用户名: 密码: 验证码:
跨江海隧道功能梯度混凝土管片的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪是开发利用地下空间的世纪,跨江海隧道和城市地铁的修建已经步入高速发展时期,其中有相当多的交通隧道是采用盾构工法来修建的盾构隧道,而钢筋混凝土管片是一种常见的应用于盾构隧道的混凝土预制构件。在跨江海盾构隧道中,管片是隧道的结构主体和防水抗渗主体,且长期处于Cl~-、SO_4~(2-)等有害介质的侵蚀环境下,因此,对管片的性能要求特别是耐久性要求相当高。
     论文研究工作来源于国家“863”计划课题(课题编号:2005AA332010)——《高抗渗长寿命大管径隧道管片材料结构设计与工程应用》,依托万里长江第一隧——武汉长江隧道工程,围绕钢筋混凝土管片耐久性技术难题进行了功能梯度混凝土管片(Functionally Gradient Concrete Segment,简称FGCS)的材料与结构设计、耐久性能、收缩性能、界面性能、制备工艺以及微观结构的研究,揭示了功能梯度混凝土管片的材料—结构—性能—工艺之间的相关规律,建立了功能梯度混凝土管片的材料与结构设计、制备工艺、性能检测、耐久性评估、工程应用等方面的关键技术。主要工作及成果如下:
     1、提出了功能梯度混凝土管片的设计理论体系。提出了功能梯度混凝土管片的全程性价比设计理念以及功能/结构一体化、长寿命化、界面增强等设计理论,建立了功能梯度混凝土管片的强度、耐久性、体积稳定性、多功能性、制备工艺方面的设计准则及其设计方法,为地下工程混凝土的梯度功能设计奠定了理论基础。
     2、完成了功能梯度混凝土管片的功能/结构一体化设计。在钢筋混凝土管片结构设计中引入梯度功能设计思路,进行功能/结构一体化设计,提出两种功能梯度混凝土管片设计方案——HPC高抗渗保护层方案和MIF高抗渗保护层方案,设计出外层高致密防水、保护层高抗渗抗蚀、结构层高强高性能和内层防火抗爆的功能梯度混凝土管片,将材料的功能设计与结构设计统一起来。
     3、开发了无细观界面过渡区水泥基复合材料(Meso-interfacial transition zone-free cement-based materials,简称MIF)。取消传统水泥基复合材料中粗、细集料,引入特细砂和高活性辅助胶凝材料,并掺入减缩组分、抗裂组分、憎水组分等性能调整组分,细化或消除集料—水泥石之间界面过渡区,将材料的微观结构的改善与宏观性能的优化统一起来,开发适用于地下工程结构混凝土保护层的MIF。提出MIF的设计理论,研究其力学性能、抗渗性能、抗硫酸盐侵蚀性能和收缩性能,并采用SEM-EDXA、XRD、TG-DTG、MIP、显微硬度等先进测试手段来研究其微观性能:
     ①MIF的集料与水泥石界面过渡区显微硬度在距离集料表面10~30μm处显著增大,最低达到了395MPa,远远超出传统混凝土界面过渡区显微硬度为150~250MPa的范围,且MIF界面过渡区内的主要水化产物为C—S—H凝胶,CH晶体较少,CH晶体的取向性很不明显,因此,MIF的集料与水泥石界面过渡区由传统混凝土的60~100μm细化为30μm以下,从而有效地阻断了侵蚀性介质的渗入通道。
     ②MIF的主要技术指标:28d抗压强度≥60MPa;Cl~-扩散系数≤0.8×10~(-13)m~2/s,6h导电量<300库仑,抗渗标号≥S40。
     4、系统研究了功能梯度混凝土的界面性能与微观结构。采用劈裂抗拉试验、自然扩散和加速扩散试验以及ANSYS模拟来分别研究功能梯度混凝土的界面力学性能、传输性能和收缩性能,同时,采用SEM-EDXA、MIP、显微硬度等先进测试方法来研究功能梯度混凝土功能层界面的水化产物及其分布、孔隙结构特征以及界面结合情况等界面微观结构,并建立其界面结构模型:
     ①功能梯度混凝土进行两次浇注成型时,采用界面强化工艺——压印工艺可以提高功能梯度混凝土功能层的界面粘结强度10%~35%,产生界面增强效应,能够有效地解决功能梯度混凝土功能层界面粘结强度降低的问题。
     ②与单一的高强结构层混凝土相比,高抗渗保护层与高强结构层功能梯度混凝土的Cl~-扩散系数显著下降,采用自然扩散法测试的表观Cl~-扩散系数D_a下降了25%~50%,采用NEL法测试的Cl~-扩散系数D_(NEL)下降了1~2个数量级,采用电量法测试的6h导电量Q低于400库仑,可见,功能梯度混凝土的抗渗性明显提高,特别是其抗离子渗透性。
     ③以MIF高抗渗保护层方案的功能梯度混凝土管片为实例,采用ANSYS计算的功能梯度混凝土管片界面结合区的最大拉应力远小于其界面粘结强度,界面结合区由于收缩引起的应力不会引起功能梯度混凝土管片的开裂,高抗渗保护层也不会脱落,高抗渗保护层与高强结构层功能梯度混凝土界面收缩性能匹配良好。
     ④高抗渗保护层与高强结构层功能梯度混凝土的微观结构和孔结构均得到了显著改善,与HPC高抗渗保护层方案的功能梯度混凝土相比,MIF高抗渗保护层方案的功能梯度混凝土界面结合区的显微硬度更高,界面结合区中孔半径≥25nm的孔更少,MIF高抗渗保护层方案的功能梯度混凝土从界面结合区到水泥浆体本体有较多网络状的C—S—H凝胶,以及数量较少的CH晶体,且CH晶体的取向性差,MIF高抗渗保护层方案界面结合区的结合情况要好于HPC高抗渗保护层方案的。
