用户名: 密码: 验证码:
毛乌素沙地生物结皮光合固碳过程及对土壤碳排放的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物土壤结皮具有独特的生理生态特性,是荒漠生态系统至关重要的组成部分,在全球广泛分布。在荒漠生态系统中,由于高等植物的盖度相对低,生物结皮有机体占活有机体盖度的70%以上。已有研究证明,它们的出现增加了土壤有机碳库储量。但是,直接测定的生物结皮固碳速率在两个数量级变化(0.1~11.5μmolm-2s-1),具有很大的变异性,并且缺乏野外原位监测数据。生物结皮光合固碳和结皮覆被对土壤碳排放影响的研究,对全面认知生物结皮在碳循环中的作用有重要意义。
     本文以毛乌素沙地南缘广泛分布的藻结皮、地衣结皮和苔藓结皮为研究对象,以生物结皮发育过程中的碳固定和对土壤碳排放的影响为主线,利用Li-6400-17光合仪和Li-8150土壤碳通量系统,分别在控制条件和野外自然条件下,监测并分析三类结皮光合作用对水分、温度和光照的响应机制以及自然状态下生物结皮的光合固碳量及对土壤碳排放的影响,旨在揭示沙区生物结皮在荒漠生态系统碳循环中的碳汇源问题。主要研究结果如下:
     (1)水分是影响生物结皮光合作用最主要的环境因子,光合作用的水分补偿点和饱和点均表现为:藻结皮<地衣结皮<苔藓结皮,光合作用的补偿点高于呼吸作用的补偿点。因此,在失水过程中,三类结皮均存在碳损失。生物结皮光合作用对温度需求的范围较广,藻、地衣和苔藓结皮的最适温度分别是20~27℃、15℃和20℃;光补偿点表现为苔藓结皮<藻结皮<地衣结皮,光饱和点表现为地衣结皮<藻结皮<苔藓结皮。生物结皮对环境因子响应的研究,既可以清楚认识其发挥固碳功能对环境条件的要求,也可以解释结皮在沙区的空间分布特征。
     (2)研究区地衣结皮的优势种是能生长在低营养、剧烈变化地表的坚韧胶衣(Collena tenax)和柳叶胶衣(Collena coccophrorum)。生物结皮具有富集有机质和全氮的特性,但对其影响范围仅限于表层土壤。三类结皮的年固碳能力表现为:苔藓结皮>地衣结皮>藻结皮,分别为51.57、32.71和30.64g·C m-2a-1。虽然藻结皮光合作用对水分条件的要求与苔藓结皮相比较低,能够利用对苔藓结皮无效的水分,但苔藓的年光合固碳量高于藻结皮,说明影响生物结皮光合固碳量的最主要因素是净光合速率。
     (3)藻结皮和苔藓结皮的存在能够分别减少土壤向大气排放CO2的23.15%和8.87%,地衣结皮的存在对土壤碳排放没有显著的影响。在干燥状态下,生物结皮破坏后,土壤立即由“碳汇”变为“碳源”;没有生物结皮的保护,土壤中的细粒物质减少,使土壤有机碳含量减少。
     研究结果对科学评价生物结皮的固碳能力和正确认识其在荒漠生态系统碳循环中的作用具有重要的意义,为合理制定荒漠生态系统管理方法和措施提供理论依据。
Biological soil crusts are widely spreading in the world and they are the crucial part in desert ecosystems. They have rich species compositon, complicated structure and they have particular physiological and ecological characteristicsc. The cover of the vascular plants was rather low, and the cover of the biological soil crusts was more than70%of the total cover. Available researched proved that their presence enhanced the organic carbon in the soil, while the value of the carbon fixation varied between two magnitudes by direct measurement, in addition, litter works has been done in the field condition. It is an important complementarity for comprehensively cognizing the ecological function of biological soil crusts whose cover was more than40%percent in the arid environment. This study is an important precondition to recognize the energy flow and matter flow in the desert ecosystem, and it will supply basic data for recognizing the ecological functions of desert ecosystem in the global change, carbon balance in the global.
     Biological soil crust widely spreading in the Yanchi research station in Mu Us sandland. Algae lichen and moss soil crusts were selected as the research objects in this study. The response of environmental factors to photosynthesis of biological soil crust in laboratory and photosynthetic carbon fixation and carbon release in field was measured using Li-6400-17photosythetic system and Li-8150automated chamber system. The objective of the study is to understand the role of biological soil crust in carbon cycle.The main conclusions are as follows:
     (1) Water was the main factor influence photosysnthesis of biological soil crust, average optimumwater content and water compentsation point were showed:algaecrust is quite wide, Optimum temperature for photosynthesis of cyanobacteria, lichen, and moss was20~27℃,15℃and20℃, respectively. Light saturation point was showed:lichencrusts on environmental factors can clearly understand the environmental requirements of carbon fixation by photosynthesis, also can explain the distribution characteristics of biological soil crust in the area of space.
     (2)Biological soil crusts have the characteristics of nutrient enrichment, but the effect on the soil nutrient was restricted to the surface soil. The potential net photosynthetic carbon sequestration were showed:algae     (3)Algae and moss crusted soils were able to reduce C02emissions from soil to atmosphere, while lichen crusts had no significant effect on carbon emissions from soil. Disturbance of BSCs transforms soil from carbon sinks into carbon source under drought conditions. Loss of protective cover of bio-crusts, and fine-grained material decreased leading to nutrient depletion in disturbed sites.
