用户名: 密码: 验证码:
中国西南喀斯特瀑布苔藓植物的生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喀斯特瀑布(Karst waterfalls)是独特的生态系统之一,具有其特殊的生态学、地质学和环境学意义。中国西南是世界上喀斯特瀑布分布数量最集中、类型最多和经济价值最大的区域之一。瀑布生物喀斯特沉积景观是一批世界自然遗产、国家级风景名胜区及自然保护区的重要组成成分,如贵州的黄果树瀑布群、四川的九寨沟瀑布群和黄龙瀑布群、云南的罗平九龙瀑布群和广西的德天瀑布等,具有重要研究价值。
     本文以中国西南典型喀斯特瀑布为代表,采用生态学、植物地理学、喀斯特学和沉积学多学科交叉的理论和方法,于2004年10月至2007年8月,对86个喀斯特瀑布苔藓植物进行了较系统的野外调查,行程约3.6万公里,共采集样品和标本2100份;对黔中6种苔藓生长速度进行了为期两年的野外定点观测;利用A Analyst 800原子吸收光谱仪和AF-640原子荧光光谱仪对8种苔藓和水体中7种金属元素含量进行了分析;比较了中国西南和西欧喀斯特瀑布中分布的苔藓群落组成特征。
     结果如下:
     1)依据水源特征并结合喀斯特地貌特点,提出了一个新的喀斯特瀑布分类系统。将该区喀斯特瀑布划分为2大类型、4个亚类型和12个小类型,并揭示了其地理分布规律性。
     2)该区域瀑布苔藓植物共有34科92属248种(含变种亚种)。依据各物种分布频度,结果表明罕见种占54.03%、稀见种占32.66%、偶见种占6.86%、频见种占4.43%和常见种占2.02%。该区苔藓地理成分为热带亚洲成分占20.97%、泛热带成分占1.21%、热带亚洲至热带非洲成分占1.21%、东亚成分占19.35%、北温带成分占20.57%、东亚和北美洲际间断成分占1.61%、旧世界温带成分占1.21%、温带亚洲成分占4.03%、中国特有占14.5%和世界广布种占15.32%。
     3)依据对钙的适应性能力的高低,可将苔藓植物划分钙华苔藓、喜钙苔藓和广幅苔藓等3种适钙生态类群,报道了中国钙华苔藓38种。发现瀑布区苔藓营养繁殖普遍,孢子体罕见,雌雄异株的种类占总数的81.45%等特点。苔藓适应瀑布沉积环境,植物体形态上相应出现了绿色生长区、半钙化区、钙化区和石化区等分化。植物体钙化和石化的结果,增强了苔藓适应瀑布富钙、高速沉积和高速冲击力的激流环境的能力。
     4)黔中6种苔藓植物配子体地上部分年均生长速度是:大叶风尾藓是1.283cm/yr、狄氏石灰藓是2.072cm/yr、威氏石灰藓是2.35cm/yr、钩喙净口藓是1.76cm/yr、橙色净口藓是0.883cm/yr和牛角藓是1.56cm/yr。苔藓植物的生长速度因种类不同及生长季节有差异。
     5)在喀斯特瀑布中生长的苔藓植物体内金属元素含量普遍比较高,含量的顺序与水体中的顺序基本一致。不同物种植物体对金属元素的吸收、富集却有较大的差异。根据8种苔藓对瀑布水体中不同金属元素的富集作用的差异可划分为4组:大叶石灰藓和东亚泽藓对Zn和Ca超强烈富集;橙色净口藓和湿原藓对Zn和Cu超强烈富集:狄氏石灰藓和牛角藓对Zn超强烈富集;仰叶藓和大叶风尾藓对Cu、Pb和Zn等三种元素超强烈富集。
     6)中国西南18个喀斯特瀑布中,共有30种苔藓植物群落,由12科27属61种组成;而西欧18个喀斯特瀑布中,仅有28种苔藓植物群落,由15科24属33种组成。尽管两地代表性的群落略有差异,但总体上拥有许多相似的特征,如生活型和生态分布类型等。
     7)根据水流和地貌特点,划分中国西南喀斯特瀑布苔藓沉积物为4大生态沉积类型;新报道了16种苔藓喀斯特生态沉积小类型。
     8)提出了喀斯特瀑布沉积生境中急需保护的20种苔藓物种建议名单。
Karst waterfalls are one of the special ecosystems that interest ecologists, geologists and environmental scientists. China is one of countries in the world with thousands of karst wa- terfalls of different types and economic importance. The landscapes of karst waterfalls are important for a lot of world heritage sites, national natural reserves and national scenic spots in southwestern China, for example, Huangguoshu Waterfalls in Guizhou, Jiuzhaigou Waterfalls and Huanglong Waterfalls in Sichuan, Nine-Dragon Waterfalls in Yunnan and Detian Waterfalls in Guangxi. All of them are important for biodiversity conservation, tourism and basic science research.
     From October 2004 to August 2007, many surveys were conducted in the karst area of southwestern China. About 2100 samples and specimens were collected from 86 active karst waterfalls. The growth rates of six aquatic mosses were measured at eight karst water- falls in the field from August 2005 to August 2007. By means of Atomic Absorption Spectrometry (A Analyst 800) and Atomic Fluorescence Spectroscopy (AF-640), contents of seven metal elements of eight mosses and water samples were analysed from eight karst waterfalls in Guizhou Province. To understand the general features of aquatic bryophyte communities of karst waterfalls, we made a comparison of bryophyte communities of 36 karst waterfalls from southwestern China and western Europe.
     Major results are summarised as follows:
     1) Based on a series of investigations for 86 karst waterfalls in southwestern China, a classification system of karst waterfalls was proposed. According to the characteristics of karst water sources and karst landforms, karst waterfalls were divided into two types, and subdivided into four subtypes and further into twelve small types. Distribution and features of karst waterfalls were discussed.