     ⑤鉴于功能梯度混凝土的耐久性能和材料组分的渐变过渡,提出了功能梯度混凝土基于耐久性能变化的界面结构模型和基于材料组分变化的界面结合区结构模型;根据水泥基复合材料的集料和水泥石界面过渡区厚度和CH晶体的特点,提出了普通混凝土、MIF的集料和水泥石界面过渡区结构模型。
     5、建立了功能梯度混凝土管片生产与工程应用的关键技术。建立了功能梯度混凝土管片的制备工艺、压印盖板、蒸养制度、质量控制方面的关键制备技术以及性能检测技术和耐久性评估方法;实际生产的功能梯度混凝土管片的Cl~-扩散系数为4.9×10~(-13)m~2/s,根据考虑多种因素作用下的Cl~-扩散理论模型,其预测使用寿命在280年以上。研发的功能梯度混凝土管片及无细观界面过渡区水泥基复合材料已在国家重点工程——武汉长江隧道工程上成功获得了应用。
The 21 st century will be the century in which human beings will exploit the undergroundspace. The development of river-crossing tunnel, sea-crossing tunnel and urban subway hasbeen greatly accelerated. In their transportation tunnels, quit a few tunnels will be shieldtunnels which are constructed by shield method. Reinforced concrete segment is commonlya precast member used for shield tunnel engineering. Reinforced concrete segment is themain body of structure, waterproof and impermeability in river-crossing or sea-crossingshield tunnels. Furthermore, it is long-term exposed to corrosive environments of deleteriousmedium, such as chloride ion and sulfate ion. Hence, it is required that the performance ofreinforced concrete segment should be quite well, especially in durability.
     Funded by the Hi-tech Research and Development Program of China (863 Program) No.2005AA332010 named Material & Structure Design of High Impermeablity LongService-life Large Dimension Segment of Shield tunnel and its Engineering Application,based on the first tunnel to cross the Yangtze River named Wuhan Yangtze River TunnelEngineering, and surrounded the durability problem of reinforced concrete segment, thedesign, preparation and properties of functionally gradient concrete segment (abbr. FGCS)are presented in the paper.Based on the study of material and structure design, durability,shrinkage, interface property, preparation process and microstructure of FGCS, the relationamong material, structure, property and process of FGCS is discovered. And the keytechnologies of material and structure design, preparation process, performance detection,durability assessment and engineering applying of FGCS are established. The main researchwork and compliments are listed as follow.