     This study is meaningful to evaluate BSC carbon fixation and understand carbon cycling process of desert ecosystems, providing theoretical basis to management and arrangement of desertification controls.
引文
1.鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000.
    2.丁国栋.风沙物理学[M].北京:中国林业出版社,2010.
    3.房世波,冯凌,刘华杰,等.生物土壤结皮对全球气候变化的响应[J].生态学,2008,28(7),3312-3321.
    4.高广磊,丁国栋,赵媛媛,冯薇等.生物结皮发育对毛乌素沙地土壤粒度特征的影响[J].农业机械学报,2014,45(1),115-120.
    5.高谦,吴玉环.苔藓植物对全球变化的响应及其生物指示意义[J].应用生态学报,2002,13(7):895-900.
    6.胡春香,刘永定.荒漠藻结皮的胶结机理[J].科学通报,2002,47(12):931-937.
    7.胡春香,张德禄,刘永定.干旱区微小生物土壤结皮中藻类研究的新进展[J].自然科学进展,2003,13(8):791-795.
    8.李新荣,张元明,赵允格.生物土壤结皮研究:进展,前沿与展望[J].地球科学进展,2009,24(1):11-24.
    9.李新荣.荒漠生物土壤结皮生态与水文学研究[M].高等教育出版社,2009.
    10.凌裕泉,屈建军,胡玟.沙面结皮形成与微环境变化[J].应用生态学报,1993,4(4):393-398
    11.王雪芹,张元明,张伟民,等.古尔班通古特沙漠生物土壤结皮对地表风蚀作用影响的风洞实验[J].冰川冻土,2004,26(5):632-638.
    12.苏延桂,李新荣,张志山,等.干旱人工植被区藻结皮光合固碳的时间效应研究[J].土壤学报,2011,48(3):570-577.
    13.彭新华,张斌,李江涛,赵其国.对多孔介质物体孔隙度-蜡封法改进的探讨—以土壤团聚体为例.土壤通报,2003,34(1):5-9.
    14.杨金玲,李德成,张甘霖,等.土壤颗粒粒径分布质量分形维数和体积分形维数的对比[J].土壤学报,2008,45(3):413--419.
    15.张继贤,王淑湘.沙坡头地区防护林体系建立过程中区域生态环境的变化特点[J].甘肃科学术出版社,1993,5(1):128-138.
    16.张金屯.全球气候变化对自然土壤碳、氮循环的影响[J].地球科学,1998,18(5):463-471.
    17.张元明.荒漠地表生物土壤结皮的微结构及其早期发育特征[J].科学通报,2005,50(1):42-47.
    18.张元明,王雪芹.荒漠地表生物土壤结皮形成与演替特征概述[J].生态学报,2010,30(16):4484-4492.
    19.赵允格,许明祥.生物结皮光合作用对光温水的响应及其对结皮空间分布格局的解译--以黄土丘陵区为例[J].生态学报,2010,30(17):4668-4675.
    20.骆亦其,周旭辉.土壤呼吸与环境[M].高等教育出版社,2006.
    21. Aranibar J N, Anderson I C, Ringrose S,et al. Importance of nitrogen fixation in soilcrusts of southern African arid ecosystems:acetylene reduction and stable isotope studies [J]. Journal of Arid Environments,2003,54(2):345-358.
    22. Ashley J, Rushforth S R. Growth of soil algae on top soil and processed oil shale from the Uintah Basin, Utah, USA [J]. Reclamation and revegetation research,1984,3(1):49-63.
    23. Aubinet M, Grelle A, Rannik U, Moncrieff J, Foken T, Kowalski A S, Martin P H, Berbiger P, Bernhofer C, Clement R, Elbert J, Granier A. Estimates of the annual net carbon and water exchange of forests:The Euroflux methodology. Advance in ecological research,2000, 30(23),113-175.
    24. Abed R M, Kharusi, A, Schramm M D, Robinson. Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman [J]. FEMS Microbiology Ecology,2010,72(15):418-428.
    25. Asner G P, Archer R F, Hughes R J, Ansley C A. Wessman. Net changes in regional woody vegetation cover and carbon storage in Texas drylands,1937-1999 [J]. Global Change Biology, 2003,9(12):316-335.
    26. Austin A T, Yahdjian J M Stark, Belnap J, Porporato U, Norton D A, Ravetta, S M, Schaeffer S M. Water pulses and biogeochemical cycles in arid and semiarid ecosystems [J]. Oecologia, 2004,141(14):221-235.
    27. Batjes N H. Total carbon and nitrogen stocks in the soils of the world [J]. European Journal of Soil Science,1996,47(1):151-163.
    28. Barger N N, Herrick J E, Van Zee J,. Belnap J. Impacts of biological soil crust disturbance and composition on C and N loss from water erosion [J]. Biogeochemistry,2006,77 (2):247-263.
    29. Belnap J. Recovery rates of cryptogamic soil crusts; inoculant use and assessment methods [J]. Great Basin Naturalist,1993,53(1):89-95.
    30. Belnap J, Harper K T, Warren S D. Surface disturbance of cryptobiotic soil crusts:nitrogenase activity, chlorophyll content, and chlorophyll degradation[J]. Arid Land Research and Management,1994,8(1):1-8.
