用户名: 密码: 验证码:
重组腺相关病毒载体介导的人核心蛋白聚糖基因逆转自发性高血压大鼠心肌纤维化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:纤维增生性疾病是导致死亡率和发病率升高的一个重要因素,同时它也影响着所有组织,器官和系统的功能。然而,尽管此类疾病给人们的健康造成极大的威胁,目前却没有有效的能针对纤维化发生机制的治疗方式。纤维化通常被定义为机体对于创伤-愈合反应失调控,是心脏及其它组织对于损伤的一种反应性应答。转化生长因子-β(transforming growth factor-β.TGF-β)是一种成纤维细胞趋化因子,可以刺激成纤维细胞增殖,增加细胞外基质蛋白(包括胶原)的合成。大量研究证明TGF-β在心肌纤维化的病因及进展中扮演重要角色。因此我们希望能找到可以阻断TGF-β生物学活性的一种特异性物质,而人核心蛋白聚糖(decorin,DCN)正是这样一种物质。DCN属于小蛋白聚糖家族中的一员,其特点是核心蛋白富含亮氨酸的重复单位。人核心蛋白聚糖被认为是TGF-β的一种天然的拮抗因子。大量实验证明DCN不仅能结合TGF-β,而且可以通过对TGF-β的生物学活性进行中和而抑制因TGF-β过度表达而引发的各个器官纤维化。随着对DCN功能和组成结构研究的不断深入,表明DCN在因过度表达TGF-β而导致的器官纤维化的防治中有着广泛的应用前景。因此我们推测DCN可能为高血压所致的心血管系统器官纤维化的治疗研究提供新的靶点。近年来,重组腺相关病毒载体(recombinant adeno-associated virus.rAAV)得到了广泛的研究和关注。rAAV能转染非分裂期和分裂期细胞,并且可以获得较为稳定,高效和长久的表达。基于上述理论基础,本研究克隆人DCN基因cDNA全长序列,测序鉴定正确后将其连接到重组腺相关病毒载体上,并在293细胞中进行病毒包装,且经过斑点杂交实验测定其滴度,最终收获能够满足我们实验所需要的高滴度的重组腺相关病毒DCN(rAAV-DCN)。然后经大鼠尾静脉转染到老年自发性高血压大鼠纤维化模型中,观察重组腺相关病毒介导的DCN基因对自发性高血压大鼠心肌纤维化的治疗作用及进一步对其相关机制进行研究。
     方法:将人类DCN基因导入重组腺相关病毒载体中,并在293细胞中进行病毒包装,且经过斑点杂交实验测定其滴度,最终收获能够满足我们实验所需要的高滴度的重组腺相关病毒DCN(rAAV-DCN)。然后以已经发生心肌纤维化的四个月月龄的自发性高血压大鼠为模型,分别经尾静脉注射生理盐水1ml,rAAV-GFP和rAAV-DCN病毒(1×10~(11)pfu/只,每组7只),在实验前及导入病毒后每2周监测一次动脉收缩压并收集一次24小时尿,共持续4个月。处死动物前经右颈总动脉插管入左心室,用美国PowerLab公司提供的心功能测定仪测定大鼠心功能的各项指标。处死动物之后提取动物心、主动脉、肝、肾等组织并置入-80℃冰箱中保存,然后提取上述组织中的总RNA和蛋白质。接着分别用RT-PCR,Western blot和ELISA方法检测DCN mRNA和蛋白质的表达和分布情况;检测不同时间段尿中微量白蛋白的含量及变化;全心及左心室称重以了解心室重构情况;肾脏,心脏石蜡包埋后用胶原染色并进行定量分析以观察肾脏和心脏纤维化情况。同时用Western blot检测TGF-β、α-SMA、p-smad2、p38MAPK和p-Akt等信号途径。
     结果:1.心功能分析检测表明,导入DCN基因后可使心功能得到明显的改善,rAAV-DCN组大鼠左室收缩末压(LVESP),左室等容收缩压最大上升速率(+dp/dt_(max))和左室等容舒张压最大下降速率(-dp/dt_(max))的绝对值较对照组和GFP组显著增加,而左室舒张末压(LVEDP)显著降低;2.Western blot检测发现导入rAAV-DCN病毒后,在心脏、肝脏和肾脏中DCN基因均有显著的表达,同时RT-PCR检测发现导入rAAV-DCN病毒后,在心脏、肝脏、肾脏和血管中均有DCN基因显著表达,除此之外,ELISA检测发现导入了rAAV-DCN病毒的动物从第2周开始直到实验终点(16周),其血浆中的DCN水平均有较高且稳定的表达,且其表达水平要显著高于对照组;3.心脏切片的胶原染色分析结果显示:用天狼星红染色法对心肌进行胶原染色后可见对照组及GFP组心肌细胞肥大,心肌排列紊乱且可见大量胶原沉积,而导入了rAAV-DCN病毒的动物其心肌结构较为正常且仅见少量胶原沉积。这说明DCN可以预防和逆转高血压引起的心肌重构;4.心肌细胞直径测量及左心室重量与心脏重量的比值也证实了以上结果;5.导入DCN基因后的不同时间点,尿微量白蛋白的含量较对照组要明显下降,且此种作用一直持续到实验终点(16周);6.肾脏天狼星红染色表明:对照组及GFP组可见肾脏肾小球纤维化程度明显,血管壁增厚且有大量红色胶原沉积。而DCN组较为正常,仅见少量红色胶原沉积沉积。这表明DCN可预防或明显改善老年高血压大鼠的肾脏纤维化;7.Western blot结果显示导入DCN基因后α-SMA的表达水平较对照组和GFP组显著降低;8.Western blot结果显示导入DCN基因后TGF-β、p-smad2、p38MAPK的表达水平较对照组和GFP组显著降低,而Smad6及P_(308)-Akt的表达水平较对照组和GFP组明显增高。
     结论:综上所述,重组腺相关病毒载体介导的人DCN基因可以用于逆转自发性高血压大鼠心肌纤维化,且在大鼠体内高效和持续的表达,同时发挥预防和逆转高血压所致肾脏纤维化的作用。与此同时,我们观察到各组自发性高血压大鼠在实验过程中并未出现因为病毒载体注入而引起的严重毒副作用。因此本实验结果显示了重组腺相关病毒载体介导的DCN基因治疗高血压所致心脏纤维化的可行性。这为高血压伴心脏纤维化的治疗提供了全新的策略和基础。
Background and objective: Decorin (DCN), the small proteoglycan, is one memberof extracellular matrix (ECM) in the interstitial tissue and also characterized as a naturallyoccurring inhibitor that antagonizes transforming-growth factor-beta (TGF-β) which hasbeen regarded as the most important fibrotic cytokine. It has been proved that DCN canbind and neutralize extracellular TGF-βso as to inhibit organic fibrosis causing by theoverexpression of TGF-β. Thus, we conclude that DCN delivery may have therapeuticpotential for hypertensive disease. Recombinant adeno-associated virus (rAAV) has beenshown high efficiency of infecting both dividing and nondividing cells and tissues, rAAVmediated gene infection leads to stable, long-term expression without obvious immuneresponse and other adverse effects. These properties of rAAV vectors indicate that theymay constitute a powerful tool for gone therapy of chronic diseases. In the current study, weinvestigated the potential favorable effects and mechanisms of administering a recombinantadeno-associated virus (rAAV) vector expressing the DCN cDNA to reverse cardiacfibrosis in spontaneously hypertensive rats (SHR) at a dose of 1×10~(11) p.f.u, via tail vein injection.