     1. The design theoretical system of FGCS is proposed. The design concept(performance-cost ratio of the whole service-life cycle)and design theories (functional andstructural integration, long service-life and interface strengthening) of FGCS are put forward.In addition, the design principles (strength, durability, volume stability, multi-function andpreparation process) and design method of FGCS are established. Based on the abovementioned design theoretical system, the theoretical foundation for functionally gradientdesign of concrete used in underground engineerings is provided.
     2. The functional and structural integrated design of FGCS is accomplished. The designthought of gradient function is introduced to the structure design of reinforced concretesegment. Two design schemes of FGCS are proposed, one is the design scheme of HPC highimpermeability cover, the other is the design scheme of MIF high impermeability cover,which have high compact and waterproof outer-layer, high impermeability and corrosion-resistance cover, high strength and performance structural-layer andfire-precaution and blast-resistance inner-layer.
     3. Meso-interfacial transition zone-free cement-based materials (abbr. MIF) is developed.To cancel coarse aggregate and fine aggregate of traditional cement-based materials, tointroduce super-fine sand and high active supplementary cementitious materials, and toblend some ingredients modified property such as shrinkage reducing ingredient,anti-cracking ingredient, hydrophobic ingredient, etc, MIF is developed, in which interfacialtransition zone between aggregate and cement paste is reduced or eliminated. MIF is usedfor concrete cover in underground engineering structure. Meanwhile, design theory of MIF isput forward, mechanical property, impermeability, sulfate attack resistance and shrinkage ofMIF is investigated, and microstructure of MIF is analyzed through SEM-EDXA, XRD,TG-DTG, MIP and microhardness.
     ①The microhardness of interfacial transition zone in MIF is obviously increased in 10 to 30μm distance apart from the surface of aggregate, and its value exceeds 395 MPa, while that ofordinary concrete is only 150 to 250 MPa. The main hydration product of interfacial transitionzone in MIF is CSH gel, but few is Ca(OH)_2 crystal. Besides, the orientation of Ca(OH)_2 crystalisn't very distinct. In comparison with ordinary concrete whose thickness of interfacial transitionzone is 60 to 100μm, the thickness of interfacial transition zone of MIF is lower than 30μm.Penetration paths to corrosive medium are effectively interdicted in MIF.
     ②MIF has several key technical indexes: compressive strength is more than 60 MPa at theage of 28 days, chloride diffusion coefficient is lower than 0.8×10~(-13)m~2/s, Conductive chargefor 6 hours is lower than 300 coulombs, impermeability grade can be raised up to S40.
     4. Interface property and microstructure of FGCS is Systematically investigated. Interfacemechanical property, transport property, shrinkage of FGCS is investigated by means ofsplitting tensile test, natural diffusion method, accelerating diffusion method and ANSYSsimulation. Meanwhile, Interface microstructure of FGCS, such as interface hydrationproduct and its distribution, pore structure and its characteristic, and interface bond status,etc, is analyzed through SEM-EDXA, MIP and microhardness. In addition, interfacestructure model is discussed.
     ①When two functional layers of functionally gradient concrete were cast, respectively,interface bond strength between two functional layers was increased by 10% to 35% bymeans of imprinting process as-compared to the control without imprinting process.Imprinting process can result in the effect of interface strengthening, and resolve the problemof interface bond strength decreasing.
     ②In comparison with the single concrete used for high strength structural-layer, chloridediffusion coefficient of functionally gradient concrete which is made up of between concreteused for high impermeability cover and concrete used for high strength structural-layer, isobviously decreased. The apparent chloride diffusion coefficient was increased by 25% to 50% by means of natural diffusion method, the chloride diffusion coefficient was decreased by one totwo orders of magnitude by means of rapid chloride diffusivity test (NEL), and the conductivecharge for 6 hours was lower than 400 coulombs by means of the rapid chloride permeability testmethod as designated in ASTM C1202. Thus, the impermeability of functionally gradientconcrete is obviously improved, especially, the ability to resist chloride ion penetration.
     ③To take the FGCS with design scheme of MIF high impermeability cover as anexample, the maximum interface tensile stress due to shrinkage in interface bond zone wascalculated by ANSYS software (finite element analysis tool), and calculation value was lessthan test value of interface splitting tensile strength. Interface tensile stress due to shrinkagein interfacial bond zone didn't result in cracking of FGCS, and high impermeability cover ofFGCS didn't peel off. Therefore, The compatibility of interface volume deformation was quitwell, and the sliding deformation of interface layers would not generate.