     2) The bryoflora of karst waterfalls consisted of 248 species (including varieties and subspecies) in the southwestern China, which belong to 92 genera and 34 families. Five occurrence frequencies of bryophytes in karst waterfalls were distinguished: very rare species (134 taxa, 54.03%), rare species (81 taxa, 32.66%), frequent species (11 taxa, 4.43%), occasional species (17 taxa, 6.86%) and common species (5 taxa, 2.02%). The phytogeo-graphical elements of the bryoflora included Tropical Asian (20.97%), Pantropical (1.21 %), Tropic Asian to Tropic African (1.21%), East Asian (19.35%), North Temperate (20.57%), East Asian and North America disjuncted ( 1.61% ), Old World Temperate (1.21%), Temperate Asian elements (4.03%), Endemics to China(14.5%) and Cosmopolitans (15.32%).
     3) According to the differences of bryophytes in ecological adaptation to calcite ions, three ecological groups were identified: travertine bryophytes (38 taxa, 15.32 % ), calciphilous bryophytes(98 taxa, 39.52 %) and eurytopic bryophytes (112 taxa, 45.16%). Vegetative propagations of bryophytes were common while sporophytes with capules were very rare. The reproductive systems consisted of five types, dioecious taxa accounted for 81.45%. Interestingly, we found that there were four different areas in shoots of mosses that might be associated with ecological adaptation, i.e., green growth area, half-calcification area, calcification area and petrification area. Calcification and petrification of shoots allow bryophytes to be successful competitors in harsh environments characterised by fast water flow, rich calcite and rapid deposition.
     4) Growth rates were obtained for six mosses from eight karst waterfalls every month in Guizhou province from August 2005 to August 2007. The estimated rates per annum were as follows: Fissidens grandifrons 1.283 cm, Hydrogonium dixonianum 2.072 cm, H, williamsii 2.35 cm, Gymnostomum recurvirostre 1.76 cm, G aurantiacum 0.883 cm, Cra-toneuron filicinum 1.56 cm. The results were discussed with reference to karst depo si- tion, water chemistry and water flow rate. Seasonal patterns of growth of six moss species were investigated in field, and significant differences in relative growth rate were observed between species.
     5) The results showed that the element contents in plants were higher, and that the element contents in plants were related to those in water. Moreover, the capacities to absorb and enrich elements varied among bryophytes. We found that Hydrogonium majusculum and Philonotis turneriana had strong ability to enrich Zn and Ca, Gymnostomum aurantiac- um and Calliergon cordifolium Zn and Cu, Hydrogonium dixoniana and Cratoneuron filicinum Zn, and Reimersia inconspicua and Fissidens grandifrons Cu, Pb and Zn. Therefore, our results suggest that these bryophytes may have ecological tolerance of different metal elements in water from karst waterfall in the area, hence can be used as indicators of metal contamination.
     6) Comparative studies of characteristics of bryophyte communities were conducted between 18 karst waterfalls in southwestern China and 18 karst waterfalls in western Europe. We found that 30 aquatic bryophyte communities consisted of 61 taxa belonging to 27 genera and 12 families in China, whereas 28 aquatic bryophyte communities consisted of only 33 taxa belonging to 24 genera and 15 families in Western Europe. Although there were some differences in typical bryophyte communities, we found common features of southwestern China and western Europe, including life-forms and ecological distribution types of bryophyte communities.
     7) A new classification for bryoliths associated with karst waterfalls was proposed. According to the features of environmental factors and bryophyte communities, four ecological types (stream waterfall deposition, river waterfall deposition, dam deposition and cave deposition ) and 16 subtypes of biokarst depositions associated with bryophytes could be distinguished.
     8) From the viewpoint of biodiversity conservation of bryophytes in the karst area, 20 bryophyte taxa were suggested to be priority species for biodiversity conservation at karst waterfalls in southwstern China, i.e., Fissidens grandifrons Brid., Hydrogonium dixonianum Chen, H. majusculum (C. Muell.) Chen, H. gracileutum (Mitt.) Chen, H. consguireum (Thwait et Mitt.) Hilp., H. setschwanicum (Broth.)Chen, H. williamsii Chen, Gymnostomum recurvirostrum Hedw., G subridulum (Broth) Chen, G aurantiacum(Mitt.)Jaeg., G aeruginosum Sm, Anoectangium clarum Mitt., Cratoneuron filicinum (Hedw.) Spruce., Palustriella commutata (Hedw.) Ochyra, P. falcata (Brid.) Hedenas, Philonotis calcarea (B.S.G) Schimp., P. turneriana (Schwaegr.) Mitt., Bryum pseudotriquetrum (Hedw.) Gaerth, Barbula tophacea (Brid.) Mitt. and Cyathodium cavernarum Kunze.
引文
[1]Allorges P.Les associatisus vegetales du vetis,Franch[J].Review Generde Botanique,Paris,1921,33:481-544.
    [2]Bates JW,Farmer AM.(eds.)Bryophytes and Lichens in a Changed Environments[M].Oxford,Clarendon Press,1992.
    [3]Bates JW.Is 'life-form' a useful concept in bryophyte ecology[J]? Oikos,1998,82:223-237.
    [4]Bates JW,Ashton NW,Duckett JG.(eds.)Bryology for the Twenty-first Century[M].Leeds,Maney Publishing and the British Bryological Society,UK.1998.
    [5]Bergamini A,Pauli D,Peintinger M,et al.Relationships between productivity,number of shoots and number of species in bryophytes and vascular plants[J].The Journal of Ecology,2001,89:920-929.
    [6]Bleuel C,Wesenberg D,Sutter K,et al.The use of the aquatic moss Fontinalis antipyretica L.ex Hedw.as a bioindicator for heavy metals 3.Cd2+ accumulation capacities and biochemical stress response of two Fontinalis species[J].The Science of the Total Environment,2005,345:13-21.