    31. Belnap J. The potential roles of biological soil crusts in dryland hydrologic cycles [J]. Hydrological Processes,2006,20(15):3159-3178.
    32. Belnap J, Harper K T. Influence of cryptobiotic soil crusts on elemental content of tissue of two desert seed plants[J]. Arid Land Research and Management,1995,9(2):107-115.
    33. Belnap J, Sanford R L, Lungu L. Biological soil crusts:ecological roles and response to fire in Miombo woodlands of Zimbabwe [J]. Transactions of the Zimbabwe Scientific Association, 1996,13(1):14-19.
    34. Belnap J, Gillette D A. Vulnerability of desert biological soil crusts to wind erosion:the influences of crust development, soil texture, and disturbance[J]. Journal of Arid Environments [J],1998,39 (2):133-142.
    35. Belnap J, Bu'del B, Lange OL.Biological soil crusts:characteristics and distribution. In: Biological Soil Crusts:Structure, Function, and Management [M] (eds Belnap J, Lange O.L). Springer-Verlag, New York,2001, pp:3-30.
    36. Belnap J, Eldridge D. Disturbance and recovery of biological soil crusts, in Biological Soil Crusts:Structure, Function,and Management[M] (eds Belnap J, Lange O.L). Springer-Verlag, New York,2001, pp:363-383.
    37. Belnap J. The world at your feet:desert biological soil crusts [J]. Front Ecology Environment, 2003,1(4):181-189.
    38. Belnap J, Phillips S L, Smith S D. Dynamics of cover, UV-protective pigments, andquantum yield in biological soil crust communities of an undisturbed Mojave Desert shrubland [J]. Flora, 2007,202(8):674-686.
    39. Belnap J, Phillips S L, Flint S, et al. Global change and biological soil crusts:effects ofultravioletaugmentation under altered precipitation regimes and nitrogen additions[J]. Global Change Biology,2008,14(3):670-686.
    40. Beymer R J, Klopatek J M. Potential contribution of carbon by microphytic crusts in pinyonjuniper woodlands [J]. Arid Soil Research and Rehabilitation,1991,5(3):187-198.
    41. Bouma T J, Nielsen K L, Eissenstat D M, Lynch J P. Estimating respiration of roots in soil: interactions with soil CO2, soil temperature and soil water content [J]. Plant Soil,1997,195(2): 221-232.
    42. Booth W E. Algae as pioneers in plant succession and their importance in erosion control[J]. Ecology,1941,22(1):38-46.
    43. Bowker M A, Reed S C, Belnap J, et al. Temporal variation in community composition, pigmentation, and Fv/Fm of desert cyanobacterial soil crusts[J]. Microbial Ecology,2002,43(1): 13-25.
    44. Bowker M A. Biological soil crust rehabilitation in theory and practice:an underexploited opportunity [J]. Restoration Ecology,2007,15(1):13-23.
    45. Bond-Lamberty B, Thomson A. A global database of soil respiration data [J]. Biogeosciences, 2010,7(1):1915-26.
    46. Breshears D D, Whicker J J, Johansen M P, Pinder Ⅲ J E. Wind and water erosion and transport in semi-arid shrubland, grassland and forest ecosystems:quantifying dominance of horizontal wind-driven transport[J]. Earth Surface Processes and Landforms,2003,28(11):1189-1209.
    47. Brostoff W N, Sharifi M R, Rundel P W. Photosynthesis of cryptobiotic soil crusts in a seasonally inundated system of pans and dunes in the western Mojave Desert, CA:Field studies [J]. Flora,2005,200(6):592-600.
    48. Brostoff W N, Sharifi M R, Rundel P W. Photosynthesis of cryptobiotic crusts in a seasonally inundated system of pans and dunes at Edwards Air Force Base, western Majave Desert, California:Laboratory studies [J]. Flora,2002,197(2):143-151.
    49. BurgheimLange OL. Photosynthetic performance of a gelatinous lichen under temperature habitat conditions:long-term monitoring of CO2 exchange of collema cristatum[J]. BiblLichenol,2000(1),75:307-332.
    50. Budel B. Biological soil crusts of European temperate and Mediterranean regions. In:Belnap J, Lange OL (eds) Biological soil crusts:structure. Function and Management, Springer, Berlin,2001, pp:75-85.
    51. Budel B, Bendix J, Bicker F R, Green T G A. Dewfall as a water source frequently activates the endolithic cyanobacterial community in the granites of Taylor Valley, Antarctica [J]. Journal of Phycology,2008,44 (6):1415-1424.
    52. Castillo-Monroy A P, Bowker M A, Maestre F T, Rodriguez-Echeverria S, Martinez I, Barraza-Zepeda C E, Escolar C. Relationships between biological soil crusts, bacterial diversity and abundance, and ecosystem functioning:Insights from a semi-arid Mediterranean environment [J]. Journal of Vegetation Science,2011,22(2):165-174.
    53. Cable J M, Ogle K, Lucas R W, Huxman T E, Loik M E, Smith S D, Tissue D T, Ewers B E, Pendall E, Welker J M, Charlet T N, Cleary M, Griffith A, Nowak R S, Rogers M, Steltzer H, Sullivan P F,van Gestel N C. The temperature responses of soil respiration in deserts:a seven desert synthesis [J]. Biogeochemistry,2011,103(1-3):71-90.
