system function in diabetic nephropathy.Arq Bras Endocrinol Metabol,2008,52(4):581-588.
    [6]Minchenko AG,Stevens MJ,White L,et al.Diabetes-induced overexperession of endothelin-1 and endothelin receptors in the rat renal cortex is mediated via poly(ADP-ribose) polymerase activation.FASEB J,2003,17(11):1514-1516.
    [7]王瑞鑫,王春波,罗氏滨等.SS-GAG对高糖状态下血管内皮细胞NO释放及ET-1分泌的影响.山东大学学报(医学版),2008,4(6):357-361.
    [8]Viswanathan V,Snehalatha C,Nair MB,et al.Markers of endothelial dysfunction in hyperglycaemic Asian Indian subjects.J Diabetes Complications,2004,18(1):47-52.
    [9]Itoh Y,Imamura S,Yamamoto K,et al.Changes of endothelin in streptozotocininduced diabetic rats:effects of an angiotensin converting enzyme inhibitor,enalapril maleate.J Endocrinol,2002,175(1):233-239.
    [10]Keynan S,Khamaisi M,Dahan R,et al.Increased expression of endothelinconverting enzyme-1 isoform in response to high glucose levels in endothelial cells.J Vasc Res,2004,41(2):131-140.
    [11]Kalani M.The importance of endothelin-1 for microvascular dysfunction in diabetes.Vasc Health Risk Manag,2008,4(5):1061-1068.
    [12]Ohshiro Y,Ma RC,Yasuda Y,et al.Reduction of diabetes-induced oxidative stress,fibrotic cytokine expression,and renal dysfunction in protein kinase C beta-null mice.Diabetes,2006,55(11):3112-3120.
    [13]Herman WH,Emancipator SN,Rhoten RL,et al.Vascular and glomerular expression of endothelin- 1 in normal human kidney.Am J Physiol Renal Physiol,1998,275(1):F8-F17.
    [14]Dhaun N,Pollock DM,Goddard J,et al.Selective and mixed endothelin receptor antagonism in cardiovascular disease.Trends Pharmacol Sci,2007,28(11):573- 579.
    [15]Shaw SG,Boden JP,Biecker E,et al.Endothelin antagonism prevents diabetic retinopathy in NOD mice:a potential role of the angiogenic factor adrenomedullin.Exp Biol Med(Maywood),2006,231(6):1101-1105.
    [16]Bhowinlck NA,Chytil A,Pleth D,et al.TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia.Science,2004,303(5659):848-851.
    [17]Persson K,Sauma L,S(a|¨)fholm A,et al.LDL and UV-oxidized LDL induce upregulation of iNOS and NO in unstimulated J774 macrophages and HUVEC.APMIS,2009,117(1):1-9.
    [18]Lubrano V,Baldi S,Ferrannini E,et al.Role ofthromboxane A2 receptor on the effects of oxidized LDL on microvascular endothelium nitric oxide,endothelin-1,and IL-6 production.Microcirculation,2008,15(6):543-553.
    [19]周琳,高方,薛耀明.氧化低密度脂蛋白对高糖状态下血管内皮细胞NO释放及ET-1分泌的影响.广东医药,2007,28(4):532-533.
    [20]Cominacini L,Rigoni A,Pasini AF,et al.The binding of oxidized low-density lipoprotein to ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide.J Biol Chem,2001,276(17):13750-13755.
    [21]Cosenzi A,Bemobich E,Trevisan R,et al.Nephroprotective effect of bosentan in diabetic rats.J Cardiovasc Pharmacol,2003,42(6):752-756.
    [22]Chen J,Gu Y,Lin F,Yang H,et al.Endothelin receptor antagonist combined with a calcium channel blocker attenuates renal injury in spontaneous hypertensive rats with diabetes.Chin Med J,2002,115(7):972-978.
    [23]Sugimoto K,Fujimori A,Yuyama H,et al.Renal protective effect of YM598,a selective endothelin type A receptor antagonist.J Cardiovasc Pharmacol,2004,44(Suppl 1):S451-S454.
    [1]Fraser D,Wakefield L,Phillips A.Independent regulation of transforming growth factor-beta transcription and translation by glucose and platelet-derived growth factor.Am J Pathol,2002,161(3):1039-1049.
    [2]Horstmeyer A,Licht C,Scherr G,et al.Signalling and regulation of collagen I synthesis by ET-1 and TGF-betal.FEBS J,2005,272(24):6297-6309.
    [3]Ramzy D,Rao V,Tumiati LC,et al.Elevated endothelin-1 levels impair nitric oxide homeostasis through a PKC-dependent pathway.Circulation,2006,114(Suppl):I319-I326.