     Methods: We delivered human DCN cDNA in rAAV. The rAAV virons carryingDCN and GFP (as control) were packed by co-transfections in 293 cells and tittered by dotblots respectively. A single dose of rAAV-GFP or rAAV-DCN (about 1×10~(11) virionparticles per rat in 1 ml of saline solution) via the tail vein into the adult SHRs was injectedrespectively. Rat' blood pressure was checked every two week and 24hs urine wereharvested. All SHRs were sacrificed 16 weeks after gene delivery and measuredcardiaovascular functional indexes, including the left ventricle end-systolicpressure(LVESP) and the left ventricle end-diastolic pressure (LVEDP) and themaximal/minimum rate of LVP (±LV dp/dtmax). DCN expression in various organs ofSHRs was assessed by Western blots, reverse transcription-polymerase chain reaction(RT-PCR) and enzyme-linked immunospecific assay (ELISA). The microalbumin level inurine was analyzed by ELISA. Renal injury and the cardiovascular remodeling wereevaluated by collagen analysis. The expression of TGF-β,α-SMA, and the levels ofphosphorylation of Smad2. p38 MAPK were measured by Western blots.
     Results: (1) After rAAV-mediated DCN gene administration, there were significantincreases in LVESP and +dp/dt_(max), but decreases in LVEDP and enhancement in -dp/dt_(max)as compared with controls. These data indicate an improvement in both systolic anddiastolic functions after rAAV-DCN treatment; (2) The result of Western blot, ELISA andthe reverse transcription-polymerase chain reaction (RT-PCR) showed that abundant DCNprotein and mRNA were expressed in heart, liver and kidney in rAAV-DCN treated SHRs;(3)Collagen analysis identified that DCN gene delivery reduced size of cardiomyocytes anddeposit of collagen in heart; (4) Urine microalbumin levels were significantly decresed indifferent time points after DCN gene delivery as compared with controls: (5) Collagenanalysis of kidney showed that compared with controls, DCN gene delivery significantlyimproved the deposition of collagen, attenuated glomerular sclerosis; (6) Results showedthat rAAV-DCN treatment significantly decreasedα-SMA expression in heart, consistent with its ability to inhibit ECM accumulation in heart, indicating rAAV-DCN treatmentinhibited differentiation of fibroblasts in heart in hypertensive rats; (7) Western blot showedthat rAAV-DCN treatment significantly attenuated TGF-β, p-smad2, p38MAPK andSmad6 expression in heart.
     Conclusions: Based on these results, we concluded that rAAV mediated DCN genedelivery resulted in a stable and long term expression of human DCN in SHRs andalleviated cardiac as well as renal fibrosis in SHRs. Thus, it can be made a conclusion thatrAAV mediated DCN gene can be an excellent gene target for cardiac fibrosis resultingfrom hypertension.
引文
1.庞明.2007.中国老年心血管病流行现状.广西医学 29:139-140.
    2. Weber KT. 2000. Fibrosis and hypertensive heart disease. Curr Opin Cardiol 15:264-272.
    3. Brilla CG, Rupp H, Maisch B. 2003. Effects of ACE inhibition versus non-ACE inhibitor anti-hypertensive treatment on myocardial fibrosis in patients with arterial hypertension: Retrospective analysis of 120 patients with left ventricular endomyocardial biopsies. Herz 28:744-753.
    4. Devereux RB, Palmieri V, Liu JE , et al.2002. Progressive hypertrophy regression with sustained pressure reduction in hypertension; the Losartan Intervention For Endpoint Reduction study. Hypertension 20:1445-1450.
    5. Bohle GC, S., Lodish H. 2000. Role of transforming growth factor β in human disease. N Engl J Med 342:1350-1358.
    6. Goldoni S, Owens RT, McQuillan DJ , et al. 2004. Biologically active decorin is a monomer in solution. J Biol Chem 279:6606-6612.
    7. Yamaguchi Y, Mann DM and Ruoslahti E. 1990. Negative regulation of tranforming growth factor-β by the proteoglycan decorin. Nature 346:281-284.
    8. Stander M, Naumann U. 1998. Decorin gene transfer-mediated suppression of TGF-β synthesis abrogates experimental malignant glioma growth in vivo. Gene Ther 5:1187-1194.
    9. Kolb M, Margetts PJ, Galt TOM, et al. 2001. Transient Transgene Expression of Decorin in the Lung Reduces the Fibrotic Response to Bleomycin. Am. J. Respir.Crit. Care Med. 163:770-777.
    10. Honda E, Munakata H. 2004. Purification and characterization of decorin from the culture media of MRC-5 cells. Int J Biochem Cell Biol 36:1635-1644.
    11. Fischer JW, Kinsella MG, Levkau B, et al. 2001. Retroviral Overexpression of Decorin Differentially Affects the Response of Arterial Smooth Muscle Cells to Growth Factors. Arterioscler Thromb Vase Biol 21:777-784.
    12. Sayani K. Dodd CM. 2000. Delayed appearance of decorin in healing burn scars.Histopathology 36:262-272.
    13. Wei X,Z.C.. Jiang J, Li J, Xiao X, Wang DW. 2005. Adrenomedullin gene delivery alleviates hypertension and its secondary injuries of cardiovascular system. Hum Gene Ther 16:372-380.
    14. Zhu, T., Zhou. L., Mori, S., Wang, Z.. McTiernan, C.F.. Qiao, C, Chen, C. Wang,D.W., Li, J.. and Xiao, X. 2005. Sustained Whole-Body Functional Rescue in Congestive Heart Failure and Muscular Dystrophy Hamsters by Systemic Gene Transfer. Circulation 112:2650-2659.
    15. Yuan. G., Deng, J.. Wang, T.. Zhao. C, Xu, X.. Wang. P., Voltz, J.W., Edin, M.L.,Xiao, X.. Chao. L.. et al. 2007. Tissue Kallikrein Reverses Insulin Resistance and Attenuates Nephropathy in Diabetic Rats by Activation of Phosphatidylinositol 3-Kinase/Protein Kinase B and Adenosine 5'-Monophosphate-Activated Protein Kinase Signaling Pathways. Endocrinology 148:2016-2026.
    16. Gabbiani G. 1992. The biology of the myofibroblast. Kidney Int 41:530-532.
    17. Zeiberg M. Strutz F, Muller GA. 2000. Role of fibroblast activation in inducing interstitial fibrosis.J Nephrol 13 (Suppl 3) :S111-S120.
    1. Chobanian AV, B. G.. Black HR, Cushman WC, et al. 2003. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 289:2560-2572.
    2.中国高血压防治指南起草委员会.2000.中国高血压防治指南.高血压杂志8:94-102.
    3. Brilla CG, R. H.. Maisch B. 2003. Effects of ACE inhibition versus non-ACE inhibitor anti-hypertensive treatment on myocardial fibrosis in patients with arterial hypertension: Retrospective analysis of 120 patients with left ventricular endomyocardial biopsies. Herz 28:744-753.
    4. Devereux RB, P. V.. Liu JE, et al. 2002. Progressive hypertrophy regression with sustained pressure reduction in hypertension: the Losartan Intervention For Endpoint Reduction study. Hypertension 20:1445-1450.
    5. Catania JM, C.G., Parrish AR. 2007. Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol 292:F905-F911.
    6. Jiang, J.-G., Ning, Y.-G., Chen, C., Ma, D., Liu, Z.-J., Yang, S., Zhou, J., Xiao, X., Zhang, X. A., Edin, M. L., et al. 2007. Cytochrome P450 Epoxygenase Promotes Human Cancer Metastasis. Cancer Res 67:6665-6674.
    7. Jiang WG, M.T., Parr C, Davies G, Matsumoto K, Nakamura T. 2005. Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. Crit Rev Oncol Hematol 53:35-69.
    8. OzawaK, S.K., Oh I, Ozaki K, et al. 2008. Cell and gene therapy using mesenchymal stem cells (MSCs). J Autoimmun 30:121-127.