    54. Claudia Colesie, Sarah Scheu, Allan Green T G, Bettina Weber, Rainer Wirth, Burkhard Budel. The advantage of growing on moss:facilitative effects on photosynthetic performance and growth in the cyanobacterial lichen Peltigera rufescens [J]. Oecologia,2011,32(3):187-195.
    55. Conant R T, Dalla-Bett P, KloPatek C C, et al. Controls on soil respiration in semiarid soils [J]. Soil Biology and Bioehemistry,2004,36(6):945-951.
    56. Cui X Y, Gu S, Jing W, Tang Y H. Photosynthetic response to dynamic change of light and air humidity in two moss species from the Tibetan Plateau [J]. Ecological Research,2009,24(3): 645-653.
    57. Davidson E A, Verchot L V, Cattanio J H. Effeets of soil water on soil respiration in forests and cattle pastures of eastern Amazonia [J]. Biogeoehemistry,2000,48(1):53-69.
    58. Drewitt G B, Black T A, Nesic Z, Humphreys E R, Jork E M, Swanson R, Ethier G J, Griffis T, Morganstern K. Measuring forest floor CO2 fluxes in a Douglas-fir forest [J]. Agricultural and Forest Meteorology,2002(4),110:299-317.
    59. Elbert W, Weber B, Budel B, Andreae M O, Poschl U. Microbiotic crusts on soil, rock and plants:neglected major players in the global cycles of carbon and nitrogen? [J]. Biogeosciences, 2009,6(4):6983-7015.
    60. Elbert W, Weber B, Burrows S. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen.Nature Geoscience [J].2012,5(1):459-462.
    61. Eldridge D J. Cryptogam cover and soil surface condition:effects on hydrology on a semiarid woodland soil[J]. Arid Land Research and Management,1993,7 (3):203-217.
    62. Eldridge D J, Greene R S B. Microbiotic soil crusts:A view of their roles in soil and ecological processes in the rangelands of Australia [J]. Australian Journal of Soil Research,1994,32(3): 389-415.
    63. Eldridge D J, Tozer M E. Distribution and floristics of bryophytes associated with soil crust in arid and semiarid New South Wales[J]. Australia Journal of Botany,1996,44(2):223-247.
    64. Evans R D, Ehleringer J R. A break in the nitrogen cycle in aridlands? Evidence from d15N of soils [J]. Oecologia,1993,94 (3):314-317.
    65. Evans R D, Johansen J R. Microbiotic crusts and ecosystem processes [J]. Critical Reviews in Plant Sciences,1999,18(2):183-225.
    66. Evans R D, Lange O L. Biological soil crusts and ecosystem nitrogen and carbon dynamics [J]. Biological Soil Crusts:Structure, Function, and Management. Eds Belnap J, Lange O L.2003, pp:263-279.
    67. Eswaran H, Van Den Berg E, Reich P. Organic carbon in soils of the word[J]. Soil Science Society of America Journal,1993,57(1):192-194.
    68. Fang C, Moncrieff J B. The dependence of soil CO2 efflux on temperature [J]. Soil Biology Biochemistry,2001,33(15):155-165.
    69. Feng W, Zhang Y Q, Wu B, Zha T S, Jia X, Qin S G, Shao C X, Liu J B, Lai Z R, Fa K Y. Influence of disturbance on soil respiration in biologically crusted soil during the dry season [J]. The Scientific World Journal,2013,2013:doi.org/10.1155/2013/408560.
    70. Feng W, Zhang Y Q, Wu B, Qin S G, Lai Z R. Influence of environmental factors on carbon dioxide exchange in biological soil crusts in desert areas [J]. Arid Land Research and Management,2014,28(2):186-196.
    71. Fernandez D P, Ne J C, Belnap J, Reynolds R L. Soil respiration in the cold desert environment of the Colorado Plateau (USA):abiotic regulators and thresholds[J]. Biogeochemistry,2006,78 (3):247-265.
    72. Follett RF. Soil management concepts and carbon sequestration in cropland soils [J]. Soil and Tillage Research,2001,61(1-2):77-92.
    73. Gao GL, Ding GD, Wu B, Zhang YQ, Qin SG, Zhao YY, Bao YF, Liu YD, Wan L, Deng JF Fractal scaling of particle size distribution and relationships with topsoil properties affected by biological soil crusts[J]. Plos One,2014, doi:10.1371/journal.pone.0088559.
    74. Garcia-Pichel F, Belnap J. Microenvironments and microscale productivity of cyanobacterial desert crusts[J]. Journal of Phycology,1996,32(5):774-782.
    75. Garcia-Pichel F, Belnap J, Neuer S, Schanz F. Estimates of global cyanobacterial biomass and its distribution[J]. Algological Studies,2003,109(1),213-227.
    76. Gaumont-Guay D, Black TA, Griffis TJ, Barr AG, Jassal RS, Nesic Z. Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand[J]. Agricultural and Forest Meteorology,2006,140(1-4):220-235.
    77. Gershenson A, Bader NE, Cheng W. Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition[J]. Global Change Biology,2009,15(12): 176-183.
    78. Gornall J L,Jonsdottir I S, Woodin S J, et al. Arctic mosses govern belowground environment and ecosystem p rocesses[J]. Oecologia,2007,153 (4):931-941.