    [4]Abe H,Minatoguchi S,Ohashi H,et al.Reno protective effect of the addition of losartan to ongoing treatment with an angiotensin converting enzyme inhibitor in type-2 diabetic patients with nephropathy. Hypertens Res, 2007, 30(10):929-935.
    [5] Eng E, Holgren C, Hubchak S, et al. Hypoxia regulates PDGF-B interactions between glomerular capillary endothelial and mesangial cells. Kidney Int, 2005, 68 (2): 695 -703.
    [6] Uehara G, Suzuki D, Toyoda M, et al. Glomerular expression of platelet-derived growth factor (PDGF)-A, -B chain and PDGF receptor-alpha, -beta in human diabetic nephropathy. Clin Exp Nephrol, 2004, 8(l):36-42.
    [7] Langham RG, Kelly DJ, Maguire J, et al. Over-expression of platelet-derived growth factor in human diabetic nephropathy. Nephrol Dial Transplant, 2003, 18(7): 1392-1396.
    [8] Tsilibary EC. Microvascular basement membranes in diabetes mellitus. J Pathol, 2003,200(4):537-546.
    [9] Bessho K, Mizuno S, Matsumoto K, et al. Counteractive effects of HGF on PDGF- induced mesangial cell proliferation in a rat model of glomerulonephritis. Am J Physiol Renal Physiol, 2003, 284(6): F1171-F1180.
    [10] Shimoda HK, Yamamoto M, Shide K, et al. Chronic thromboprotein overexpression induces mesangioproliferative glomerulopathy in mice. Am J Hematol, 2007, 82 (9):802-806.
    [11] Taneda S, Hudkins KL, Cui Y, et al. Growth factor expression in a murine model of cryoglobulinemia. Kidney Int, 2003, 63(2): 576-590.
    [12] Lobmann R, Pap T, Ambrosch A, et al. Differential effects of PDGF-BB on matrix metalloproteases and cytokine release in fibroblasts of Type 2 diabetic patients and normal controls in vitro. J Diabetes Complications, 2006, 20(2): 105-112.
    [13] Floege J, Eitner F, Alpers CE. A new look at platelet-derived growth factor in renal disease. J Am Soc Nephrol, 2008, 19(1): 12-23.
    [14] Cantero AV, Portero-Ot(?)n M, Ayala V, et al. Methylglyoxal induces advanced glycation end product (AGEs) formation and dysfunction of PDGF receptor-beta: implications for diabetic atherosclerosis. FASEB J, 2007, 21(12):3096-3106.
    [15] Langham RG, Kelly DJ, Maguire J, et al. Over-expression of platelet-derived growth factor in human diabetic nephropathy. Nephrol Dial Transplant, 2003, 18(7):1392-1396.
    [16]Jaffer FE,Knauss TC,Poptic E,et al.Endothelin stimulates PDGF secretion in cultured human mesangial cells.Kidney Int,1990,38:1193-1198.
    [17]Ostendorf T,Kunter U,van Roeyen C,et al.The effects of platelet-derived growth factor in experimental glomerulonephritis are independent of the transforming growth factor-beta system.J Am Soc Nephrol,2002,13(3):658-667.
    [18]Zhou H,Yao J,Yu S.The effect of the LPC-induced endothelial cell conditioned medium on proliferating cell nuclear antigen expression of the calf thoracic aorta smooth muscle cells.J Huazhong Univ Sci Technolog Med Sci,2002,22(1):28-30.
    [19]王昌明,黄慧,曾锦荣等.酪氨酸蛋白激酶抑制剂RG50864对血小板衍生生长因子诱导的肺动脉平滑肌细胞增生的影响.中国药物与临床,2004,3(4):181-183.
    [20]Langham RG,Kelly DJ,Gow RM,et al.Increased renal gene transcription of protein kinase C-beta in human diabetic nephropathy:relationship to long-term glycaemic control.Diabetologia,2008,51(4):668-674.
    [21]Wei XF,Zhou QG,Hou FF,et al.Advanced oxidation protein products induce mesangial cell perturbation through PKC-dependent activation of NADPH oxidase.Am J Physiol Renal Physiol,2009,296(2):F427-F437.
    [22]Mao CP,Gu ZL.Puerarin reduces increased c-fos,c-jun,and type Ⅳ collagen expression caused by high glucose in glomerular mesangial cells.Acta Pharmacol Sin,2005,26(8):982-986.
    [23]Idris I,Gray S,DonnellyR.Protein kinase C activation:isozyme -specific effects on metabolism and cardiovascular complications in diabetes.Diabetologia,2001,44(6):659-673.