    [7]Bnms I,Friese K,Markert B,et al.The use of Fontinalis antipyretica L.ex Hedw.as a bioindicator for heavy metals.2.Heavy metal accumulation and physiological reaction of Fontinalis antipyretica L.ex Hedw.in active biomonitoring in the River Elbe[J].The Science of the Total Environment,1997,204:161-176.
    [8]Branner JC.The origin of travertine falls and reefs[J].Science,1901,14:184-185.
    [9]Brassard GR.Mosses associated with waterfalls in central Labrador,Canada[J].The Bryologist,1972,75:516-535.
    [10]Burger B.Facts about Slovenia waterfalls-slapovi[EB/OL].Http://www.burger.si/factsabout.htm,[2007-10-1].
    [11]Callaghan TV,Carlsson BA,Sonesson M,et al.Between-year variation in climate- related growth of circumarctic populations of the moss Hylocomium splendens[J].Functional Ecology,1997,11:157-165.
    [12]Casas JJ,Gessner MO.Leaf litter breakdown in a Mediterranean stream characterized by travertine precipitation[J].Freshwater Biology,1999,41:781-793.
    [13]Cesa M,Bizzotto A,Ferraro C,et al.Assessment of intermittent trace element pollution by moss bags[J].Environmental Pollution,2006,144:886-892.
    [14]Chapman P.Caves and Cave life[M].London,Harper Collins Publishers,1993
    [15]Cullingford CHD.An Introduction to Speleogy[M].London,Routledge and Kegan Paul Ltd.,1953.
    [16]Chen JG,Zhang DD,Wang SJ,et al.Factors controlling tufa deposition in natural waters at waterfall sites[J].Sedimentary Geology,2004,166:353-366.
    [17]Chopra RN,Bhatla SC.(eds.)Bryophyte Development:Physiology and Biochemistry[M].Boca Raton:CRC Press,1990:139-166.
    [18]Claveri B,Gukrold F,Pihan JC.Use of transplanted mosses and autochthonous liverworts to monitor trace metals in acidic and non-acidic headwater streams(Vosges mountains,France)[J].The Science of the Total Environment,1995,175:235-244.
    [19]Crosby MR,Magill RE,Allen B,et al.A Checklist of the Mosses[M].St.Louis:Missouri Botanical Garden,1999.
    [20]Crosby MR,Magill RE.Index of Mosses.1999-2001[M].St.Louis:Missouri Botanical Garden Press,2004.
    [21]Corley MFV,Crundwell AC,Dull R,et al.Mosses of Europe and the Azores:an annotated list of species,with synonyms from the recent literature[J].Journal of Bryology,1981,11:609-689.
    [22]Cronberg N,Natcheva R,Hedlund K.Microarthropods mediate sperm transfer in mosses[J].Science,2006,313:1255.
    [23]Crum H.Structural Diversity of Bryophytes[M].Ann Arbor,University of Michigan Herbarium,2001.
    [24]Crum H.Mosses of the Great Lakes forest(Fourth edition)[M].Ann Arbor,The University of Michigan Herbarium,2004.
    [25]Crum HA,Anderson LE.Mosses of Eastern North America[M].New York,Columbia University Press,1981.
    [26]Dalby DH.The growth of Eucladium verticillatum in a poorly illuminaeced cave[J].Reuve.Bryologique et Lichenologique,1966,34:288-301.
    [27]Deacon JR,Spahr NE,Mize SV,et al.Using water,bryophytes,and macroinverteb -rates to assess trace element concentrations in the Upper Colorado River Basin[J].Hydrobiologia,2001,455:29-39.
    [28]Downing AJ.Distribution of bryophytes on limestomes in eastern Australia[J].Bryologist,1992,95:5-14.
    [29]Downing AJ,Selkirk PM.Bryophytes on the calcareous soils of Mongo National Park,an arid area of southern central Australia[J].Great Basin Naturalist,1993,53:13-23.
    [30]Downing A,Oldfield R.Limestone Mosses[J].Nature Australia,2001-2002,27:54-61.
    [31]Downing A,Oldfield R.Botanists and Mosses at Jenolan Caves.Australasian Cave & Karst Management Association Journal,2002,46:20-21.
    [32]Downing A,Oldfield R,Fairbairn-Wilson E.Mosses,liverworts and hornworts of Mount Canobolas,New South Wales[J].Cunninghamia,2002,7:527-537.
    [33]Drysdale R,Gale SJ.The Indarri Falls travertine dam,Lawn Hilt Creek,northwest Queensland,Australia[J].Earth Surface Processes and Landforms,1997,22:413-418.
    [34]Dudgeon D.The ecology of tropical Asian rivers and streams in relation to biodiversity conservation[J].Annual Review of Ecology and Systematics,2000,31:239-263.
    [35]During HJ.Ecological classification of bryophytes and lichens[A].In:Bates JW,Farmer AM.(eds.)Bryophytes and Lichens in a Changed Environments.Oxford:Clarendon Press,1992,1-31.
    [36]During HJ.Life strategies of bryophytes:a preliminary review[J].Lindbergia,1979,5:2-18.
    [37]During HJ,Tooren BFV.Recent developments in bryophyte population ecology[J].Trends in Ecology and Evolution,1987,2:89-93.
    [38]During HJ.Endangered bryophytes in Europe[J].Trends in Ecology and Evolution,1992,7:253-255.
    [39]EEC.Habitats Directive 92/43/EEC-Annex I habitats.Petrifying springs with tufa formation(Cratoneuron)[M].EEC,1992.
    [40]Edward S.Travertine deposits near Lexington,Virginia[J].Science,1934,80:162-163.
    [41]Edwards SR.English names for British bryophytes(2nd edition)[M].Cardiff:British Bryological Society Special Volume 5,1999.
    [42]Emeis KC,Richnow HH,Kempe S.Travertine formation in Plitvice National Park:chemical versus biological control[J].Sedimentology,1987,34:595-610.