    79. Green, T.G.A., Lange, O.L.& Cowan, I.R. Ecophysiology of lichen photosynthesis, the role of water status and thallus diffusion resistances[J]. Cryptogamic Botany,1994,4(2),166-178.
    80. Grote, E. E., J. Belnap, D. C. Housman, and J. P. Sparks. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents:implications for global change[J]. Global Change Biology,2010,16(10):2763-2774.
    81. Harper K T, Marble J R. A role for nonvascular plants in management of arid and semiarid rangelands[M]//Vegetation science applications for rangeland analysis and management. Springer Netherlands,1988, pp:135-169.
    82. Harper CW, Blair JM, Fay PA, Knapp AK, Carlisle JD. Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem[J]. Global Change Biology,2005,11(2):322-334.
    83. Haubner N, Schumann R U, Karsten U. Aeroterrestrial microalgae growing in biofilms on facades:response to temperature and water stress [J]. Microbial Ecology,2006,51(3):285-293.
    84. Housman D C, Powers H H, Collins A D, et al. Carbon and nitrogen fixation differ betweensuccessional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert[J]. Journal of Arid Environments.2006,66 (4):620-634.
    85. Housman DC, Yeager CM, Darby BJ, Sanford RL, Kuske CR, Neher DA, Belnap J. Heterogeneity of soil nutrients and subsurface biota in a dryland ecosystem[J]. Soil Biology & Biochemistry,2007,39(8):2138-2149.
    86. HolstJK, Butterbach-BahlC, Liu X, Zheng A J, Kaiser JP, Schnitzler S, Zechmeister-Boltenstern N.Nitrogen fixation by biological soil crusts in an Inner Mongolian steppe[J]. Biology and Fertility of Soils,2009 45(7):679-690.
    87. IPCC. Climate change1995. The science of climate change[J]. Cambrige University Press, Cambridge, UK,1996,572.
    88. Jassal R, Black A, Novak M, Morgenstern K, Nesic Z, Gaumont-Guay D. Relationship between soil CO2 concentrations and forest-floor CO2 effluxes[J]. Agricultural and Forest Meteorology, 2005,130(3-4):176-192.
    89. Jassal RS, Black TA, Novak MD, Gaumont-Guay D, Nesic Z. Effects of soil water stress on soil respiration and its temperature sensitivityin an 18-year-old temperate Douglas-fir stand[J]. Global Change Biology,2008,14(6):1305-1318.
    90. Jeffries DL, Link SO, Klopatek JM.CO2 fluxes of cryptogamic crusts Ⅱ. Response to resaturation[J]. New Phytologist.1993,125(1):391-396.
    91. Jeffries, D.L., Link, S.O., and Klopatek, J.M.CO2 fluxes of cryptogamic crusts Ⅰ. Response to resaturation[J]. New Phytologist.1993,125(1):163-173.
    92. Jia BR, Zhou GSH, Wang Y, et al. Effeets of temperature and soil water-content on soil respiration of grazed and ungrazed Leymus chinensis steppes, Inner Mongolia[J]. Journal of Arid Environments,2006,67(7):60-76.
    93. Jia X, Zha T, Wu B, Zhang Y, Chen W, Wang X, Yu H, He G. Temperature response of soil respiration in a Chinese pine plantation:hysteresis and seasonal vs. diel Q10[J].PLoS One,2013, 8:e57858.
    94. Johansen J R. Cryptogamic crusts of semiarid and arid lands of North America[J]. Journal of Phycology,1993,29(2):140-147.
    95. Johnson LC and MatehettJR. Plant carbo-nitrientint interactions control CO2 exchanse in Alaskan wet sedge tundra ecosystems[J].Ecology,2000,81(1),453-469.
    96. Juh'asz, A., Balogh, J., Csintalan, Z., and Tuba, Z. Carbon sequestration of the poikilohydric moss carpet vegetation in semidesert sandy grassland ecosystem[J]. Acta Biologica Szegediensis,2002,46(3-4):223-225.
    97. Karsten U, Holzinger A. Light, Temperature, and Desiccation Effects on Photosynthetic Activity, and Drought-Induced Ultrastructural Changes in the Green Alga Klebsormidium dissectum(Streptophyta) from a High Alpine Soil Crust[J]. Microbial Ecology,2012, 63(1):51-63.
    98. Kershaw KA. Physiological-environmental investigations in lichens.Ⅱ. The pattern of net photosynthetic acclimation in Peltigera canina (L.) Willd. var. praetextata (Floerke in Somm.) Hue, and P. polydactyla (Neck.) Hoffm[J]. New Phytologist,1977,79(1):377-390.
    99. Kershaw K A. Physiological-environmental interactions in lichens.Ⅲ.The rate of net photosynthetic acclimation in Peltigera canina (L.)Willd.var. praetextata (Floerke in Somm.) Hue, and P. polydactyla (Neck.)Hoffm[J]. New Phytologist.1977,79(1):391-402.
    100. Lai R. Carbon sequestration in dryland [J]. Annual of Arid Zone,2000,39(1):1-10.
    101. Lai R, Follet R F, Kimble J M, Cole C V. Management of U.S. cropland to sequester carbon in soil [J]. Soil Water Conservation,1999,55(1):374-381.