     ④Microstructure and pore structure of functionally gradient concrete are obviouslyimproved. In comparison with interfacial bond zone of functionally gradient concrete withdesign scheme of HPC high impermeability cover, the microhardness of functionallygradient concrete with design scheme of MIF high impermeability cover was higher, and thepore whose radius is over 25 nm was much less. Furthermore, there are more CSH gel andless Ca(OH)_2 crystal. Besides, the orientation of Ca(OH)_2 crystal is more poor.
     ⑤According to durability and materials component gradual transition of functionallygradient concrete, interface structure model base on durability chang and interface structuremodel base on materials component change were put forward. According to thecharacteristic of interfacial transition zone between aggregate and cement paste incement-based materials, such as the thickness of interfacial transition zone and the content ofCa(OH)_2 crystal and its orientation, structure models of interfacial transition zone of MIFand ordinary concrete were also put forward.
     5. The key technologies of production and engineering applying of FGCS are provided.The key preparation technologies (preparation process, imprinting cover board, steam-curingsystem and quality control), performance detection technology and durability assessmentmethod of FGCS are established. FGCS is produced, whose chloride diffusion coefficient is4.9×10~(-13)m~2/s. According to the multi-component diffusion equation, a service life of 280years for FGCS is predicted. Furthermore, FGCS and MIF were successfully applied toWuhan Yangtze River Tunnel Engineering.
引文
[1] 关宝树,国兆林.隧道及地下工程[M].成都:西南交通大学出版社,2000.
    [2] 童林旭.中国城市地下空间的发展道路[J].地下空间与工程学报,2005,1(1):1~6.
    [3] 李敏.中国城市地铁现状与走势[J].人车路,2003,(1):52~53.
    [4] 钱七虎,李朝甫,傅德明.隧道掘进机在中国地下工程中应用现状及前景展望[J].地下空间,2002,22(1):1~11.
    [5] 杨林德,黄慷.水底隧道管片构件耐久性失效风险研究[J].地下空间,2004,24(1):1~4.
    [6] 张凤祥,朱合华,傅德明.盾构隧道[M].北京:人民交通出版社,2004.
    [7] Kashima Y, Kondo N, Inoue M. Development and Application of the DPLEX Shield Method: Results of Experiments Using Shield and Segment Models and Application of the Method in Tunnel Construction[J]. Tunnelling and Underground Space Technology, 1996, 11 (1): 45~50.
    [8] Huang Zheng-rong, Zhu Wei, Liang Jing-hua, et al. Three-dimensional Numerical Modelling of Shield Tunnel Lining[J]. Tunnelling and Underground Space Technology, 2006, 21 (3-4): 434.
    [9] Nagaoka S, Ozeki M, Iwata K, et al.翟进营 译.钢架混凝土SRC衬砌管片的开发[J].地下空间,2003,23(4):448~452.
    [10] Maeda M, Kushiyama K. Use of compact shield tunneling method in urban underground construction[J]. Tunnelling and Underground Space Technology, 2005, 20 (2): 159~166.
    [11] Nishikawa k. Development of a Prestressed and Precast Concrete Segmental Lining[J]. Tunnelling and Underground Space Technology, 2003, 18 (2-3): 243~251.
    [12] Takashi W, Toshiharu T, Tsuyosh A, et al. Development of a New Composite Structure Segment for Large Diameter Shield Tunnel[J]. Tunnelling and Underground Space Technology, 2004, 19 (4-5): 449~450.
    [13] Winkler B, Hofstetter G, Lehar H. Application of a Constitutive Model for Concrete to the Analysis of a Precast Segmental Tunnel Lining[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28 (7-8): 797~819.
    [14] Plizzari G A, Tiberti G. Steel Fibers as Reinforcement for Precast Tunnel Segments[J]. Tunnelling and Underground Space Technology, 2006, 21 (3-4): 438~439.
    [15] Nanakorn P, Horil H. A Fracture-Mechanics-Based Designed Method for SFRC Tunnel Linings[J]. Tunnelling and Underground Space Technology, 1996, 11 (1): 39~42.