    [43]Emig WH.The travertine deposits of the Arbuckle Mountains Oklahoma,with reference to the plant agencies concerned in their formation[J].Bulletin of the Oklahoma Geological Survey,1917,29:9-75.
    [44]Emig WH.Mosses as rock builders[J].The Bryologist,1918,21:25-27.
    [45]Ennos RA.Population genetics of bryophytes[J].Trends in Ecology and Evolution,1990,5:38-39.
    [46]Field MH.Plant macrofossils from the lower channel sediments at Marsworth,Buckinghamshire[J].New Phytologist,1993,123:195-201.
    [47]Figueira R,Ribeiro T.Transplants of aquatic mosses as biomonitors of metals released by a mine effuent[J].Environmental Pollution,2005,136:293-301.
    [48]Ford TD,Pedly HM.A review of tufa and travertine deposits in the world[J].Earth Sciences Reviews,1996,41:117-175.
    [49]Ford D,Williams WP.Karst Geomorphology and Hydrology[M].London,Unwin Hyman Ltd.,1989.
    [50]Furness SB,Grime JP.Growth rate and temperature responses in bryophytes:Ⅰ.An investigation of Brachythecium rutabulum[J].The Journal of Ecology,1982a,70:513-523.
    [51]Furness SB,Grime JP.Growth rate and temperature responses in bryophytes:Ⅱ.A comparative study of species of contrasted ecology[J].The Journal of Ecology,1982b,70:525-536.
    [52]Grime J.Bryophyte Ecology[M].Michigan:Michigan Technological University,2006.
    [53]Grolle R.Nomina generica hepaticarum,references,types and synonymies[J].Acta Botanica Fennica,1983,121:1-62.
    [54]Grolle R,Long DG.Annotated checklist of the Hepaticae and Anthocerotae of Europe and Macaronesia[J].Journal of Bryology,2000,22:103-140.
    [55]Hamilton ES.Bryophyte life forms on slopes of contrasting exposures in central New Jersey[J].Bulletin of the Torrey Botanical Club,1953,80:264-272.
    [56]Hattaway RA.The calciphilous bryophytes of three limestone sinks in eastern Tennessee[J].The Bryologist,1980,83:161-169.
    [57]Heckman DS,Geiser DM,Eidell BR,et al.Molecular evidence for the early colonization of land by fungi and plants[J].Science,2001,293:1129-1133.
    [58]Heimann A,Sass E.Travertines in the northern Hula Valley,Israel[J].Sedimentology,1989,36:95-108.
    [59]Hill MO,Bell N,Bruggeman-Nannenga MA,et al.An annotated checklist of the mosses of Europe and Macaronesia[J].Journal of Bryology,2006,28:198-267.
    [60]Hill MO,Preston CD,Smith AJE.Atlas of the bryophytes of Britain and Ireland,Volume 1,Liveworts(Hepaticae and Anthocerotae)[M].Colchester,Harley Books,1991.
    [61]Hill MO,Preston,CD,Smith AJE.Atlas of the bryophytes of Britain and Ireland,Volume 2,Mosses(except Diplolepideae)[M].Colchester,Harley Books,1992.
    [62]Hill MO,Preston CD,Smith AJE.Atlas of the bryophytes of Britain and Ireland,Volume 3,Mosses(Diplolepideae)[M].Colchester,Harley Books,1994.
    [63]Holden C.Moss Bank[J].Science,2003,301:1842.
    [64]Hong Q,Peter S,White PS,et al.Phytogeographical and Community Similarities of Alpine Tundras of Changbaishan Summit,China,and Indian Peaks,USA[J].Journal of Vegetation Science,1999,10:869-882.
    [65]Hongve D,Brittain JE,Bjrnstad HE.Aquatic mosses as a monitoring tool for 137Cs contamination in streams and rivers Field study from central southern Norway[J].Journal of Environmental Radioactivity,2002,60:139-147.
    [66]Holz I,Gradstein SR.Phytogeography of the bryophyte floras of oak forests and paramo of the Cordillera de Talamanca,Costa Rica[J].Journal of Biogeography,2005,32:1591-1609.
    [67]Hudson BJ.Waterfalls resources for tourism[J].Annals of Tourism Research,1998,25:958-973.
    [68]Hudson BJ.The experience of Waterfalls[J].Australia Geographical Studies,2000,38:71-84.
    [69]Iwatsuki Z,Hattori S.Studies of the epiphytic moss flora of Japan,18.The bryophyte communities in the broad-leaved evergreen forests of Hanaze,southern Kyushu[J].Journal of Hattori Botanical Laboratory,1968,31:189-197.
    [70]Jackson DL,McLeod CR(eds.)Handbook on the UK Status of EC Habitats Directive Interest Features:Provisional Data on the UK Distribution and Extent of Annex Ⅰ Habitats and the UK Distribution and Population Size of Annex Ⅱ species(Revised)[M].UK,JNCC Report 312,2002.
    [71]Kallio P.A task for ecologists around waterfalls in Labrador-Ungava[J].Science,1969,166:1598-1601
    [72]Kenrick P,Crane PR.The origin and early evolution of plants on land[J].Nature,1997,389:33-39.
    [73]Leslie M.Of moss and men[J].Science,2004,303:935.
    [74]LeGrand HE.Hydrological and Ecological Problems of Karst Regions[J].Science,1973,179:859-864.
    [75]Liu ZH,Svenssen U,Dreybrodt W,et al.Hydrodynamic control of inorganic calcite precipitation in Hunaglong Ravine,China:Field measurements and theoretical prediction of deposition rates[J].Geochimica et Cosmochimica Acta,1995,59:3087-3097.
    [76]Longton RE.Vegetation ecology and classification in the maritime Antarctic zone[J].Canadian Journal of Botany,1979,57:2264-2278.
    [77]Longton RE.The biology of polar bryophytes and lichens[M].Cambridge,Cambridge University Press,1988.