    9. Boor, P., Sebekova, K., Ostendorf, T., and Floege, J. 2007. Treatment targets in renal fibrosis. Nephrol. Dial. Transplant. 22:3391-3407.
    10. Nishimura H, K.S.. Nishioka A. Imamura K, Kawamura K, Hasegawa M. 1985. Left ventricular diastolic function of spontaneously hypertensive rats and its relationship to structural components of the left ventricle. Clin Sci (Lond) 69:571-579.
    11. Brilla CG, J.J., Weber KT. 1991. Impaired diastolic function and coronary reserve in genetic hypertension. Role of interstitial fibrosis and medial thickening of intramyocardial coronary arteries. Circ Res 69:107-115.
    12. Pfeffer, J.M., Pfeffer, M.A., Fishbein, M.C., and Frohlich, E.D. 1979. Cardiac function and morphology with aging in the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol 237:H461-468.
    13. Mukherjee D, S.S. 1990. Collagen phenotypes during development and regression of myocardial hypertrophy in spontaneously hypertensive rats. Circ Res 67:1474-1480.
    14. Makino, N., Sugano, M, Otsuka, S., and Hata, T. 1997. Molecular Mechanism of Angiotensin Ⅱ Type Ⅰ and Type Ⅱ Receptors in Cardiac Hypertrophy of Spontaneously Hypertensive Rats. Hypertension 30:796-802.
    15. Diez, J., Panizo, A., Hernandez, M., Vega, F., Sola, I., Fortuno, M.A., and Pardo, J.1997. Cardiomyocyte Apoptosis and Cardiac Angiotensin-Converting Enzyme in Spontaneously Hypertensive Rats. Hypertension 30:1029-1034.
    16. Weber KT, B.C., Janicki JS, Reddy HK, Campbell SE. 1991. Myocardial fibrosis:role of ventricular systolic pressure, arterial hypertension, and circulating hormones. Basic Res Cardiol 86:25-31.
    17. HA, L. 1983. Measurement of collagen-proteoglycan interaction in hypertrophic scars. Plast Reconstr Surg 71:818-820.
    18. Weber KT, P.R., Jail JE, Janicki JS, Carroll EP. 1989. Patterns of myocardial fibrosis. J Mol Cell Cardiol 21:121-131.
    19. Ohta, K., Kim, S., Wanibuchi, H., Ganten, D., and Iwao, H. 1996. Contribution of Local Renin-Angiotensin System to Cardiac Hypertrophy, Phenotypic Modulation, and Remodeling in TGR(mRen2)27 Transgenic Rats. Circulation 94:785-791.
    20. Cohn JN, F.R., Sharpe N. 2000. Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling.Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardilo 35:569-582.
    21. Liu YH, Y.X., Sharov VG, Nass O, Sabbah HN, Peterson E, Carretero OA. 1997.Effects of angiotensin-converting enzyme inhibitors and angiotensin Ⅱ type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin Ⅱ type 2 receptors. J Clin Invest 99:1926-1935.
    22. Nakamura. Y., Yoshiyama. M., Omura, T.. Yoshida. K., Izumi, Y., Takeuchi, K..Kim, S.. Iwao, H., and Yoshikawa, J. 2003. Beneficial effects of combination of ACE inhibitor and angiotensin II type 1 receptor blocker on cardiac remodeling in rat myocardial infarction. Cardiovasc Res 57:48-54.
    23. Kober, L., Torp-Pedersen. C. Carlsen, J.E.. Bagger, H., Eliasen. P., Lyngborg, K.,Videbak, J.. Cole, D.S.,Auclert. L., Pauly, N.C., et al. 1995. A Clinical Trial of the Angiotensin-Converting-Enzyme Inhibitor Trandolapril in Patients with Left Ventricular Dysfunction after Myocardial Infarction. N Engl J Med 333:1670-1676.
    24. Pfeffer, M.A., McMurray, J.J.V., Velazquez, E.J., Rouleau, J.-L., Kober, L.,Maggioni, A.P., Solomon, S.D., Swedberg, K., Van de Werf, F., White, H., et al. 2003. Valsartan, Captopril, or Both in Myocardial Infarction Complicated by Heart Failure, Left Ventricular Dysfunction, or Both. N Engl J Med 349:1893-1906.
    25. Zou, Y., Komuro, I., Yamazaki, T., Kudoh. S., Aikawa, R., Zhu, W., Shiojima, I.,Hiroi, Y., Tobe, K., Kadowaki, T., et al. 1998. Cell type-specific angiotensin Ⅱ-evoked signal transduction pathways: critical roles of Gbetagamma subunit, Src family, and Ras in cardiac fibroblasts. Circ Res 82:337-345.
    26. Schorb, W., Booz, G.W., Dostal, D.E., Conrad, K.M., Chang, K.C., and Baker, K.M.1993. Angiotensin Ⅱ is mitogenic in neonatal rat cardiac fibroblasts. Circ Res 72: 1245-1254.
    27. Sadoshima, J., and Izumo, S. 1993. Molecular characterization of angiotensin Ⅱ--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73:413-423.
    28. Wenzel, S., Taimor, G., Piper, H.M., and Schluter, K.D. 2001. Redox-sensitve intermediates mediate angiotensin Ⅱ-induced p38 MAP kinase activation, AP-1 binding activity, and TGF-β expression in adult ventricular cardiomyocytes. FASEB J. 15:2291-2293
    29. Border, W.A., and Noble, N.A. 1994. Transforming Growth Factor β in Tissue Fibrosis. N Engl J Med 331:1286-1292.
    30. Laviades, C.. Varo, N., and Diez, J. 2000. Transforming Growth Factor β in Hypertensives With Cardiorenal Damage. Hypertension 36:517-522.
    31. Campbell SE, K.L. 1997. Angiotensin Ⅱ stimulated expression of transforming growth factor-β1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 29:1947-1958.
    32. Youn TJ, K. H., Oh BH. 1999. Ventricular remodeling and transforming growth factor-β1 mRNA expression after nontransmural myocardial infarction in rats: effects of angiotensin converting enzyme inhibition and angiotensin Ⅱ type 1 receptor blockade. Basic Res Cardiol 94:246-253.
    33.彭龙云,高修仁,麦炜颐,等.2002.高血压大鼠心肌TGF-β1和MMP2蛋白表达及RAS阻断后的变化.国际心血管病学杂志12:303-306.
    34.高修仁,彭龙云,曾群英,等.2003.ARB及ACEI联合应用对高血压大鼠心室重塑的影响.中华临床医药杂志1:24-27.
    35. Li, R.-K., Li, G., Mickle, D.A.G., Weisel, R.D., Merante, F., Luss, H., Rao, V., Christakis, G.T., and Williams. W.G. 1997. Overexpression of Transforming Growth Factor-β and Insulin-Like Growth Factor-Ⅰ in Patients With Idiopathic Hypertrophic Cardiomyopathy. Circulation 96:874-881.
    36. Boluyt MO, O.N.L., Meredith AL, Bing OHL. Brooks WW. Conrad and CH. CM..Lalatta EG. 1994. Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure. Marked upregulation of genes encoding extracellular matrix components. Circ Res 75:23-32.
    37. Hein, S.. Arnon, E., Kostin, S., Schonburg, M.. Elsasser. A.. Polyakova, V., Bauer,E.P., Klovekorn, W.-P., and Schaper, J. 2003. Progression From Compensated Hypertrophy to Failure in the Pressure-Overloaded Human Heart: Structural Deterioration and Compensatory Mechanisms. Circulation 107:984-991.
    38. Heimer R, B.R., Kyle J, Jimenez SA. 1995. TGF-p modulates the synthesis of proteoglycans by myocardial fibroblasts in culture. J Mol Cell Cardiol 27:2191-2198.