    [24]Anca D,Suzanne S,Russell L,et al.PDGF-A expression correlates with blood pressure and remodeling in 1K1C hypertensive rat arteries.Am J Physicl,1999,276(6):2159-2167.
    [25]Nishishita T,Lin PC.Angiopoietin 1,PDGF-B,and TGF-βgene regulation in endothelial cell and smooth muscle cell interaction.J Cell Biochem,2004,91(3):584-593.
    [26]Whiteside CI,Dlugosz JA.Mesangial cell protein kinase C isozyme activation in the diabetic milieu.Am J Physiol Renal Physiol,2002,282(6):F975- F980.
    [27]Yao LJ,Wang JQ,Deng AG,et al.Protein kinase C-beta Ⅰ,beta Ⅱ in mouse diabetic nephropathy kidney and its relation to nephroprotective actions of the angiotensin receptor blocker telmisartan.Zhonghua Yi Xue Za Zhi,2007,87(28):1991-1995.
    [28]Kelly DL,Zhang Y,Hepper C,etal.Protein kinase C inhibition attenuates the progression of experimental diabetic nephropathy in the presence of continued hypertension.Diabetes,2003,52(2):512-513.
    [29]Tuttle KR.Protein kinase C-beta inhibition for diabetic kidney disease.Diabetes Res Clin Pract,2008,82(Suppl 1):S70-S74.
    [30]Koya D,Haneda M,Nakagawa H,et al.Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice,a rodent model for type 2 diabetes.FASEB J,2000,14(3):439-447.
    [31]Tuttle KR,Anderson PW.A novel potential therapy for diabetic nephropathy and vascular complications:protein kinase C beta inhibition.Am J Kidney Dis,2003,42(3):456-465.
    [32]Wu Y,Wu G,Qi X,et al.Protein kinase C beta inhibitor LY333531 attenuates intercellular adhesion molecule-1 and monocyte chemotactic protein-1expression in the kidney in diabetic rats.J Pharmacol Sci,2006,101(4):335-343.
    [33]Osicka TM,Yu Y,Panagiotopoulos S,et al.Prevention of albuminuria by aminoganuidine or ramipril in streptozotocin induced diabetic rats is associated with the nomralization of glomerular protein kinase C.Diabetes,2000,49(1):87-93.
    [34]Vieitez P,G(?)mez O,Uceda ER,et al.Systemic and local effects of angiotensin Ⅱ blockade in experimental diabetic nephropathy.J Renin Angiotensin Aldosterone Syst,2008,9(2):96-102.
    [35]吴伟玲,张爱青,殷勤等.ERK通路抑制剂对PDGF-BB诱导的大鼠系膜细胞细胞外基质合成的影响.南京医科大学学报,2007,27(10):1126-1129.
    [36]Abe H,Minatoguchi S,Ohashi H,et al.Renoprotective effect of the addition of losartan to ongoing treatment with an angiotensin converting enzyme inhibitor in type-2 diabetic patients with nephropathy.Hypertens Res,2007,30(10):929- 935.
    [37]赵东杰.肾素血管紧张素1受体阻断剂与肾保护.世界临床药物,2004,25(2):80-84.
    [38]Forbes JM,Cooper ME,Thallas V,et al.Reduction of the accumulation of advanced glycation end products by ACE inhibition in experimental diabetic nephropathy.Diabetes,2002,51(9):3274-3282.
    [39]Allard J,Bul(?)on M,Cellier E,et al.ACE inhibitor reduces growth factor receptor expression and signaling but also albuminuria through B2-kinin glomerular receptor activation in diabetic rats.Am J Physiol Renal Physiol,2007,293(4):F1083-F1092.
    [40]Boesch DM,Garvin JL.Age-dependent activation of PKC isoforms by angiotensin Ⅱ in the proximal nephron.Am J Physiol Regulatory Integrative Comp Physiol,2001,281(3):R861-R867.
    [41]Molitch ME,DeFronzo RA,Franz MJ,et al.Nephropathy in diabetes.Diabetes Care,2004,27(Suppl 1):579-583.
    [42]Brenner BM,Cooper ME,Zeeuw D,et al.Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy.N Engl J Med,2001,20(345):861-869.
    [43]Parving HH,Lehnert H,Brochner-Mortensen J,et al.The effect ofirbesartan on the development of diabetic nephropathy in patients with type 2 diabetes.N Engl J Med,2001,20(345):870-878.
    [44]Agarwal R,Siva S,Dunn SR,et al.Add-on angiotensin Ⅱ receptor blockade lowers urinary transforming growth factor- D levels.Am J Kidney Dis,2002,39(3):486-492.