    [78]Longton RE(eds.)Advances in Bryology,Band 6:Population Studies[M].Stuttgart,Germany,1997.
    [79]Longton RE,Greene SW.Plant and invertebrate physiology.The growth and reproduction of Polytrichum alpestre Hoppe on South Georgia[J].Philosophical Transactions of the Royal Society of London.Series B,1967,252:295-322.
    [80]Magdefrau K.Life-forms of bryophytes[A].In:Smith(eds.)Bryophyte Ecology.London,Chapman and Hall,1982:45-58.
    [81]Magdefrau K.Palabiologie der Pflanzen[M].Jena,1956.
    [82]Marker M.Waterfall tufas:a facet of karst geomorphology in South Africa[J].Zeitschrift fur Geomorphologie,1971,12:138-152.
    [83]Marks JC,Parnell R,Carter C,et al.Interactions between geomorphology and ecosystem processes in travertine streams:Implications for decommissioning a dam on Fossil Creek,Arizona[J].Geomorphology,2006,77:299-307.
    [84]Markowska J.The origins of the Plitvice Lakes(Croatia)[J].Miscellanea Geographica,2004,11:93-99.
    [85]Mersch J,Reichard M.In Situ investigation of trace metal availability in indus- trial effluents using transplanted aquatic mosses[J].Archives of Environmental Contamination and Toxicology,1998,34:336-342.
    [86]Merz-Prei M,Riding R.Cyanobacterial tufa calcification in two freshwater streams:ambient environment,chemical thresholds and biological processes[J].Sedimentary Geology,1999,126:103-124.
    [87]Mohamed MAH.The limestone moss flora of Malaya[J].Symposia Biological Hungarica,1987,35:649-663.
    [88]Moxley EA.Beside a Waterfall[J].The Bryologist,1927,30:57-58.
    [89]Munoz J,Felicsimo AM,Cabezas F,et al.Wind as a long-distance dispersal vehicle in the southern Hemisphere[J].Science,2004,304:1144-1147.
    [90]Nagano Ⅰ.Comparative studies of mosses vegetation developing on the limestone,chert and other rocks lying adjacent to each other in the Chichibu Mountain area,central Japan[J].Journal of Hattori Botanical Laboratory,1969,32:155-203.
    [91]Nagano Ⅰ.On the relations of the chemical composition of some mosses to their substrate rocks[J].Journal of Hattori Botanical Laboratory,1972,35:391-398.
    [92]Nakanishi K.Vegetational diversity of bryophyte communities in relation to environmental gradients[J].Journal of Hattori Botanical Laboratory,2002,92:711-224.
    [93]Nimis PL,Fumagalli F,Bizzotto A,et al.Bryophytes as indicators of trace metals pollution in the river Brenta(NE Italy)[J].The Science of the Total Environment,2002,286:233-242.
    [94]Noguchi A.Illustrated moss flora of Japan.Part 1[M].Nichinan,Hattori Botanical Laboratory,1987:242.
    [95]Noguchi A.Illustrated moss flora of Japan,Part 2[M].Nichinan,Hattori Botanical Laboratory,1988:491.
    [96]Noguchi A.Illustrated moss flora of Japan,Part 3[M].Nichinan,Hattori Botanical Laboratory,1989:493-742.
    [97]Noguchi A.Illustrated moss flora of Japan,Part 4[M].Nichinan,Hattori Botanical Laboratory,1991:743-1012.
    [98]Noguchi A.Illustrated moss flora of Japan,Part 5[M].Nichinan,Hattori Botanical Laboratory,1994:1013-1253.
    [99]Nott J,Price D.Waterfalls,floods and climate change:evidence from tropical Australia[J].Earth and Planetary Science Letters,1999,171:267-276.
    [100]Palmer MW.Pattern in corticolous bryophyte communities of the North Carolina Piedmont:Do mosses see the forest or the Trees[J].The Bryologist,1986,89:59-65.
    [101]Parihar NS,Pant GB.Bryophytes as rock-builders-some calcicole mosses and liverworts associated with travertine formation at Sahasadhara,Dehra Dun[J].Current Science,1975,44:61-62.
    [102]Parihar NS,Pant GB.Bryophytes as rock builders(Ⅰ)-bryophytic communities associated with traveertine formation at Sahasradhara,Dehra Dun.[A].In:Nautiyal DD(eds.)Phyta.Studies on Living and Fossil Plants,Plant Comm.,1982,277-295.
    [103]Paton JA.The liverwort flora of the British Isles[M].Colchester,Harley Books,1999.
    [104]Pant G,Tewari SD.An assessment of bryophytic vegetation of Naini Tal and Environs-Ⅱ[J].Journal of the Indian Botanical Society,1988,67:285-296.
    [105]Pavlovi G,Zupani J,Prohi E,et al.Impressions of the Biota Associated With Waterfalls and Cascades from a Holocene Tufa in the Zrmanja River Canyon,Croatia[J].Geologia Croatica,2002,55:25-37.
    [106]Pedley HM.Classification and environmental models of cool freshwater tufas[J].Sedimentary Geology,1990,68:143-154.
    [107]Pentecost,A.1987.Some observation on the growth rates of mosses associated with tufa and the interpretation of some postglacial bryoliths[J].Journal of Bryology,1987, 14: 543-550.
    [108] Pentecost A. Moss growth and travertine deposition : the significance of photosynthesis, evaporation and degassing of carbon of carbon dixode [J]. Journal of Bryology, 1996,19: 229-234.
    [109] Pentecost A. The Quaternary travertine deposits of Europe and Asia Minor [J]. Quaternary Science Reviews, 1995,14:1005-1028
    [110] Pentecost A, Zhang ZH. A review of Chinese travertines [J]. Cave Karst Science, 2001,28:15-28.
    [111] Pentecost A, Zhang ZH. Bryophytes from some travertinedepositing sites in France and the U.K.: relationships with climate and water chemistry [J]. Journal of Bryology, 2002,24: 233-241.