    [16] 吴鸣泉.钢纤维砼盾构管片在地铁隧道工程的应用研究[J].广东建材,2004,(3):6~8.
    [17] 晏浩,朱合华,傅德明.钢纤维混凝土在盾构隧道衬砌管片中应用的可行性研究[J].地下工程与隧道,2000,(1):13~16.
    [18] 鞠丽艳,王量,张雄.地铁隧道复合纤维混凝土管片新技术[J].混凝土,2004,(8):69~71.
    [19] Richards J A. Inspection, Maintenance and Repair of Tunnels: International Lessons and Practice[J]. Tunnelling and Underground Space Technology, 1998, 13 (4): 369~375.
    [20] Chang Chi-te, Sun Chien-wen, Duann S W, et al. Response of a Taipei Rapid Transit System (TRTS) Tunnel to Adjacent Excavation[J]. Tunnelling and Underground Space Technology, 2001, 16 (3): 151~158.
    [21] Chang Chi-te, Wang Ming-jung, Chang Chien-tzen, et al. Repair of Displaced Shield Tunnel of the Taipei Rapid Transit System[J]. Tunnelling and Underground Space Technology, 2001, 16 (3): 167~173.
    [22] Broch E, Grφv E, Davik K I. The Inner Lining System in Norwegian Traffic Tunnels[J]. Tunnelling and Underground Space Technology, 2002, 17 (3): 305~314.
    [23] Aydin A, Ozbek A, Cobanoglu I. Tunnelling in Difficult Ground a Case Study from Dranaz Tunnel, Sinop, Turkey[J]. Engineering Geology, 2004, 74 (3-4): 293~301.
    [24] Mohamed Abdel-Meguid. Selected Three-dimensional Aspects of Tunneling[D]. The University of Western Ontario, Canada, 2002, May.
    [25] Faisal Ibrahim Shalabi. Behavior of Gasketed Segmental Concrete Tunnel Lining[D]. University of Illinois at Urbana-Champaign, USA, 2001, June.
    [26] Mashimo H, Ishimura T. Evaluation of the Load on Shield Tunnel Lining in Gravel[J]. Tunnelling and Underground Space Technology, 2003, 18 (2-3): 233~241.
    [27] 王慎堂,张庆贺.高性能混凝土在盾构隧道管片中的应用[J].现代隧道技术,2001,38(6):29~32.
    [28] 杨思忠,钱新,单靖枫.盾构管片高性能混凝土技术研究[J].市政技术,2001,42(1):58~61.
    [29] 蔡亚宁,乔中胜.北京地铁五号线预制盾构管片的高性能混凝土研究[J].现代隧道技术,2005,42(1):20~25.
    [30] 蔡亚宁.预制盾构管片的高性能混凝土研究[J]].建筑技术,2004,35(1):32~33.
    [31] 刘宁,汪恭胜.北京地铁5号线混凝土盾构管片预制技术[J].混凝土,2003,(6):42~45.
    [32] 秦鸿根,孙伟,庞超明,等.地铁工程用C50P10管片高性能混凝土制备与性能研究[J].粉煤灰,2003,(1):40~41.
    [33] 杜志军,赵同顺,柯德辉,等.广州地铁二号线盾构预制混凝土管片研制与开发[J].广州建筑,2002,(2):11~16.
    [34] 倪照鹏,陈海云.国内外隧道防火技术现状及发展趋势[J].交通世界,2003,(2-3):28~31.
    [35] RWS/TNO. Fire Protection for Tunnels. GT-98036, TNO report 98—CVB—R1161. TNO Building and Construction 1998.
    [36] NFPA 502, Standard for Road Tunnels, Bridges and Other Limited Acces Highways, 2001 Edition.
    [37] Haack A. Fire Protection in Traffic Tunnels: General Aspects and Results of the EUREKA Project[J]. Tunnelling and Underground Space Technology, 2001, 16 (4): 377~381.
    [38] 何世家.钢筋混凝土耐火特性和隧道衬砌用防火涂料[J].涂料工业,2002,(9):11~13.
    [39] 周红升,陈方东.隧道防火技术与防火涂料的研究[J].铁道标准设计,2004,(11):63~65.