    [45]Lewis EJ,Hunsicker LG,Clarke WR,et al.Renoprotective effect of the angiotensin-recpetor antagonist irbesartan in patients with nephropathy due to type 2 diabetes.N Engl J Med,2001,20(345):851-860.
    [46]Ji Z,Huang C,Liang C,et al.Protective effects of blocking renin-angiotensin system on the progression of renal injury in glomerulosclerosis.Cell Mol Immunol,2005,2(2):150-154.
    [1]Marshall SM.Recent advances in diabetic nephropathy.Clin Med,2004,4(3):277-282.
    [2]Zheng JM,Zhu JM,Li LS,et al.Rhein reverses the diabetic phenotype of mesangial cells over-expressing the glucose transporter(GLUT1) by inhibiting the hexosamine pathway.Br J Pharmacol,2008,153(7):1456-1464.
    [3]Cooper ME,Jandeleit-Dahm KA.Lipids and diabetic renal disease.Curr Diab Rep,2005,5(6):445-448.
    [4]孙海燕,杨明功,刘树琴等.2型糖尿病及糖尿病肾病危险因素分析.中国糖尿病杂志,2002,10(8):22-27.
    [5]Ujihara N,Sakka Y,Takeda M,et al.Association between plasma oxidized low-density lipoprotein and diabetic nephropathy.Diabetes Res Clin Pract,2002Nov,58(2):109-114.
    [6]Basile DP,Donohoe D,Roethe K,et al.Renal ischemic injury results in permanent damage to peritubular capillary and influences long term function.Am J Physiol,2001,281(5):F 887-F899.
    [7]杨亦彬,陈忠霞,徐昆.糖尿病血管内皮损害标志物的检测及其与尿白蛋白的关系.医师进修杂志,2005,28(5):21-23.
    [8]Koc M,Bihorac A,Segal MS.Circulating endothelial cells as potential markers of the state of the endothelium in hemodialysis patients.Am J Kidney Dis,2003, 42(4):704-712.
    [9]Cohen G,Riahi Y,Alpert E,et al.The roles of hyperglycaemia and oxidative stress in the rise and collapse of the natural protective mechanism against vascular endothelial cell dysfunction in diabetes.Arch Physiol Biochem,2007,113(4-5):259-267.
    [10]Idris I,Gray S,Donnelly R.Protein kinase C activation:isozyme-specific effects on metabolism and cardiovascular complications in diabetes.Diabetologia,2001,44(6):659-673.
    [11]Das Evcinmen N,King GL.The role of protein kinase C activation and the vascular complications of diabetes.Pharmacol Res,2007,55(6):498-510.
    [12]Chung SS,Chung SK.Aldose reductase in diabetic microvascular complications.Curr Drug Targets,2005,6(4):475-486.
    [13]Forbes JM,Fukami K,Cooper ME,et al.Diabetic nephropathy:where hemodynamics meets metabolism.Exp Clin Endocrinol Diabetes,2007,115(2):69-84.
    [14]Shahab A.Why Does Diabetes Mellitus Increase the Risk of Cardiovascular Disease? Acta Med Indones,2006,38(1):33-41.
    [15]Wang H,Deng H,Liu W.The effects of paraoxonase-1 and oxidized low density lipoprotein on nephropathy in type 2 diabetes mellitus.Zhonghua Nei Ke Za Zhi,2002,41(3):179-182.
    [16]周琳,高方,薛耀明等.氧化低密度脂蛋白对高糖状态下血管内皮细胞NO 释放及ET-1分泌的影响.广东医药,2007,28(4):532-533.
    [17]Kim JA,Tran ND,Berliner JA,et al.Minimally oxidized low-density lipoprotein regulates hemostasis factors of brain capillary endothelial cells.J Neurol Sci,2004,217(2):135-141.
    [18]Cominacini L,Rigoni A,Pasini AF,et al.The binding of oxidized low-density lipoprotein to ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide.J Biol Chem,2001,276(17):13750-13755.
    [19]Lupi R,Dotta F,Marselli L,et al.Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets.Diabetes,2002, 51(5):1437-1442.
    [20]Rosano L,Spinella F,Salani D,et al.Therapeutic targeting of the endothelin-a receptor in human ovarian carcinoma.Cancer Res,2003,63(10):2447.
    [21]Herman WH,Emancipator SN,Rhoten RL,et al.Vascular and glomerular expression of endothelin- 1 in normal human kidney.Am J Physiol Renal Physiol,1998,275(1 Pt2):F8-F17.
    [22]Orth SR,Amann K,Gehlen F,et al.Adult human mesangial cells(HMCs)express endothelin-B- receptors which mediate endothelin-1-induced cell growth.J Cardiovasc Pharmacol,2000,36(Suppl 445):S232-S237.