    [112] Pentecost A, Zhang ZH. Response of bryophytes to exposure and water availability on some European travertines [J]. Journal of Bryology, 2006,28: 21-26.
    [113] Pentecost A, Zhang ZH. The travertine flora of Juizhaigou and Munigou, China, and its relationship with calcium carbonate deposition [J]. Cave Karst Science, 2000, 27: 71-78
    [114] Piippo S. Annotated catalogue of Chinese Hepaticae and Anthocerotae [J]. Journal of Hattori Botanical Laboratory, 1990,68:1-192.
    [115] Qiu YL, Cho YR, Cox JC, et al. The gain of three mitochondrial introns identifies liverworts as the earliest land plants [J]. Nature, 1998,394: 671-674
    [116] Raghoebarsing AA, Alfons JP, Smolders AJP, et al. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs [J]. Nature, 2005,436:1153-1156.
    [117] Richardson DHS. The Biology of Mosses [M]. Oxford: Blackwell Scientific Publications, 1981.
    [118] Richard H, Beisel J. International waterfall classification system [M]. Outskirts Press, 2006.
    [119] Redfearn PL, Tan BC, He S. A new updated and annotated checklist of Chinese mosses [J]. Journal of Hattori Botanical Laboratory, 1996,79:163-357.
    [120] Richards PW. Ecology [A]. In: Fr. Verdoorn (eds.) Manual of Bryology. The Hague, 1932: 367-395.
    [121] Rincon E, Grime JP. An analysis of seasonal patterns of bryophyte growth in a natural habitat [J]. The Journal of Ecology, 1989,77: 447-455.
    [122] Russell S. Measurement of bryophyte growth [1. Biomass (Harvest) techniques] [A]. In: Glime JM(eds.) Methods in Bryology. Proc. Bryol. Meth. Workshop, Mainz. 1988: 249-257.
    [123] Samecka-Cymerman A, Kolon K, Kempers AJ. Heavy Metals in Aquatic Bryophytes from the Ore Mountains (Germany).Ecotoxicology and Environmental Safety [J]. Environmental Research, Section B, 2002,52: 203-210.
    [124] Samecka-Cymerman A, Kempers AJ. Comparison between natural background concentrations of heavy metals in bryophytes from the Sudety Mts. and Swiss Alps [J]. Chemosphere, 1998,36: 2661-2671.
    [125] Schuster RM. (eds.) New Manual of Bryology, Vol. 1 [M]. Nichinan: Hattori Botanical Laboratory, Japan, 1983.
    [126] Schofield WB. Introduction to bryology [M]. New York: Macmillan Publishing Co., 1985.
    [127] Schuster RA. The Hepaticae and Anthocerotae of north America. Vol 2 [M]. New York and London: Columbia University Press, 1969.
    [128] Shaw AJ. Biogeographic Patterns and Cryptic Speciation in Bryophytes [J]. Journal of Biogeography, 2001, 28: 253-261.
    [129] Shaw AJ, Goffinet B. Bryophyte Biology [M]. Cambridge: Cambridge University Press, 2000.
    [130] Siebert A, Bnmsa I, Kraussa GJ, et al. The use of the aquatic moss Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals 1. Fundamental investigations into heavy metal accumulation in Fontinalis antipyetica L. ex Hedw [J]. The Science of the Total Environment, 1996,177:137-144.
    [131] Smith AJE. Bryophyte Ecology [M]. London: Chapman and Hall Ltd., England, 1982.
    [132] Smith AJE. The moss flora of Britain & Irelan [M]. Cambridge: Cambridge University Press, 1978.
    [133] Smith AJE. The liveworts of Britain & Irelan [M]. Cambridge: Cambridge University Press, 1990.
    [134] Stark LR, Brent D. Mishler BD, et al. Sex expression and growth rates in natural populations of the desert soil crustal moss Syntrichia caninervis [J]. Journal of Arid Environments, 1998,40: 401-416.
    [135] Stream Bryophyte Group. Roles of bryophytes in stream ecosystems [J]. Journal of the North American Benthological Society, 1999,18:151-184.
    [136] Suren AM, Duncan MJ. Rolling stones and mosses: effect of substrate stability on bryophyte communities in streams [J]. Journal of the North American Benthological Society,1999,18:457-467.
    [137]Sweeting MM.Karst Landfonns[M].London:The Macmillan Press Ltd.,1972:362.
    [138]Sweeting MM(eds.)Karst Geomorphology[M].Benchmark Papers in Geology,Vol.59,Stroudsburg:Hutchinson Ross Publishing,1981:427.
    [139]Sweeting MM(eds.)Karst in China[M].Berlin:Springer,1995.
    [140]Tan BC,Pocs T.Bryogeography and conservation of bryophytes[A].In:Shaw AJ,Goffinet B(eds.)Bryophyte Biology.Cambridge:Cambridge University Press,2000:403-448.
    [141]Traubenberg CR,Peng CA.A Procedure to Purify and Culture a Clonal Strain of the Aquatic Moss Fontinalis antipyretica for Use as a Bioindicator of Heavy Metals[J].Archives of Environmental Contamination and Toxicology,2004,46:289-295.
    [142]Vanderpoorten A.Aquatic bryophytes for a spatio-temporal monitoring of the water pollution of the rivers Meuse and Sambre(Belgium)[J].Environmental Pollution,1999,104:401-410.
    [143]Vazquez M,Wappelhorst O,Markert B.Determination of 28 elements in aquatic moss Fontinalis antipyretica Hedw.And water from the upper reaches of the river Nysa(CZ,D),by ICP-MS,ICP-OES and AAS[J].Water,Air,and Soil Pollution,2004,152:153-172.
    [144]Viles HA,Goudie AS.Tufas,travertines and allied carbonate deposits[J].Progress in Physical Geography,1990,14:19-41.
    [145]Watson MA.Annual Periodicity of Incremental Growth in the Moss Polytrichum commune[J].The Bryologist,1975,78:414-422.