    102. Kleiner E F, Harper K T. Environment and community organization in grasslands of Canyonlands National Park[J]. Ecology,1972,53 (2):299-309.
    103. Klopatek J M. The use of cryptogamic crusts as indicators of disturbance in semiarid landscapes, in:Ecological indicators[J]. Elsevier,1992,6(14):773-786.
    104. Landi L, Valori F, Ascher J, et al., Root exudates effeets on the baeterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils[J]. Soil Biology and Bioehemistry,2006,38(3):509-516.
    105. LangeOL. Moisture Content and CO2 exchange of lichens:Influence of temperature on moisture-dependent net photosynthesis and dark respiration in ramalina maciformis[J].Oecologia (Berl),1980,45(11):82-87.
    106. LangeO L, Kilian E, Ziegler H. Water vapor uptake and photosynthesis of lichens:performance differenences in species with green and bluegreen algae as phycobionts [J]. Oecologica,1986, 71(1):104-110.
    107. Lange O L, Kidron G J, Budel B, et al. Taxonomic Composition and Photosynthetic Characteristics of the 'Biological Soil Crusts' Covering Sand Dunes in the Western Negev Desert[J]. Functional Ecology,1992,6 (5):519-527.
    108. Lange O L. Budel B, Meyer A, Kilian E. Further evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water[J]. Lichenologist,1993,25(8):175-189.
    109. Lange O L, Meyer A, Zellner H, et al. Photosynthesis and water relations of lichen soil crusts: field measurements in the coastal fog zone of the Namib Desert [J]. Functional Ecology,1994a, 8(2):253-264.
    110. Lange O L, Budel B, Zellner H, Zotz G, Meyer A. Field measurements of water relations and CO2 exchange of the tropical, cyanobacterial basidiolichen Dictyonema glabratum in a Panamanian rainforest[J].Botanica Acta,1994b,107(5):279-290.
    111. Lange OL, Green TGA. High thallus water content severely limits photosynthetic carbon gain of central European epilithic lichens under natural conditions[J].Oecologia,1996,108(1): 13-20.
    112. Lange OL, Belnap J, Reichenberger J, Meyer A. Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA:role of water content on light and temperature responses of CO2 exchange[J]. Flora,1997,192(1),1-15.
    113. Lange O L, Belnap J. Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA:role of water content on light and temperature responses of CO2 exchange [J].Fuctional Ecology,1998,12(2):195-202.
    114. Lange OL. Photosynthesis of soil-crust biota as dependent on environmental factors. In:Belnap, J.,Lange, O.L. (Eds.), Biological Soil Crusts:Structure, Function, and Management[M].Springer, Berlin,2003,150, pp:217-240.
    115. Lange O L, Green T G A, Melzer B, Meyer A, Zellner H. Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog desert:Measurements during two seasons in the field and under controlled conditions[J]. Flora,2006,201(4):268-280.
    116. Larcher W. Physiological Plant Ecology[M]..Berlin, Heidlberg, NewYork:Springer-Verlag, 1995, pp:46-53.
    117. Lee X, Wu H, Sigler J, etal. Rapid and transient response of soil respiration to rain[J]. Global Change Biology,2004,10(6):1017-1026.
    118. Le Houerou HN. Climate change, drought and desertification[J]. Journal of Arid Environment, 1996,34(2):133-185.
    119. Leys JF. Cover levels to control soil and nutrient loss from wind erosion on sandplain country in central N.S.W In:Proceedings of the 7th. Biennial Conference of the Australian Rangeland Society.1992:34(5)84-91.
    120. Li T, Xiao Honglang, and Li Xinrong. Modeling the effects of crust on rain infiltration in vegetated sand dunes in arid desert[J].Arid Land Research and Management,2001,15(1): 41-48.
    121. Li S Z, Xiao H L, Song Y X, et al. Impact ofM icrobiotic Soil Crusts on Rainfall Intercep tion in artificial Vegetation area of Tengger Desert[J]. Journal of Desert Research,2002,2(6): 612-616.
    122. Li Xin-rong, Zhou Hai-yan, Wang Xin-ping, et al.The effects of sand stabilization and revegetation on cryptogam species diversity and soil fertility in the Tengger Desert, Northern China[J]. Plant and Soil,2003,251(2):237-245.
    123. Li X R, Jia X H, Long L Q, et al. Effects of biological soil crusts on seed bank, germination and establishment of two annual p lant species in the Tengger Desert (N China)[J]. Plant and Soil, 2005,277 (122):375-385.
    124. Li S Z, Xiao H L, Luo F. Regulation Effect of Microbiotic Crusts on Soil Hydrological Process in Shapotou Vegetated Sanddunes[J]. Journal ofDesert Research,2005,25 (2):228-233.
    125. LiY, Xu M and Zou X. Heterotrophic soil respiration in relation to environmental factor sand microbial biomass in two tropical forests[J].Plant and soil,2006,281:193-201.
    126. Li X R, Tian F, Jia R L, et al. Do biological soil crusts determine vegetation changes in sandy deserts? Implications for managing artificial vegetation[J]. Hydrological processes,2010, 24(25):3621-3630.
    127. Liu XZ, Wan SQ, Su B,et al. Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem[J]. Plant and soil,2002,240(2):213-22.