    39. Hautmann. M.B., Adam, P.J.. and Owens. G.K. 1999. Similarities and Differences in Smooth Muscle a-Actin Induction by TGF-P in Smooth Muscle Versus Non-smooth Muscle Cells. Arterioscler Thromb Vase Biol 19:2049-2058.
    40. Desmouliere, A., Geinoz, A., Gabbiani,F.,and Gabbiani, G. 1993. Transforming growth factor-#### induces a-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol.122:103-111.
    41. Nakajima, H.. Nakajima, H.O., Salcher, O., Dittie, A.S., Dembowsky, K., Jing, S.,and Field, L.J. 2000. Atrial but Not Ventricular Fibrosis in Mice Expressing a Mutant Transforming Growth Factor-pi Transgene in the Heart. Circ Res 86:571-579.
    42. Kuwahara, F., Kai, H., Tokuda, K., Kai, M., Takeshita, A., Egashira, K., and Imaizumi, T. 2002. Transforming Growth Factor-P Function Blocking Prevents Myocardial Fibrosis and Diastolic Dysfunction in Pressure-Overloaded Rats. Circulation 106:130-135.
    43. Lee LK, M.T., Pollock AS, Lovett DH. 1995. End(?)thelial cell injury initiates glomerular sclerosis in the rat remnant kidney. J Clin Invest 96:953-964.
    44. Kupfahl, C, Pink, D., Friedrich, K., Zurbrugg, H.R., Neuss, M, Warnecke, C.Fielitz, J., Graf, K., Fleck, E., and Regitz-Zagrosek, V. 2000. Angiotensin Ⅱ directly increases transforming growth factor β1 and osteopontin and indirectly affects collagen mRNA expression in the human heart. Cardiovasc Res 46:463-475.
    45. Lee AA, D.W., Mcculloch AD, Villarreal FJ. 1995. Angiotensin Ⅱ stimulates the autocrine production of transforming growth factor-β1 in adult rat cardiac fibroblasts. J Mol Cell Cardiol 27:2347-2357.
    46. Diamond JR. L.M., Kreisberg R, Ricardo SD. 1997. Increased expression of decorin in experimental hydronephrosis. Kidney Int 51:1133-1139.
    47. Danielson, K.G., Baribault, H., Holmes, D.F., Graham, H., Kadler, K.E., and Iozzo,R.V. 1997. Targeted Disruption of Decorin Leads to Abnormal Collagen Fibril Morphology and Skin Fragility. J. Cell Biol. 136:729-743.
    48. Tufvesson E, W.-T.G. 2002. Tumour necrosis factor-α interacts with biglycan and decorin. FEBS Lett 530:124-128.
    49. Chen MM, L.A., Abraham JA, Schreiner GF, Joly AH. 2000. CTGF expression is induced by TGF-P in cardiac fibroblasts and cardiac myocytes: a potential role in heart fibrosis. J Mol Cell Cardiol 32:1805-1819.
    50. Yamaguchi, Y., Mann, D.M., and Ruoslahti, E. 1990. Negative regulation of transforming growth factor-P by the proteoglycan decorin. Nature 346:281-284.
    51. Kolb M , M.P., Galt T, et al.2001. Transient transgene expression of decorin in the lung reduces the fibrotic response to bleomycin. Am J Respir Crit Care Med. 163:770-777.
    52. Honda E, M.H. 2004. Purification and characterization of decorin from the culture media of MRC25 cells. Int J Biochem Cell Biol 36:1635-1644
    53. Rosenkranz, S., Flesch, M., Amann, K., Haeuseler, C, Kilter, H., Seeland, U.,Schluter, K.-D., and Bohm, M. 2002. Alterations of β-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-###1.Am J Physiol Heart Circ Physiol 283:H1253-1262.
    54. Border. W.A.. Noble. N.A.. Yamamoto, T.. Harper, J.R.. Yamaguchi, Y., Pierschbacher, M.D., and Ruoslahti. E. 1992. Natural inhibitor of transforming growth factor-P protects against scarring in experimental kidney disease. Nature 360:361-364.
    55. Isaka Y. B.D., Ikegaya K et al. 1996. Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nat Med 2:418-423.
    56. Jahanyar J, J.D., Southard RE, Loebe M, Noon GP, Koerner MM. Torre-Amione G,Youker KA. 2007. Decorin-mediated transforming growth factor-P inhibition ameliorates adverse cardiac remodeling. J Heart Lung Transplant 26:34-40.
    57. Wang Z. Z.T., Qiao C, Xiao Xiao. 2005. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nature Biotechnology 23:321-328.
    58. Petrov, V.V., Fagard. R.H.. and Lijnen, P.J. 2002. Stimulation of Collagen Production by Transforming Growth Factor-####1 During Differentiation of Cardiac Fibroblasts to Myofibroblasts. Hypertension 39:258-263.
    59. M. E. 1992. Cardiac fibroblasts: function, regulation of gene expression, and phenotypic modulation. Basic Res Cardiol 87:183-189.
    60. Vrljicak, P., Myburgh, D., Ryan, A.K., van Rooijen, M.A., Mummery, C.L., and Gupta, I.R. 2004. Smad expression during kidney development. Am J Physiol Renal Physiol 286:F625-633.
    61. Wrana JL, A.L. 2000. The Smad pathway. Cytokine Growth Factor Rev 11:5-13.
    62. Mathews LS, V.W. 1991. Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell 65:973-982.
    63. Lin HY, W.X., Ng-Eaton E, Weinberg RA, Lodish HF. 1992. Expression cloning of the TGF-P type II receptor, a functional transmembrane serine/threonine kinase.Cell 68:775-785.
    64. Matsumoto-Ida M, T.Y., Aoyama T. 2006. Activation of TGF-β1-TAKl-p38 MAPK pathway in spared cardiomyocytes is involved in left ventricular remodeling after myocardial infarction in rats. Am J Physiol Heart Circ Physiol 290:H709-715.
    65. Engel, M.E., McDonnell, M.A., Law, B.K., and Moses, H.L. 1999. Interdependent SMAD and JNK Signaling in Transforming Growth Factor-(3-mediated Transcription. J. Biol. Chem. 274:37413-37420.
    66. Hanafusa, H., Ninomiya-Tsuji, J.. Masuyama, N., Nishita, M., Fujisawa, J.-i.,Shibuya, H., Matsumoto, K., and Nishida, E. 1999. Involvement of the p38 Mitogen-activated Protein Kinase Pathway in Transforming Growth Factor-β-induced Gene Expression. J. Biol. Chem. 274:27161-27167.
    67. Watanabe, H., de Caestecker, M.P., and Yamada, Y. 2001. Transcriptional Cross-talk between Smad, ERK1/2, and p38 Mitogen-activated Protein Kinase Pathways Regulates Transforming Growth Factor-β-induced Aggrecan Gene Expression in Chondrogenic ATDC5 Cells. J. Biol. Chem. 276:14466-14473.
    68. Yu, L., Hebert, M. C,and Zhang, Y. E. 2002. TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J. 21:3749-3759.
    69. Wang, Y. 2007. Mitogen-Activated Protein Kinases in Heart Development and Diseases. Circulation 116:1413-1423.
    70. D, D. 2005. Functions and regulation of transforming growth factor-β (TGF-β) in the prostate. Eur J Cancer 41:846-857.
    71. Pollheimer J, K.M. 2005. Signalling pathways regulating the invasive differentiation of human trophoblasts: a review. Placenta 26:S21-30.
    72. Schonherr, E., Sunderkotter, C, Iozzo, R.V., and Schaefer, L. 2005. Decorin, a Novel Player in the Insulin-like Growth Factor System. J. Biol. Chem.280:15767-15772.
    1. Tomasek, J.J., Gabbiani, G., Hinz, B., Chaponnier, C, and Brown, R.A. 2002.Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev.Mol. Cell Biol. 3:349-363.