    [23]Andrey Sorokin and Donald E.Kohan.Physiology and pathology of endothelin-1 in renal mesangium.Am J Physiol Renal Physiol,2003,285(4):F579-F589.
    [24]Itoh Y,Imamura S,Yamamoto K,et al.Changes of endothelin in streptozotocininduced rats:effects of an angiotensin converting enzyme inhibitor,enalapril maleate.J Endocrinol,2002,175(1):233-239.
    [25]Goruppi S,Bonventre JV and Kyriakis JM.Signaling pathways and late-onset gene induction associated with renal mesangial cell hypertrophy.The EMBO Journal,2002,21(20):5427-5436.
    [26]王瑞鑫,王春波,罗氏滨等.SS-GAG对高糖状态下血管内皮细胞NO释放及ET-1分泌的影响.山东大学学报(医学版),2008,4(6):357-361.
    [27]Liu ZQ,Li QZ,Qin GJ.Effect of Astragalus injection on platelet function and plasma endothelin in patients with early stage diabetic nephropathy.Zhongguo Zhong Xi Yi Jie He Za Zhi,2001,21(4):274-276.
    [28]Kalani M.The importance of endothelin-1 for microvascular dysfunction in diabetes.Vasc Health Risk Manag,2008,4(5):1061-1068.
    [29]C.M Richter.Role of endothelin in chronic renal failure-developments in renal involvement.Rheumatology,2006,45(Suppl 3):ⅲ36-ⅲ38.
    [30]Lee HM,Won KJ,Kim J,et al.Endothelin-1 induces contraction via a Sykmediated p38 mitogen-activated protein kinase pathway in rat aortic smooth muscle.J Pharmacol Sci,2007,103(4):427-433.
    [31]Nagai M,Kamide K,Rakugi H,et al.Role of endothelin-linduced by insulin in the regulation of vascular cell growth.Am J Hyertens,2003,16(3):223-228.
    [32]Yao J,Morioka T,Li B,et al.Endothelin is a potent inhibitor of matrix metalloproteinase-2 secretion and activation in rat mesangial cells.Am J Physiol Renal Physiol,2001,280(4):F628-F635.
    [33]Rademaker MT,Charles CJ,Espiner EA,et al.Combined inhibition of angiotensin Ⅱ and endothelin suppresses the brain natriuretic peptide response to developing heart failure.Clin Sci(Lond),2004,106(6):569-576.
    [34]Dahly-Vemon AJ,Sharma M,Roman RJ,et al.Transforming growth factor-beta,20-HETE interaction and glomerular injury in dahlsalt-sensitive rats.Hypertension,2005,45(4):643-648.
    [35]Ohshiro Y,Ma RC,Yasuda Y,et al.Reduction of diabetes-induced oxidative stress,fibrotic cytokine expression,and renal dysfunction in protein kinase C beta-null mice.Diabetes,2006,55(11):3112-3120.
    [36]Nilsson D,Wackenfors A,Gustafsson L,et al.PKC and MAPK signalling pathways regulate vascular endothelin receptor expression.Eur J Pharmacol,2008,580(1-2):190-200.
    [37]Tsiani E,Lekas P,Fantus IG,et al.High glucose-enhanced activation of mesangial cell p38 MAPK by ET-1,ANGⅡ and PDGF.Am Physiol Endocrinol Metab,2002,282(1):E161-E169.
    [38]Cosenzi A,Bernobich E,Trevisan R,et al.Nephroprotective effect of bosentan in diabetic rats.J Cardiovasc Pharmacol,2003,42(6):752-756.
    [39]Sugimoto K,Fujimori A,Yuyama H,et al.Renal protective effect of YM598,a selective endothelin type A receptor antagonist.J Cardiovasc Pharmacol,2004,44(Suppl 1):S451-S454.
    [40]Kang JH,Chae YM,Park KK,et al.Suppression of mesangial cell proliferation and extracellular matrix production in streptozotocin-induced diabetic rats by Sp1decoy oligodeoxynucleotide in vitro and in vivo.J Cell Biochem,2008,103(2):663-674.
    [41]王谦,于玫,龚慕辛等.高浓度葡萄糖对大鼠肾小球系膜细胞增殖的影响.中国病理生理杂志,2003,19(12):1691-1692.
    [42]金洁娜,郑景晨.阻断p38MAPK信号通路对高糖培养大鼠肾小球系膜细胞 增殖和氧化应激的影响.浙江医学,2007,29(6):545-547.
    [43]Wilmer WA,Dixon CL,Herbert C.Chronic exposure of human mesangial cells to high glucose environment activates the p38 MAPK pathway.Kidney Int,2001,60(3):858-871.