    [146]Watson EV.British Mosses and Liverworts[M].Cambridge:Cambridge University Press,1959.
    [147]Watson EV.The Structure and Life of the Bryophytes[M].London:Hutchinson & Co.(Publishers)LTD,1964.
    [148]Weijermars R,Mulder-Blanken CW,Wiegers J.Growth rate observation from the moss-built Checa travertine terrace,central Spain[J].Geological Magazine,1986,123:279-286.
    [149]Wellman CH,Osterloff PL,Mohiuddin U.Fragments of the earliest land plants[J].Nature,2003,425:282-285.
    [150]White W.Geomorphology and Hydrology of Karst Terrain[M].Oxford:Oxford University Press,1988:8-35.
    [151]Wijk R van der,Margadant WD,Florschutz PA.Index Muscorum.Volume Ⅰ(A-C) [M]. Utrecht: International Bureau for Plant Taxonomy and Nomenclature, 1959.
    [152] Wijk R van der, Margadant WD, Florschutz PA. Index Muscorum. Volume II (D-Hypno) [M]. Utrecht: International Bureau for Plant Taxonomy and Nomenclature, 1962.
    [153] Wijk R van der, Margadant WD, Florschu PA. Index muscorum. Volume V (T-Z, Appendix) [M]. Utrecht: International Bureau for Plant Taxonomy and Nomenclature, 1969.
    [154] Wright JS. Tufa accumulations in ephemeral streams: observations from The Kimberley, north-west Australia [J]. Australian Geographer, 2000, 31: 333-348
    [155] Zhang L, Corlett RT. Phylogeography of Hong Kong bryophytes [J]. Journal of Biogeography, 2003,30:1329-1337.
    [156] Zhang D, Zhang Y, Zhu A, et al. Physical mechanisms of river waterfall tufa (travertine) formation [J]. Journal of Sedimentary Research, 2001, 71: 205-216.
    [157] Zhang ZH. A preliminary taxonomical study on tufa-bryophyte in Guizhou Province, S.W.China [J]. Chenia, 1998,5:173-176.
    [158] Zhang ZH. A study on the bryophytes at Flying-Dragon cave of Guizhou [J]. Chenia, 2002,7: 91-94.
    [159] Zhang ZH. Bryoflora and some speleothems of karst caves in Guizhou, S.W. China [M]. Switzerland: Proceedinds of 12~(th) International Congress of Spele- ology, Vol.3: Biospeology, 1997: 297-300.
    [160] Zhang ZH, Chen JK. Marchantiophyta and Anthocerophyta in Guizhou province, P. R. China [J]. Journal of Bryology, 2006,28:170-176.
    [161] Zhang ZH. Contributions to the bryoflora of Guizhou, S.W. China: new records and habitat notes on mosses from Huangguoshu karst area [J]. Journal of Bryology, 1996,19: 149-152.
    [162] Zhang ZH, Li XL, Pen T, et al. New records of luminous liverworts from the karst caves of Guangxi province, P.R.China: Cyathodium cavernarum Kunze and C. smaragdium Schiff in ex Keissiler (Cyathodiaceae, Hepaticae) [J]. Carsologica Sinica, 2004, 23:154-157.
    [163] Zhang ZH, Pen T, Li XL, et al. A study on the bryophytes of karst caves threshold at Kunming area in Yunnan province, P.R. China [J]. Carsologica Sinica, 2004, 23: 229-233.
    [164] Zhang ZH, Pentecost A. New and noteworthy bryophytes from the travertines of Guizhou and Sichuan, S.W. China [J]. Journal of Bryology, 2000, 22: 66-68.
    [165]Zhang ZH,Wang ZH,Ran JC,et al.A preliminary study on bryophytes from three Black Leaf Monkey's Reserves in Guizhou and Guangxi Province,S.W.China[J].Guihaia,1997,17:331-337.
    [166]Zhang ZH,Zhao CH,Li XL,et al.Bryophytes of Karst Caves in the Guilin Area,China[J].Guihaia,2005,25:107-111.
    [167]曹同,高谦,付星等.苔藓植物的生物多样性及其保护[J].生态学杂志,1997,16(2):47-52.
    [168]曹同,沙伟,于晶等.中国苔藓植物多样性及其保育[A].周迁鑫,谢丰国,吴声华等编.海峡两岸生物多样性保育研讨会论文集.台中:国立自然科学博物馆,2000,317-329.
    [169]陈邦杰.中国苔藓植物生态群落和地理分布的初步报告[J].植物分类学报,1958,7(4):271-293.
    [170]陈邦杰.中国藓类植物属志(上册)[M].北京:科学出版社,1963.
    [171]陈邦杰.中国藓类植物属志(下册)[M].北京:科学出版社,1978.
    [172]高谦.中国苔藓志(第一卷)[M].北京:科学出版社,1994.
    [173]高谦.中国苔藓志(第二卷)[M].北京:科学出版社,1996.
    [174]高谦.中国苔藓志(第九卷)[M].北京:科学出版社,2003.
    [175]GB3838-2002,地表水环境质量标准[S].北京:中国标准出版社,2003.
    [176]GB5749-2006,生活饮用水卫生标准[S].北京:中国标准出版社,2007.
    [177]高抒,张捷.现代地貌学[M].北京:高等教育出版社,2006.
    [178]何俊杰,耿弘.云南新奇岩溶景观类型及其成景地球化学浅析[J].云南地质,1994,13(2):216-221.
    [179]郭卫星.川西北自然风景中钙华景观的形成与发育[J].山地研究,1988,6(1):54-60.
    [180]胡人亮.苔藓植物学[M].北京:高等教育出版社,1987.
    [181]胡人亮,王幼芳.中国苔藓志(第七卷)[M].北京:科学出版社,2005.
    [182]胡小平.藏在深山峡谷中的温泉瀑布[J].森林与人类,2005,22(3):60-61.