    2. Kumar, V., Abbas, A.K.,and Fausto, N. 2005. Tissue renewal and repair: regeneration,healing, and fibrosis. In Pathologic basis of disease. V. Kumar, A.K.Abbas, and N.Fausto, editors. Elsevier Saunders. Philadelphia, Pennsylvania, USA. 87-118.
    3. Wynn, T.A. 2003. IL-13 effector functions. Annu. Rev. Immunol. 21:425-456.
    4. Quan, T.E., Cowper, S.E., and Bucala, R. 2006. The role of circulating fibrocytes in fibrosis. Curr. Rheumatol. Rep. 8:145-150.
    5. Wynn, T.A. 2004. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat. Rev. Immunol.4:583-594.
    6. Iredale, J.P. 2007. Models of liver fibrosis: exploring the dynamic nature of inflammation and repairin a solid organ. J.Clin.Invest. 117:539-548.
    7. Fallowfield, J.A., Kendall, T.J., and Iredale, J.P. 2006. Reversal of fibrosis: no longer a pipe dream? Clin.Liver Dis. 10:481-497.
    8. Issa, R., et al. 2004. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology.126:1795-1808.
    9. Duffield, J.S., et al. 2005. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115:56-65.
    10. Meneghin, A., and Hogaboam, CM. 2007. Infectious disease, the innate immune response, and fibrosis. J. Clin. Invest. 117:530-538.
    11. Coelho, A.L.,Hogaboam, CM., and Kunkel, S.L. 2005. Chemokines provide the sustained inflammatory bridge between innate and acquired immunity. Cytokine Growth Factor Rev. 16:553-560.
    12. Strieter, R.M., Gomperts, B.N., and Keane, M.P. 2007. The role of CXC chemokines in pulmonary fibrosis. J. Clin. Invest. 117:549-556.
    13. Abraham, D.J., and Varga, J. 2005. Sclerodenna: from cell and molecular mechanisms to disease models. Trends Immunol. 26:587-595.
    14. Del Papa. N.. et al. 2006. Bone marrow endothelial progenitors are defective in systemic sclerosis. Arthritis Rheum. 54:2605-2615.
    15. Kalluri, R., and Neilson, E.G. 2003. Epithelial mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112:1776-1784.
    16. Moore. B.B., et al. 2005. CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am. J. Pathol. 166:675-684.
    17. Strehlow. D.. and Korn, J.H. 1998. Biology of the scleroderma fibroblast. Curr. Opin. Rheumatol. 10:572-578.
    18. Hasegawa, M., Fujimoto. M, Takehara, K.,and Sato,S.2005. Pathogenesis of systemic sclerosis: altered B cell function is the key linking systemic autoimmunity and tissue fibrosis. J. Dermatol. Sci. 39:1-7.
    19. Cohn JN. Ferrari R, Sharpe N. 2000. Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling.Behalf on an international forum on cardiac remodelling. J Am Coll Cardiol.35:569-582.
    20. Brand T. Schneider MD. 1995. The TGF superfamily in myocardium: ligands,receptors, transduction, and function. J Mol Cell Cardiol. 27:5-18.
    21. Sudgen PH, Clerk A. 1998. Cellular mechanisms of cardiac hypertrophy. J Mol Med 76:725- 746.
    22. Berk, B.C., Fujiwara, K., and Lehoux, S. 2007. ECM remodeling in hypertensive heart disease. J. Clin. Invest. 117:568-575.
    23. Watanabe, T., Barker, T.A., and Berk, B.C. 2005.Angiotensin Ⅱ and the endothelium:diverse signals and effects. Hypertension. 45:163-169.
    24. Rosenkranz, S., et al. 2002. Alterations of β adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-β(1). Am.J. Physiol. Heart Circ.Physiol. 283:H1253-H1262.
    25. Ohta K, Kim S, Wanibuchi H, et al. 1996. Contribution of the local renin-angiotensin system to cardiac hypertrophy, phenotypic modulation, and remodeling in TGR(mRen2)27 transgenic rats. Circulation. 94:785-791.
    26. Nakamura Y, Yoshiyama M, Omura T, et al. 2003. Beneficial effects of combination of ACE inhibitor and angiotensin Ⅱ type 1 receptor blocker on cardiac remodeling in rat myocardial infarction. Cardiovasc Res. 57:48-54.
    27. Liu YH, Yang XP, Sharov VG, et al. 1997. Effects of angiotensin converting enzyme inhibitors and angiotensin Ⅱ type 1 receptor antagonists in rats with heart failure: role of kinins and angiotensin Ⅱ type 2 receptors. J Clin Invest. 99:1926-1935.
    28. Pfeffer MA, McMurray JJV, Velazquez EJ, on behalf of the VALIANT Investigators. 2003. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med. 349:1893-1906.
    29. Kober L, Torp-Pedersen C, Carlsen JE, et al. 1995. A clinical trial of the angiotensin converting enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 333:1670- 1676.
    30. Zou Y, Komuro I, Yamazaki T. et al. 1998. Cell type-specific angiotensin Ⅱ-evoked signal transduction pathways: critical roles of Ghg subunit, Src family, and Ras in cardiac fibroblasts. Circ Res. 82:337-345.
    31. Schorb W, Booz GW, Dostal DE, Conrad KM, Chang KC, Baker KM. 1993. Angiotensin Ⅱ is mitogenic in neonatal rat cardiac fibroblasts. Circ Res. 72:1245-1254.
    32. Sadoshima J, Izumo S. 1993. Molecular characterization of angiotensin Ⅱ-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the ATI receptor. Circ Res. 73:413-423.
    33. Wenzel S, Taimor G, Piper HM, Schl(u|¨)ter KD. 2001. Redox-sensitive intermediates mediate angiotensin Ⅱ-induced p38 MAP kinase activation, AP-1 binding activity, and TGF-β expression in adult ventricular cardiomyocytes. FASEB J. 15:2291-2293.
    34. Dostal DE. 2001. Regulation of cardiac collagen: angiotensin and crosstalk with local growth factors. Hypertension. 37:841-844.
    35. Border WA, Nobel NA. 1994. Transforming growth factor-β in tissue fibrosis. N Engl J Med. 331:1286-1292.
    36. Li RK, Mickle DA, Weisel RD, et al. 1997. Overexpression of transforming growth factor-pi and insulin-like growth factor-Ⅰ in patients with idiopathic hypertrophic cardiomyopathy. Circulation. 96:874-881.
    37. Casscells W, Bazoberry F, Speir E, et al. 1990. Transforming growth factor-β1 in normal heart and in myocardial infarction. Ann N Y Acad Sci. 593:148-160.
    38. Bolyut MO, O'Neill L, Meredith AL, et al. 1994. Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure: marked upregulation of genes encoding extracellular matrix components. Circ Res. 75:23-32.
    39. Hein S, Arnon E. Kostin S, et al. 2003. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart. Structural deterioration and compensatory mechanisms. Circulation. 107:984-991.
    40. Heimer R, Bashey RL Kyle J, Jiminez SA. 1995. TGF-β modulates the synthesis of proteoglycans by myocardial fibroblasts in culture. J Mol Cell Cardiol. 27:2191-2198
    41. Hautmann MB, Adam PJ, Owens GK. 1999. Similarities and differences in smooth muscle a-actin induction by TGF-P in smooth muscle versus non-smooth muscle cells. Arterioscler Thromb Vase Biol. 19:2049-2058.
    42. Desmoulie're A, Geinoz A, Gabbiani F. et al. 1993. Transforming growth factor-β1 induces a-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Biol Chem. 122:103-111.