    128. Liu LC, Li SZ, Duan ZH, Wang T, Zhang ZS, Li XR. Effects of microbiotic crusts on dew deposition in the restored vegetation area at Shapotou, northwest China[J]. Journal of Hydrology,2006,328(1-2):331-337.
    129. Lu Y Z, Yang P G. The Effects of Desert Crust on the Character of SoilWater[J]. Journal of Arid Land Resources & Environment,2004,18 (2):76-79.
    130. Maier C A, Kress L W. Soil CO2 evolution and root respiration in 11 year-old loblolly pine (Pinus teada) plantations as affected by moisture nutrient availability [J]. Canadian Journal of Forest Research,2000,30 (3):347-359.
    131. Malam Issa O, Stal L J, Defarge C, et al. Nitrogen fixation by microbial crusts from desiccated Sahelian soils (Niger) [J]. Soil Biology and Biochemistry,2001,33(10):1425-1428.
    132. Mager D M, Thomas A D. Extracellular polysaccharides from cyanobacterial soil crusts:a review of their role in dryland soil processes [J]. Journal of Arid Environments,2011,75(2): 91-97.
    133. Mielnick P C, Dugas W A. Soil CO2 flux in a tall grass prairie [J]. Soil Biology and Biochemistry,2000,32(2):221-228.
    134. Nakatsubo T, Takamine Y, Ino Y. Response patterns of net photosynthesis to moisture of mosses in xeric habitats[J]. The botanical magazine Shokubutsu-gaku-zasshi,1989,102(1):63-73.
    135. Neff R, Reynolds L, Belnap J, Lamothe P. Multidecadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah [J]. Ecological Applications,2005,15 (1):87-95.
    136. Novara A, Armstrong A, Gristina L, et al. Effects of soil compaction, rain exposure and their interaction on soil carbon dioxide emission [J]. Earth Surface Processes and Landforms,2012, 37(9):994-999.
    137. Nosetto M D, Jobbagy E G, Paruelo J M. Carbon sequestration in semi-arid rangelands: comparison pf Pinus ponderosa plantations and grazing exclusion in NW Patagonia[J] Journal of Arid Environments,2006,67(1):142-156.
    138. Noy-Meir I. Desert ecosystems structure and function. In:Evenari M, Noy Meir I, Gooda;; D (eds.). Ecosystems of the word:hot deserts and arid shrublands [M].Elsevier, Amsterdam, The Netherlands,1985, pp:93-103.
    139. Palmqvist K. Carbon economy in lichens [J]. New Phytologist,2000,148(1):11-36.
    140. Pengthamkeerati P, Motavalli P P, Kremer R J, et al. Soil carbon dioxide efflux from a claypan soil affected by surface compaction and applications of poultry litter[J]. Agriculture, ecosystems & environment,2005,109(1):75-86.
    141. Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus series b-chemical and physical meteorology, 1992,44(2):81-99.
    142. Raich J W, Potter C S., Bhagawati D. Interannual variability in global soil respiration 1980-94 [J]. Global Change Biology,2002,8(8):800-812.
    143. Riveros-Iregui D A, Emanuel R E, Muth D J, et al. Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content[J]. Geophysical Research Letters,2007,34 (17):112-254.
    144. Sarmiento J L, Wofsy S C. A US carbon cycle science plan. Report of the Carbon and Cliamte Working Group for the US Global Change Research Program. US Gloabal Change Research Program, Washington, DC,1999,14(5) 152-168.
    145. San Jose J J, Bravo C R. CO2 exchange in soil algal crusts occurring in the Trachypogon savannas of the Orinoco Llanos, Venezuela [J]. Plant and soil,1991,135(2):233-244.
    146. Sanders W B. Role of lichen rhizomophs in thallus propagation and substrate colonization[J]. Cryptogam Bot,1994,4(3):283-289.
    147. Saugier B, Roy J, Mooney H A. Terrestrial global productivity [M]. Academic Press,2001.
    148. Sanders W B. Lichens:The Interface between Mycology and Plant Morphology Whereas most other fungi live as an absorptive mycelium inside their food substrate, the lichen fungi construct a plant-like body within which photosynthetic algal symbionts are cultivated[J]. Bioscience, 2001,51 (12):1025-1035.
    149. Schimel D S. Terrestrial ecosystems and the carbon cycle [J]. Global change biology,1995,1(1): 77-91.
    150. Schlesinger W H. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature,1990,348:232-234.
    151. Schlesinger W H, Pippen J S, Wallenstein M D, et al. Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave Desert [J]. Ecology, 2003,84(12):3222-3231.
    152. Schlesinger W H, Railes J A, Hartley A E, Gross A F. On the spatial pattern of soil nutrients in desert ecosystems [J]. Ecology,1996,77(2):364-374.
    153. Schulten J A. Soil aggregation by cryptogams of a sand prairie [J]. American Journal of Botany, 1985,14(4):1657-1661.
    154. Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems [J]. The botanical review,1977,43(4):449-528.
    155. Silvola J. Combined effects of varying water content and CO2 concentration on photosynthesis in Spagnum fuscum[J]. Ecography,1990,13 (3):224-228.
    156. Stradling D A, Thygerson T, Walker J A, et al. Cryptogamic crust metabolism in response to temperature, water vapor, and liquid water [J]. Thermochimica acta,2002,394(1):219-225.