    [44]Meier M,Park JK,Overheu D,et al.Deletion of protein kinase C-beta isoform in vivo reduces renal hypertrophy but not albuminuria in the streptozotocin-induced diabetic mouse model.Diabetes,2007,56(2):346-354.
    [45]Abdel-Wahab N,Weston BS,Roberts T,et al.Connective tissue growth factor and regulation of the mesangial cell cycle:role in cellular hypertrophy.J Am Soc Nephrol,2002,13(10):2437-2445.
    [46]Cruz MC,Zyadeh FN,Isono M,et al.Effects of high glucose and TGF-betal on the expression of collagen Ⅳ and vascular endothelial growth factor in mouse podocytes.Kidney Int,2002,62(3):901-913.
    [47]Lindschau C,Quass P,Menne J,et al.Glucose-induced TGF-betal and TGF-beta receptor-1 expression in vascular smooth muscle cells is mediated by protein kinase C-alpha.Hypertension,2003,42(3):335-341.
    [48]Chen S,Jim B,Ziyadeh FN.Diabetic nephropathy and TGF-beta:transforming our view of glomerulosclerosis and fibrosis build up.Semin Nephrol,2003,23(6):532-543.
    [49]Mclennan SV,Fisher E,Martell SY,et al.Effects of glucose on matrix metalloproteinase and plasmin activities in mesangial cells:possible role in diabetic nephropathy.Kidney Int,2000,58(Suppl 77):S81-S87.
    [50]Mclennan SV,Martell SKY,Yue DK.High glucose concentration inhibits the expression of membrane type metalloproteinase by mesangial cells:possible role in mesangium accumulation.Diabetologia,2000,43(5):642-648.
    [51]Singh R,Song RH,Alavi N,et al.High glucose decrease matrix metalloproteinase-2 activity in rat mesangial cells via transforming growth factor-beta.Exp Nephrol,2001,9(4):249-257.
    [52]Guo B,Inoki K,Isono M,et al.MAPK/AP-1-dependent regulation of PAI-1gene expression by TGF-beta in rat mesangial cells.Kidney Int,2005,68(3):972-984.
    [53]Qi W,Twiqq S,Chen X,et al.Integrated actions of transforming growth factor- betal and connective tissue growth factor in renal fibrosis.Am J Physiol Renal Physiol,2005,288(4):F800-F809.
    [54]韩敏,刘晓城,张俊等.低密度脂蛋白诱导大鼠系膜细胞增殖与COX-2表达的关系.中国现代医学杂志,2006,16(10):1468-1471.
    [55]Eitner F,OstendorfT,Kretzler M,et al.PDGF-C expression in the developing and normal human kidney and in glomerular disease.J Am Soc Nephrol,2003,14(5),1145-1153.
    [56]杜月光,柴可夫,万海同.LOX-1介导ox-LDL诱导大鼠系膜细胞表达TGF-β1及分泌细胞外基质.第二军医大学学报,2007,28(8):846-849.
    [57]Lan Y,Zhou Q,Wu ZL.NF-kappa B involved in transcription enhancement of TGF-beta induced by Ox-LDL in rat mesangial cells.Chin Med J,2004,117(2):225-230.
    [58]Morrisett JD.The role of lipoprotein[a]in atherosclerosis.Curr Atheroscler Rep,2000,2(3):243-250.
    [59]Alvarez RH,Kantarjian HM,Cortes JE.Biology of platelet-derived growth factors and its involvement in disease.Mayo Clin Proc,2006,81(9):1241-1257.
    [60]Eitner F,Ostendorf T1,Kretzler M,et al.PDGF-C expression in the developing and normal human kidney and in glomerular disease.J Am Soc Nephrol,2003,14(5):1145-1153.
    [61]Changsirikulchai S,Hudkins KL,Goodpaster TA,et al.Platelet-derived growth factor-D expression in developing and mature human kidneys.Kidney Int,2002,62(6):2043-2054.
    [62]Reigstad LJ,Varhaug JE,Lillehaug JR.Structural and functional specificities of PDGF -C and PDGF -D,the novel members of the Platelet-derived growth factors family.Febs J,2005,272(22):5723-5741.
    [63]Alvarez RH,Kantarjian HM,Cortes JE.Biology of platelet-derived growth factors and its involvement in disease.Mayo Clin Proc,2006,81(9):1241-1257.
    [64]LaRochelle WJ,Jeffers M,McDonald WF,et al.PDGF-D,a new proteaseactivated growth factor.Nature Cell Biology,2001,3(5):517-521.