    43. Nakajima H. Nakajima HO.Salcher O. et al. 2000. Atrial but not ventricular fibrosis in mice expressing a mutant transforming growth factor β1 transgene in the heart. Circ Res. 86:571-579.
    44. Kuwahara F, Kai H, Tokuda K, et al. 2002. Transforming growth factor-β function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 106:130-135.
    45. Lee AA, Dillmann WH, McCulloch AD, Villarreal FJ. 1995. Angiotensin Ⅱ stimulates the autocrine production of transforming growth factor β1 in adult rat cardiac fibroblasts. J Mol Cell Cardiol. 27:2347-2357.
    46. Kupfahl C, Pink D, Friedrich K, et al. 2000. Angiotensin ##### directly increases transforming growth factor ###1 and osteopontin and indirectly affects collagen mRNA expression in the human heart. Cardiovasc Res. 46:463-475.
    47. Ichihara S, Senbonmatsu T, Price Jr E, et al. 2001. Angiotensin type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin Ⅱ-induced hypertension. Circulation. 104:346-351.
    48. Wang J, Liu X, Sentex E, Takeda N, Dhalla NS. 2003. Increased expression of protein kinase C isoforms in heart failure due to myocardial infarction. Am J Physiol Heart Circ Physiol. 284:H2277-2287.
    49. Runyan CE, Schnaper HW, Poncelet AC. 2003. Smad 3 and PKC delta mediate TGF-β1-induced collagen Ⅰ expression in human mesangial cells. Am J Physiol Renal Physiol. 285 :F413-422.
    50. Puri PL, Avantaggiati ML, Bugio VL, et al. 1995. Reactive oxygen intermediates mediate angiotensin Ⅱ-induced c-fos/c-jun heterodimer DNA binding activity and proliferative hypertrophic response in myogenic cells. J Biol Chem. 270:22129-22134.
    51. Massague J. 1996. TGF-P signaling: receptors, transducers, and mad proteins. Cell. 85:947-950.
    52. Ng HH, Bird A. 2000. Histone deacetylases: silencers for hire. Trends Biochem Sci 25:121-126.
    53. Wang B, Hao J, Jones SC, Yee MS, Roth JC, Dixon IM. 2002. Decreased Smad 7 expression contributes to cardiac fibrosis in the infarcted rat heart. Am J Physiol Heart Circ Physiol. 282:H1685-1696.
    54. Monzen K, Shiojima I, Hiroi Y, et al. 1999. Bone morphogenic proteins induce cardiomyocyte differentiation through the mitogen-activated protein kinase kinase kinase TAK1 and cardiac transcription factors Csx/Nkx-2.5 and GATA4. Mol Cell Biol. 19:7096-7105.
    55. Schluter K-D, Zhou XJ, Piper HM. 1995. Induction of hypertrophic responsiveness to isoproterenol by TGF-β in adult rat cardiomyocytes. Am J Physiol. 269:C1311-1316.
    56. Koch WJ, Rockman HA, Samama P, et al. 1995. Cardiac function in mice overexpressing the β-adrenergic receptor kinase or a ARK inhibitor. Science.268:1350-1353.
    57. Bartolome J, Guguenard J, Slotkin TA. 1990. Role of ornithine decarboxylase in cardiac growth and hypertrophy. Science. 210:793-794.
    58. Iizuka K, Sano H, Kawaguchi H, Kitabatake A. 1994. Transforming growth factor β-1 modulates the number of β-adrenergic receptors in cardiac fibroblasts. J Mol Cell Cardiol. 26:435-440.
    59. Caplan, A.I., and Dennis, J.E. 2006. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 98:1076-1084.
    1. Nangaku M. Mechanisms of tubulointerstitial injury in the kidney: final common pathways to end-stage renal failure. Intern Med (2004) 43:9-17.
    2. Eddy AA. Molecular basis of renal fibrosis. Pediatr Nephrol (2000) 15:290-301.
    3. Kondo S, Shimizu M, Urushihara M, et al. Addition of the antioxidant probucol to angiotensin Ⅱ type Ⅰ receptor antagonist arrests progressive mesangioproliferative glomerulonephritis in the rat. J Am Soc Nephrol (2006) 17:783-794.
    4. Debelle FD, Nortier JL, Husson CP, et al. The renin-angiotensin system blockade does not prevent renal interstitial fibrosis induced by aristolochic acids. Kidney Int (2004)66:1815-1825.
    5. Wolf G, Ritz E. Combination therapy with ACE inhibitors and angiotensin Ⅱ receptor blockers to halt progression of chronic renal disease: pathophysiology and indications.Kidney Int (2005) 67:799-812.
    6. Adamczak M, Gross ML, Krtil J, et al. Reversal of glomerulosclerosis after high-dose enalapril treatment in subtotally nephrectomized rats. J Am Soc Nephrol (2003)14:2833-2842.
    7. Schanstra JP, Neau E, Drogoz P, et al. In vivo bradykinin B2 receptor activation reduces renal fibrosis. J Clin Invest (2002) 110:371-379.
    8. Bledsoe G. Shen B, Yao Y, Zhang JJ, Chao L, Chao J. Reversal of renal fibrosis, inflammation, and glomerular hypertrophy by kallikrein gene delivery. Hum Gene Ther (2006) 17:545-555.
    9. Hollenberg NK. Aldosterone in the development and progression of renal injury. Kidney Int (2004) 66:1-9.
    10. Nguyen G. The (pro)renin receptor: pathophysiological roles in cardiovascular and renal pathology. Curr Opin Nephrol Hypertens (2007) 16:129-133.
    11. Neuhofer W, Pittrow D. Role of endothelin and endothelin receptor antagonists in renal disease. Eur J Clin Invest (2006) 36(Suppl 3):78-88.
    12. Amann K, Rump LC, Simonaviciene A, et al. Effects of low dose sympathetic inhibition on glomerulosclerosis and albuminuria in subtotally nephrectomized rats. J Am Soc Nephrol (2000) 11:1469-1478.
    13. Amann K, Koch A. Hofstetter J. et al. Glomerulosclerosis and progression: effect of subantihypertensive doses of alpha and beta blockers. Kidney Int (2001) 60:1309-1323.
    14. Elzinga LW, Rosen S, Burdmann EA, Hatton DC. Lindsley J, Bennett WM. The role of renal sympathetic nerves in experimental chronic cyclosporine nephropathy.Transplantation (2000) 69:2149-2153.
    15. Orth SR. Smoking and the kidney. J Am Soc Nephrol (2002) 13:1663-1672.
    16. Elliot SJ, Karl M, Berho M, et al. Smoking induces glomerulosclerosis in aging estrogen-deficient mice through cross-talk between TGF-betal and IGF-Ⅰ signaling pathways. J Am Soc Nephrol (2006) 17:3315-3324.
    17. Hsu CY, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for end-stage renal disease. Ann Intern Med (2006) 144:21-28.
    18. Kramer H. Obesity and chronic kidney disease. Contrib Nephrol (2006) 151:1-18.
    19. Joles JA, Kunter U, Janssen U, et al. Early mechanisms of renal injury in hypercholesterolemic or hypertriglyceridemic rats. J Am Soc Nephrol (2000) 11:669-683.
    20. Li C, Yang CW. Park JH, et al. Pravastatin treatment attenuates interstitial inflammation and fibrosis in a rat model of chronic cyclosporine-induced nephropathy. Am J Physiol Renal Physiol (2004) 286:F46-F57.
    21. Fujihara CK, De Lourdes NI, Malheiros AGR, de Oliveira IB, Zatz R. Combined mycophenolate mofetil and losartan therapy arrests established injury in the remnant kidney. J Am Soc Nephrol(2000) 11:283-290.
    22. Kramer S, Loof T, Martini S, et al. Mycophenolate mofetil slows progression in anti-thyl-induced chronic renal fibrosis but is not additive to a high dose of enalapril. Am J Physiol Renal Physiol (2005) 289:F359-F368.