    157. Su Y G, Wu L, Zhou Z B, et al. Carbon flux in deserts depends on soil cover type:A case study in the Gurbantunggute desert, North China [J]. Soil Biology and Biochemistry,2013,58(2013): 332-340.
    158. Su Y G, Li X R, Cheng Y W, et al. Effects of biological soil crusts on emergence of desert vascular plants in North China[J]. Plant ecology,2007,191(1):11-19.
    159. Swift R S.Sequestration of carbon by soil [J]. Soil science,2001,166(13):858-871.
    160. Syers J K, Iskandar I K. Pedogenetic significance of lichens. In:Ahmadijian V and Hale M E, eds. The lichens [M]. New York:Academic Press,1973. pp:225-248.
    161. Tang J, Baldocchi D D, Xu L. Tree photosynthesis modulates soil respiration on a diurnal time scale [J]. Global Change Biology,2005,11(8):1298-1304.
    162. Thomas A D, Hoon S R, Dougill A J. Soil respiration at five sites along the Kalahari Transect: effects of temperature, precipitation pulses and biological soil crust cover [J]. Geoderma,2011, 167-168(2011):284-294.
    163. Thomas A D, Hoon S R. Carbon dioxide fluxes from biologically-crusted Kalahari Sands after simulated wetting [J]. Journal of arid environments,2010,74(1):131-139.
    164. Tuba Z, Lichtenthaler H K, Csintalan Z, et al. Loss of chlorophylls, cessation of photosynthetic CO2 assimilation and respiration in the poikilochlorophyllous plant Xerophyta scabrida during desiccation[J]. Physiologia Plantarum,1996,96 (3):383-388.
    165. Vargas R, Baldocchi D D, Allen M F, et al. Looking deeper into the soil:biophysical controls and seasonal lags of soil CO2 production and efflux[J]. Ecological Applications,2010,20(6): 1569-1582.
    166. Vargas R, Allen M F. Environmental controls and the influence of vegetation type, fine roots and rhizomorphs on diel and seasonal variation in soil respiration [J]. New Phytologist,2008, 179(2):460-471.
    167. Wang B, Zha T S, Jia X, et al. Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem[J]. Biogeosciences,2014,11(2):259-268.
    168. Wang W, Guo J X, Feng J. Contribution of root respiration to total soil respiration in a Leymus chinensis (Trin.) Tzvel grassland of Northeast China [J]. Journal of Integrative Plant Biology, 2006,4 (4):409-414.
    169. Ward D. The biology of deserts [M]. Oxford University Press, Oxford,2009.
    170. West N E. Structure and functions of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions [J]. Advances in ecological Research,1990,20(1):179-223.
    171. Whitford W G. Ecology of desert systems [M]. Academic Press, San Diego,2002(1):295-301.
    172. Williams J D, Dobrowolski J P, West N E, et al. Microphytic crust influence on wind erosion[J]. Transactions of the ASAE,1995,38 (1):131-137.
    173. Wu N, Zhang Y M,Wang H L, et al. On the nitrogen fixation by biological soil crusts in the Gurbantunggut Desert, northern Xinjiang of China [J]. Acta Ecologica Sinica,2007,27(9): 3785-3793.
    174. Yan C H. Phytogeogtaphy [M]. Science Press, Beijing. R.P. China (in Chinese),2001.
    175. Yoo G, Wander M M. Influence of tillage practices on soil structural controls over carbon mineralization [J]. Soil Science Society of America Journal,2006,70(2):651-659.
    176. Yoshitake S, Uchida M, Koizumi H, et al. Production of biological soil crusts in the early stage of primary succession on a High Arctic glacier foreland [J]. New phytologist,2010,186(2): 451-460.
    177. Yuste J C, Janssens I A, Carrara A, et al. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest [J]. Tree physiology,2003,23(18): 1263-1270.
    178. Zaady E, Gutterman Y, Boeken B. The germination of mucilaginous seeds of t Plantago coronopus, Reboudia pinnata, and Carrichtera annua on cyanobacterial soil crust from the Negev Desert[J]. Plant and Soil,1997,190(2):247-252.
    179. Zaady E, Groffman P, Shachak M. Nitrogen fixation in macro-and microphytic patches in the Negev desert [J]. Soil Biology and Biochemistry,1998,30(4):449-454.
    180. Zaady E, Kuhn U, Wilske B, et al. Patterns of CO2 exchange in biological soil crusts of successional age [J]. Soil Biology and Biochemistry,2000,32(7):959-966.
    181. Zheng Z M, Yu G R, Fu Y L, et al. Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content:A trans-China based case study [J]. Soil Biology and Biochemistry,2009,41(7):1531-1540.
    182. Zhao, Y., M. Xu & J. Belnap. Potential nitrogen fixation activity of different aged biological soil crusts from rehabilitated grasslands of the hilly Loess Plateau, China. Journal of Arid Environments,2010,74(10),1186-1191.
    183. Zhou Z G, Chen Z J, Liu Z L. Study on the ecology of algae in surface crust of desert[J]. Acta Ecologica Sinica,1995,15(4):385-39.
    184. Zhang Y M, Wang H L, Wang X Q, et al. The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China[J]. Geoderma,2006,132(3):441-449.
    185. Zhang Y M, Chen J, Wang L, et al. The spatial distribution patterns of biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang, China[J]. Journal of arid environments,2007, 68(4):599-610.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700