    [65]Uehara G,Suzuki D,Toyoda M,et al.Glomerular expression of platelet-derived growth factor(PDGF)-A,-B chain and PDGF receptor-alpha,-beta in human diabetic nephropathy.Clin Exp Nephrol,2004,8(1):36-42.
    [66]Langham RG,Kelly D J,Maguire J,et al.Over-expression of platelet-derived growth factor in human diabetic nephropathy.Nephrol Dial Transplant,2003,18(7):1392-1396.
    [67]王筠,邓红,曾玉等.高糖对人肾系膜细胞GSH-PX和PDGF-B表达影响及茶多酚干预作用.临床与实验病理学杂志,2005,20(4):476-479.
    [68]Yanii M,Yonemitsu Y,Fujii T,et al.Diabetic microangiopathy in ischemic limb is a disease of disturbance of the platelet-derived growth factor-BB/protein kinase C axis but not of impaired expression of angiogenic factors.Circ Res,2006,98(1):55-62.
    [69]Stevenson FT,Shearer GC,Atkinson DN.Lipoprotein-stimulated mesangial cell proliferation and gene expression are regulated by lipoprotein lipase.Kidney Int,2001,59(6):2062-2068.
    [70]Kelly DJ,Gilbert RE,Cox AJ,et al.Aminoguanidine amelicrates overexpression of prosclerotic growth factors and collagen deposition in experimental diabetic nephropathy.J Am Soc Nephrol,2001,12(10):2098-2107.
    [71]Deuther-Conrad W,Franke S,Henle T,et al.In vitro-prepared advanced glycation-end-products and the modulating potential of their low-molecular weight degradation products in IRPTC-A rat proximal-tubular derived kidney epithelial cell line.Cell Mol Biol,2001,47:OL187-OL196.
    [72]Ostendorf T,Kunter U,van Roeyen C,et al.The effects of platelet-derived growth factor in experimental glomerulonephritis are independent of the transforming growth factor-beta system.J Am Soc Nephrol,2002,13(3):658-667.
    [73]Cartel NJ,Liu J,Wang J,et al.PDGF-BB-mediated activation ofp42(MAPK) is independent of PDGF beta-receptor tyrosine phosphorylation.Am J Physiol Lung Cell Mol Physiol,2001,281(4):L786-L798.
    [74]Jacob A,Molkentin JD.Insulin inhibits PDGF-directed VSMS migration via NO/cGMP increase of MKP-1 and its inactivation of MAPKs.Am J Physiol Cell Physiol,2002,283(3):C704-C713.
    [75]Steven Zatechka D,Lou MF.Studies of the mitogen-activated protein kinases and phosphatidylinositol-3 kinase in the lens.2.The intercommunications.Exp Eye Res,2002,75(2):177-192.
    [76]邹丽萍,蒋涛.醛糖还原酶抑制剂影响PDGF-BB促系膜细胞增殖作用的机制研究.复旦学报(医学版),2007,34(4):557-562.
    [77]Taneda S,Hudkins KL,Cui Y,et al.Growth factor expression in a murine model of cryoglobulinemia.Kidney Int,2003,63(2):576-590.
    [78]吴伟玲,张爱青,殷勤等.ERK通路抑制剂对PDGF-BB诱导的大鼠系膜细胞细胞外基质合成的影响.南京医科大学学报,2007,27(10):1126-1129.
    [79]Cullen B,Sileock D,Brown L J,et al.The differential regulation and secretion of proteinases from fetal and neonatal fibroblasts by growth factors.Int J Biochem Cell Biol,1997,29(1):241-250.
    [80]姜晓宇,袁伟杰.PDGF对大鼠肾小球系膜细胞表达纤维连接蛋白和PAI-1的影响.山东大学学报,2005,43(10):934-937.
    [81]Ostendorf T,Kunter U,van Roeyen C,et al.The effects of platelet-derived-growth factor antagonism in experimental golmerulonephritis are independent of the transforming growth factor-beta system.J Am Soc Nephrol,2002,13(3):658-667.
    [82]Hida M,Fujita H,Ishikura K,et al.Eicosapentaenoic acid inhibits PDGF-induced mitogenesis and cyclin D1 expression via TGF-beta in mesangial cells.J Cell Physiol,2003,196(2):293-300.
    [83]Nicholas SB.Expression and function of peroxisome proliferators-activated receptor-gamma in mesangial cells.J Hypert,2001,37(2):722-727.
    [84]Kurogi Y.Mesangial cell proliferation inhibitors for the treatment of proliferative glomerular disease.Med Res Rev,2003,23(1):15-31.
    [85]Chen S,Hong SW,Lglesias MC,et al.The key role of the transforming growth factor-beta system in the pathogenesis of diabetic nephropathy.Ren Fail,2001,23(4):471-481.