    23. Mota A, Arias M, Taskinen EI,et al. Sirolimus-based therapy following early cyclosporine withdrawal provides significantly improved renal histology and function at 3 years. Am J Transplant (2004) 4:953-961.
    24. Wu MJ, Wen MC. Chiu YT, et al. Rapamycin attenuates unilateral ureteral obstruction-induced renal fibrosis. Kidney Int (2006) 69:2029-2036.
    25. Muller DN, Shagdarsuren E, Park JK, et al. Immunosuppressive treatment protects against angiotensin Ⅱ-induced renal damage. Am J Pathol (2002) 161:1679-1693.
    26. Catania JM, Chen G, Parrish AR. Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol (2007) 292:F905-F911.
    27. Cheng S, Pollock AS, Mahimkar R, Olson JL. Lovett DH. Matrix metalloproteinase 2 and basement membrane integrity: a unifying mechanism for progressive renal injury.FASEB J (2006) 20:1898-1900.
    28. Kim H. Oda T. Lopez-Guisa J. et al. TIMP-1 deficiency does not attenuate interstitial fibrosis in obstructive nephropathy. J Am Soc Nephrol (2001) 12:736-748.
    29. Zhang X, Chen X, Hong Q, et al. TIMP-1 promotes age-related renal fibrosis through upregulating ICAM-1 in human TIMP-1 transgenic mice. J Gerontol A Biol Sci Med Sci(2006)61:1130-1143.
    30. Melenhorst WB,van den Heuvel MC, Timmer A. et al. ADAM19 expression in human nephrogenesis and renal disease: associations with clinical and structural deterioration.Kidney Int (2006) 70:1269-1278.
    31. Mittaz L, Ricardo S, Martinez G, et al. Neonatal calyceal dilation and renal fibrosis resulting from loss of Adamts-1 in mouse kidney is due to a developmental dysgenesis. Nephrol Dial Transplant (2005) 20:419-423.
    32. Kitching AR, Kong YZ, Huang XR, et al. Plasminogen activator inhibitor-1 is a significant determinant of renal injury in experimental crescentic glomerulonephritis. J Am Soc Nephrol (2003) 14:1487-1495.
    33. Haraguchi M, Border WA, Huang Y, Noble NA.t-PA promotes glomerular plasmin generation and matrix degradation in experimental glomerulonephritis. Kidney Int (2001)59:2146-2155.
    34. Zhang G, Kernan KA. Collins SJ, et al. Plasmin(ogen) promotes renal interstitial fibrosis by promoting epithelial-to-mesenchymal transition: role of plasmin-activated signals. J Am Soc Nephrol (2007) 18:846-859.
    35. Hertig A, Berrou J, Allory Y, et al. Type 1 plasminogen activator inhibitor deficiency aggravates the course of experimental glomerulonephritis through overactivation of transforming growth factor beta. FASEB J (2003) 17:1904-1906.
    36. Skill NJ, Johnson TS, Coutts IG, et al. Inhibition of transglutaminase activity reduces extracellular matrix accumulation induced by high glucose levels in proximal tubular epithelial cells. J Biol Chem (2004) 279:47754-47762.
    37. Samuel CS, Hewitson TD. Relaxin in cardiovascular and renal disease. Kidney Int (2006)69:1498-1502.
    38. Seibold JR. Relaxins: lessons and limitations. Curr Rheumatol Rep (2002) 4:275-276.
    39. Negri AL. Prevention of progressive fibrosis in chronic renal diseases: antifibrotic agents. J Nephrol (2004) 17:496-503.
    40. Cosgrove D, Rodgers K, Meehan D, et al. Integrin alphalbetal and transforming growth factor-betal play distinct roles in alport glomerular pathogenesis and serve as dual targets for metabolic therapy. Am J Pathol (2000) 157:1649-1659.
    41. Couser WG, Ochi RF, Baker PJ, Schulze M,Campbell C, Johnson RJ. C6 depletion reduces proteinuria in experimental nephropathy induced by a nonglomerular antigen. J Am Soc Nephrol (1991) 2:894-901.
    42. Rangan GK, Pippin JW, Coombes JD, Couser WG. C5b-9 does not mediate chronic tubulointerstitial disease in the absence of proteinuria. Kidney Int (2005) 67:492-503.
    43. Boor P, Konieczny A, Villa L, et al. Complement c5 mediates experimental tubulointerstitial fibrosis. J Am Soc Nephrol (2007) 18:1508-1515.
    44. Wenderfer SE, Ke B, Hollmann TJ, Wetsel RA, Lan HY. Braun MC. C5a receptor deficiency attenuates T cell function and renal disease in MRLlpr mice. J Am Soc Nephrol (2005) 16:3572-3582.
    45. Lan HY, Nikolic-Paterson DJ. Mu W, Vannice JL, Atkins RC.Interleukin-1 receptor antagonist halts the progression of established crescentic glomerulonephritis in the rat. Kidney Int (1995) 47:1303-1309.
    46. Svensson M. Irjala H, Aim P, Holmqvist B, Lundstedt AC, Svanborg C. Natural history of renal scarring in susceptible mIL-8Rh-/- mice. Kidney Int (2005) 67:103-110.
    47. Mu W, Ouyang X. Agarwal A, et al. IL-10 suppresses chemokines, inflammation, and fibrosis in a model of chronic renal disease. J Am Soc Nephrol (2005) 16:3651-3660.
    48. Asadullah K, Sterry W. Volk HD. Interleukin-10 therapy-review of a new approach. Pharmacol Rev (2003) 55:241-269.
    49. Oldroyd SD, Thomas GL, Gabbiani G, El Nahas AM. Interferon-gamma inhibits experimental renal fibrosis. Kidney Int (1999) 56:2116-2127.
    50. Dogukan A, Akpolat N, Celiker H, Ilhan N, Halil Bahcecioglu I, Gunal AI. Protective effect of interferon-alpha on carbon tetrachloride-induced nephrotoxicity. J Nephrol (2003)16:81-84.
    51. Khan SB, Cook HT, Bhangal G, Smith J, Tarn FW, Pusey CD. Antibody blockade of TNF-alpha reduces inflammation and scarring in experimental crescentic glomerulonephritis. Kidney Int (2005) 67:1812-1820.
    52. Bongartz T. Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA (2006) 295:2275-2285.
    53. Ninichuk V, Gross O, Reichel C, et al. Delayed chemokine receptor 1 blockade prolongs survival in collagen 4A3-deficient mice with Alport disease. J Am Soc Nephrol (2005) 16:977-985.
    54. Lenda DM, Kikawada E, Stanley ER, Kelley VR. Reduced macrophage recruitment, proliferation, and activation in colony-stimulating factor-1-deficient mice results in decreased tubular apoptosis during renal inflammation. J Immunol (2003) 170:3254-3262.
    55. Panzer U, Thaiss F, Zahner G, et al. Monocyte chemoattractant protein-1 and osteopontin differentially regulate monocytes recruitment in experimental glomerulonephritis. Kidney Int (2001) 59:1762-1769.
    56. Sakai N, Wada T, Yokoyama H, et al. Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR7 signaling regulates fibrocytes in renal fibrosis. Proc Natl Acad Sci USA (2006) 103:14098-14103.
    57. Bottinger EP, Bitzer M. TGF-beta signaling in renal disease. J Am Soc Nephrol (2002) 13:2600-2610.
    58. Yu L, Border WA, Huang Y, Noble NA.TGF-beta isoforms in renal fibrogenesis.Kidney Int (2003) 64:844-856.
    59. Lan HY, Mu W, Tomita N, et al. Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol (2003) 14:1535-1548.
    60. Inazaki K, Kanamaru Y. Kojima Y. et al. Smad3 deficiency attenuates renal fibrosis. inflammation,and apoptosis after unilateral ureteral obstruction. Kidney Int (2004)66:597-604.