    [183]姜达权.瀑布[J].水文地质工程地质,1958,2(2):7-10.
    [184]李大通,罗雁.中国碳酸盐岩分布面积测定[J].中国岩溶,1983,22(2):147-150.
    [185]李强,戴亚南,游易省等.云南白水台泉华沉积成因及其主要沉积类型研究[J].中国岩溶,2002,21(3):178-181.
    [186]黎兴江主编.西藏苔藓植物志[M].北京:科学出版社,1985.
    [187]黎兴江主编.中国苔藓志(第三卷)[M].北京:科学出版社,2000.
    [188]林秀丽,万新南.九寨沟海子瀑布景观成因研究[J].科技情报开发与经济, 2002,12(1):101-102.
    [189]刘再华,李强,孙海龙等.云南白水台钙华水池中水化学日变化及其生物控制的发现[J].水文地质工程地质,2005,30(6):10-16.
    [190]刘再华,游省易,李强等.云南白水台钙华景区的水化学和碳氧同位素特征及其在古环境重建研究中的意义[J].第四纪研究,2002,22(5):459-467.
    [191]刘再华,袁道先,DREYBRODTW.四川黄龙钙华的形成[J].中国岩溶,1993,12(3):185-191.
    [192]刘再华,袁道先,何师意等.四川黄龙沟景区钙华的起源和形成机理研究[J].地球化学,2003,32(1):1-10.
    [193]卢耀如.岩溶水文地质环境演化与工程效应研究[M].北京:科学出版社,1999.
    [194]卢耀如.中国岩溶-景观·类型·规律[M].北京:地质出版社,1986.
    [195]莫仲达.贵州岩溶区瀑布地形初步研究[J].热带地貌,1984,5(2):22-82.
    [196]莫仲达.贵州岩溶地区河流瀑布地形发育与水利开发的地质问题[J].中国岩溶,1994,13(3):293-299.
    [197]任美锷,刘振中主编.岩溶学概论[M].北京:商务印书馆,1983.
    [198]宋醒.瀑布景观赏析与设计[J].中国园林,2004,20(7):29-32.
    [199]田友萍,何复胜.石灰华的生物成因研究—以四川九寨沟和贵州黄果树等地石灰华为例[J].中国岩溶,1998,17(1):49-55.
    [200]王福星 曹建华.生物岩溶[M].北京:地质出版社,1993.
    [201]王庭蕙主篇.瀑布风景资源--我国的瀑布[A].园林设计资料集(第1集).北京:中国建筑工业出版社,2003:64-71
    [202]吴鹏程.横断山区苔藓志[M].北京:科学出版社,2000.
    [203]吴鹏程.苔藓植物生物学[M].北京:科学出版社,1998:142.
    [204]吴鹏程.中国苔藓志(第六卷)[M].北京:科学出版社,2002.
    [205]吴鹏程.中国苔藓植物研究的回顾与展望[J].隐花生物学,1993,1:1-5.
    [206]吴鹏程,贾渝.中国苔藓志(第八卷)[M].北京:科学出版社,2004.
    [207]吴鹏程,贾渝.中国苔藓植物的地理分区及分布类型[J].植物资源与环境学报,2006,15(1):1-8.
    [208]吴鹏程,贾渝,汪媚芝.中国与北美苔藓植物区系关系的探讨[J].植物分类学报,2001,39(6):526-539.
    [209]吴鹏程,罗健馨,汪楣芝.苔藓名词及名称[M].北京:科学出版社,1984.
    [210]徐弘祖.徐霞客游记[M].上海:上海古籍出版社,1982.
    [211]杨汉奎,朱文孝,黄仁海.云贵高原喀斯特瀑布研究[J].中国岩溶,1984,3(2):89-96.
    [212]杨湘桃.风景地貌学[M].长沙:中南大学出版社,2005:141-144.
    [213]袁道先.全球岩溶生态系统对比:科学目标和执行计划[J].地球科学进展,2001,16(4):461-466.
    [214]袁道先.中国岩溶学[M].北京:地质出版社,1993.
    [215]袁道先,蔡桂鸿.岩溶环境学[M].重庆:重庆出版社,1988.
    [216]章典,Mervyn Peart,师长兴等.喀斯特地区瀑布效应产生的自然水软化过程[J].沉积学报,2004,22(2):288-294.
    [217]张捷.川西岷山灰岩区喀斯特堰塞湖形成中的生物作用[J].湖泊科学,1993,5(1):32-39.
    [218]张英骏,莫仲达.黄果树瀑布成因初探[J].地理学报,1982,37(3):303-316.
    [219]张朝晖,陈家宽.桂西南喀斯特瀑布水生苔藓植物生物多样性与生态沉积类型研究[J].沉积学报,2007a,25(4):21-29.
    [220]张朝晖,陈家宽.黔中瀑布水生苔藓植物及其生物喀斯特沉积生态类型研究[J].中国岩溶,2007b,26(2):170-177.
    [221]张朝晖,陈家宽,艾伦.培特客斯.法国阿尔卑斯山(Mt.Alps,France)溪流型喀斯特瀑布水生苔藓植物群落生态研究[J].中国岩溶,2007,26(1):24-30.
    [222]中国国家地理杂志社.中国最美的地方-中国最美的六大瀑布[J].中国国家地理杂志,2005,10:322-349.
    [223]周绪伦.地质环境恶化对九寨沟景观的影响[J].中国岩溶,1998,17(3):301-310.
    [224]周绪伦.九寨沟湖泊景观的衰老现象与保护对象[A].见:喀斯特与洞穴风景旅游资源研究.北京:地震出版社,1994.
    [225]朱瑞良,王幼芳,熊李虎.苔藓植物研究进展[J].西北植物学报,2002,22(2):444-451.
    [226]朱学稳,周绪伦.岷山岩溶区的灰华沉积[J].中国岩溶,1990,9(3):250-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700