    [86]Huang L,Liu Z,Lu X,et al.Expression of transforming growth factor beta receptor Ⅰ and Ⅱ in chronic rhinosinusitis,nasal polyps and normal nasal mucosa tissues.Lin Chuang Er Bi Yan Hou Ke Za Zhi,2006,20(17):780-783.
    [87] Xia L, Wang H, Munk S, et al. High glucose activates PKC-zeta and NADPH oxidase through autocrine TGF-betal signaling in mesangial cells. Am J Physiol Renal Physiol, 2008, 295(6): F1705-F1714.
    [88] Abdel-Wahab N, Weston BS, Roberts T, et al. Connective tissue growth factor and regulation of the mesangial cell cycle: role in cellular hypertrophy. J Am Soc Nephrol, 2002,13 (10):2437-2445.
    [89] Krag S, Nyengaard JR, Wogensen L. Combined effects of moderately elevated blood glucose and locally produced TGF-betal on glomerular morphology and renal collagen production. Nephrol Dial Transplant, 2007, 22(9):2485-2496.
    [90] Sam R, Wanna L, Gudehithlu KP, et al. Glomerular epithelial cells transform to myofibroblasts: early but not late removal of TGF-betal reverses transformation. Transl Res, 2006,148(3): 142-148.
    [91] Lindschau C, Quass P, Menne J, et al. Glucose-induced TGF-betal and TGF-beta receptor-1 expression in vascular smooth muscle cells is mediated by protein kinase C-alpha. Hypertension, 2003, 42 (3):335-341.
    [92] Yao LJ, Wang JQ, Zhao H, et al. Effect of telmisartan on expression of protein kinase C-alpha in kidneys of diabetic mice. Acta Pharmacol Sin, 2007, 28(6): 829-838.
    [93] Jong Hoon OH, Hunjoo Ha, Mi Ra Yu, et al. Sequential effcts of high glucose on mesangial cell transforming growth factor -β1 and fibronctin synthesis. Kidney Int, 1998, 54(4):1872-1878.
    [94] Ziyadeh FN, Isono M, Chen S. Involvement of the transforming growth factor-β system in the pathogenesis of diabetic nephropathy. Clin Exp Nephrol, 2002, 6(3):125-129.
    [95] Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev, 2003, 83 (1): 253-307.
    [96] Asanuma K, Mundel P. The role of podocytes in glomerular pathobiology. Clin Exp Nephrol, 2003, 7(4): 255-259.
    [97] Khoshnoodi J, Sigmundsson K, Ofverstedt LG, et al. Nephrin promotes cell-cell adhesion through homophilic interactions. Am J Pathol, 2003, 163 (6): 2337- 2346.
    [98]Lerco MM,Macedo CS,Silva RJ,et al.The number of podocyte and slit diaphragm is decreased in experimental diabetic nephropathy.Acta Cir Bras,2006,21(2):87-91.
    [99]Dalla VM,Masiero A,RoiterAM,et al.Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes.Diabetes,2003,52(4):1031-1035.
    [100]Kim BK,Hong HK.Differential expression of nephrinin acquired human proteinuria diseases.Am J Kidney Dis,2002,40(5):964-973.
    [101]Doublier S,Salvidio G Nephrin expression is reduced in human diabetic nephropathy:evidence for a distinct role for glycated albumin and angiotensin Ⅱ.Diabetes,2003,52(4):1023-1030.
    [102]Kitsiou PV,Tzinia AK,Stetler-Stevenson WG,et al.Glucose induced changes in integrins and matrix-related functions in cultured human glomerular epithelial cells.Am J Physiol Renal Physiol,2003,284(4):F671-F679.
    [103]Kang YS,Park YG,Kim BK,et al.Angiotensin Ⅱ stimulates the synthesis of vascular endothelial growth factor through the p38 mitogen activated protein kinase pathway in cultured mouse podocytes.J Mol Endocrinol,2006,36(2):377-388.
    [104]Benigni A,Zoja C,Campana M,et al.Beneficial effect of TGF-beta antagonism in treating diabetic nephropathy depends on when treatment is started.Nephron Exp Nephrol,2006,104(4):e158-e168.
    [105]L(?)pez-Ongil S,D(?)ez-Marqu(?)s ML,Griera M,et al.Crosstalk between mesangial and endothelial cells:angiotensin Ⅱ down-regulates endothelin-converting enzyme 1.Cell Physiol Biochem,2005,15(1-4):135-144.
    [106]王筠,邓红.高糖对人。肾小球系膜细胞TGF-β1mRNA表达的的影响及茶多酚对其干预作用.东南大学学报,2005,24(1):20-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700