    61. Nagler A. Katz A, Aingorn H. et al. Inhibition of glomerular mesangial cell proliferation and extracellular matrix deposition by halofuginone. Kidney Int (1997) 52:1561-1569.
    62. Yang J, Zhang X, Li Y, Liu Y. Downregulation of Smad transcriptional corepressors SnoN and Ski in the fibrotic kidney: an amplification mechanism for TGF-betal signaling. J Am Soc Nephrol (2003) 14:3167-3177.
    63. Grygielko ET, Martin WM. Tweed C, et al. Inhibition of gene markers of fibrosis with a novel inhibitor of transforming growth factor-beta type I receptor kinase in puromycin-induced nephritis. J Pharmacol Exp Ther (2005) 313:943-951.
    64. Prakash J, Sandovici M, Saluja V, et al. Intracellular delivery of the p38 mitogen-activated protein kinase inhibitor SB202190 [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)lH-imidazole] in renal tubular cells:a novel strategy to treat renal fibrosis. J Pharmacol Exp Ther (2006) 319:8-19.
    65. Schaefer L, Macakova K, Raslik I, et. al. Absence of decorin adversely influences tubulointerstitial fibrosis of the obstructed kidney by enhanced apoptosis and increased inflammatory reaction. Am J Pathol (2002) 160:1181-1191.
    168. Zeisberg M, Shah AA, Kalluri R. Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. J Biol Chem (2005) 280:8094-8100.
    66. Li T. Surendran K, Zawaideh MA, Mathew S, Hruska KA. Bone morphogenetic protein 7: a novel treatment for chronic renal and bone disease. Curr Opin Nephrol Hypertens (2004) 13:417-422.67. Lin J, Patel SR, Cheng X, et al. Kielin/chordin-like protein, a novel enhancer of BMP signaling, attenuates renal fibrotic disease. Nat Med (2005) 11:387-393.
    68. Yanagita M. Modulator of bone morphogenetic protein activity in the progression of kidney diseases. Kidney Int (2006) 70:989-993.
    69. Herrero-Fresneda I, Torras J, Franquesa M, et al. HGF gene therapy attenuates renal allograft scarring by preventing the profibrotic inflammatory-induced mechanisms. Kidney Int (2006) 70:265-274.
    70. Mizuno S, Kurosawa T, Matsumoto K, Mizuno-Horikawa Y, Okamoto M, Nakamura T. Hepatocyte growth factor prevents renal fibrosis and dysfunction in a mouse model of chronic renal disease. J Clin Invest (1998) 101:1827-1834.
    71. Takayama H, LaRochelle WJ, Sabnis SG, Otsuka T, Merlino G. Renal tubular hyperplasia, polycystic disease, and glomerulosclerosis in transgenic mice overexpressing hepatocyte growth factor/scatter factor. Lab Invest (1997) 77:131-138.
    72. Jiang WG, Martin TA, Parr C, Davies G, Matsumoto K, Nakamura T. Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. Crit Rev Oncol Hematol (2005) 53:35-69.
    73. van Nieuwenhoven FA, Jensen LJ, Flyvbjerg A, Goldschmeding R. Imbalance of growth factor signalling in diabetic kidney disease: is connective tissue growth factor (CTGF, CCN2) the perfect intervention point? Nephrol Dial Transplant (2005) 20:6-10.
    74. Burns WC. Twigg SM, Forbes JM. et al. Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition: implications for diabetic renal disease. J Am Soc Nephrol (2006) 17:2484-2494.
    75. Kang DH. Hughes J, Mazzali M, Schreiner GF. Johnson RJ. Impaired angiogenesis in the remnant kidney model:Ⅱ.Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J Am Soc Nephrol (2001) 12:1448-1457.
    76. Hara A, Wada T, Furuichi K. et al. Blockade of VEGF accelerates proteinuria. via decrease in nephrin expression in rat crescentic glomerulonephritis. Kidney Int (2006) 69:1986-1995.
    77. Schrijvers BF. Flyvbjerg A. Tilton RG. Rasch R, Lameire NH,De Vriese AS. Pathophysiological role of vascular endothelial growth factor in the remnant kidney. Nephron Exp Nephrol (2005) 101:e9-e15.
    78. Herbst RS. Toxicities of antiangiogenic therapy in non-small-cell lung cancer. Clin Lung Cancer (2006) 8(Suppl 1):S23-S30.
    79. Floege J, Eitner F, Alpers CE. A new look at platelet-derived growth 80. Taneda S, Hudkins KL, Topouzis S, et al. Obstructive uropathy in mice and humans:potential role for PDGF-D in the progression of tubulointerstitial injury. J Am Soc Nephrol(2003) 14:2544-2555.
    81. Wang S, Wilkes MC, Leof EB, Hirschberg R. Imatinib mesylate blocks a non-Smad TGF-beta pathway and reduces renal fibrogenesis in vivo. FASEB J (2005) 19:1-11.
    82. Berman E, Nicolaides M, Maki RG, et al. Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med (2006) 354:2006-2013.
    83. Strutz F, Zeisberg M, Hemmerlein B, et al. Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation.Kidney Int (2000) 57:1521-1538.
    84. Rossini M, Cheunsuchon B, Donnert E, et al. Immunolocalization of fibroblast growth factor-1 (FGF-1), its receptor (FGFR-1), and fibroblast-specific protein-1 (FSP-1) in inflammatory renal disease. Kidney Int (2005) 68:2621-2628.
    85. Francois H, Placier S, Flamant M, et al. Prevention of renal vascular and glomerular fibrosis by epidermal growth factor receptor inhibition. FASEB J (2004) 18:926-928.
    86. Lautrette A, Li S, Alili R, et al. Angiotensin Ⅱ and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med (2005) 11:867-874.
    87. Peters H, Daig U, Martini S, et al. NO mediates antifibrotic actions of L-arginine supplementation following induction of anti-thyl glomerulonephritis. Kidney Int (2003)64:509-518.
    88. Rangan GK, Wang Y, Harris DC. Pharmacologic modulators of nitric oxide exacerbate tubulointerstitial inflammation in proteinuric rats. J Am Soc Nephrol (2001) 12:1696-1705.
    89. Hochberg D, Johnson CW, Chen J, et al. Interstitial fibrosis of unilateral ureteral obstruction is exacerbated in kidneys of mice lacking the gene for inducible nitric oxide synthase. Lab Invest (2000) 80:1721-1728.
    90. Forbes MS, Thornhill BA, Park MH, Chevalier RL. Lack of endothelial nitric-oxide synthase leads to progressive focal renal injury. Am J Pathol (2007) 170:87-99.
    91. Tamada S. Asai T, Kuwabara N, et al. Molecular mechanisms and therapeutic strategies of chronic renal injury: the role of nuclear factor kappaB activation in the development of renal fibrosis. J Pharmacol Sci (2006) 100:17-21.
    92. Nagatoya K, Moriyama T, Kawada N. et al. Y-27632 prevents tubulointerstitial fibrosis in mouse kidneys with unilateral ureteral obstruction. Kidney Int (2002) 61.1684-1695. 93.Lai A, Frishman WH. Rho-kinase inhibition in the therapy of cardiovascular disease.Cardiol Rev (2005) 13:285-292.
    94. Little MH. Regrow or repair: potential regenerative therapies for the kidney. J Am Soc Nephrol (2006) 17:2390-2401.
    95. Ninichuk V, Gross O, Segerer S, et al. Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. Kidney Int (2006) 70:121-129.
    96. Broekema M, Harmsen MC, van Luyn MJ. et al. Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats. J Am Soc Nephrol (2007) 18:165-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700