    [40] Carvel R O, Beard A N, Jowitt P W. The Influence of Longitudinal Ventilation Systems on Fires in Tunnels[J]. Tunnelling and Underground Space Technology, 2001, 16 (1): 3~21.
    [41] Pierre Kalifa, Gregoire Chene, Christophe Galle. High-temperature behaviour of HPC with Polypropylene Fibres: From Spalling to Microstructure[J]. Cement and Concrete Research, 2001, 31 (10): 1487~1499.
    [42] Kodur V K R, Sultan M A. Effect of Temperature on Thermal Properties of High-strength Concrete[J], Journal of Materials in Civil Engineering, ASCE, 2003, 15 (2): 101~107.
    [43] Kodur V K R, Wang T C, Cheng F P. Predicting the Fire Resistance Behaviour of High Strength Concrete Columns[J]. Cement and Concrete Composites, 2004, 26 (3): 141~153.
    [44] 肖建庄,王平,朱伯龙.我国钢筋混凝土材料抗火性能研究回顾与分析[J].清华大学学报,2003,6(2):182~189.
    [45] 鞠丽艳,张雄.聚丙烯纤维对高性能混凝土高温性能的影响[J].建筑材料学报,2004,7(1):25~28.
    [46] 华毅杰.预应力混凝土结构火灾反应及抗火性能研究[D].上海:同济大学,2000.
    [47] 王振信.盾构法隧道的耐久性[J].地下工程与隧道,2002,(2):2~5.
    [48] Gulikers J. Problems Encountered in the Detection of Reinforcement Corrosion in Concrete Tunnel Linings-theoretical Considerations[J]. Materials and Corrosion, 2003, 54 (6): 454~459.
    [49] 周俊龙,杨德斌.隧道用混凝土耐久性问题[J].公路,2002,(12):136~139.
    [50] 孙玉波,于贵穴.铁路隧道支护混凝土的防腐抗渗技术研究[J].混凝土与水泥制品,2004,(5):17~19.
    [51] 杨林德,高占学.公路隧道耐久性研究现状及保护层厚度研究[J].公路隧道,2002,(5):1~7.
    [52] 陈月顺,曾三海,李厚祥,等.隧道自密实防水混凝土抗渗性试验研究[J].新型建筑材料,2005,(5):18~20.
    [53] 刘立国,方珍.隧道用高抗渗耐蚀混凝土的试验研究[J].西安公路交通大学学报,2001,21(10):58~61.
    [54] 新野正之,平井敏雄,渡边龙三.倾斜机能材料——宇航机用超耐热材料的研究[J].日本复合材料学会志,1987,13(6):257~264.
    [55] 朱信华,孟中岩.梯度功能材料的研究现状与展望[J].功能材料,1998,29(2):121~126.
    [56] 张幸红,韩杰才,董世运,等.梯度功能材料制备技术及其发展趋势[J].宇航材料工艺,1999,(2):1~5.
    [57] 叶青,胡国君.水泥基复合功能材料的研究开发[J].材料科学与工程,1995,13(2):62~65.
    [58] 温变英,吴刚,侯少华.新型聚合物基复合梯度材料的制备及材料结构性能[J].复合材料学报,2004,(6):151~156.
    [59] 李永,张志民,马淑雅.非均质梯度功能材料三雄本构关系及宏细观结构分析[J].复合材料学报,2001,18(1):101~104.
    [60] Mohamed M, Shaikh F U A, Paramasivamp P. Corrosion Durability and Structural Response of Functionally-Graded Concrete Beams. JCI Intemational Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC)—Application and Evaluation, 21~22 October 2002, Takayama, Japan, JCI, Japan, pp. 161~170.
    [61] 杨久俊,贾晓林,谭伟,等.水泥基梯度复合功能材料物理力学性能的初步研究[J].新型建筑材料,2001,(11):1~3.
    [62] 杨久俊,海然,董艳玲,等.组分梯度复合对水泥基材料物理力学性能的影响[J].硅酸盐学报,2002,30(12):803~806.
    [63] Yang Jiu-jun, Hai Ran, Dong Yah-ling, et al. Effect of the Component and Fiber Gradient Distributions on the Strength of Cement-based Composite Materials[J]. Journal of Wuhan University of Technology (Materials Science), 2003, 18 (2): 61~64.
    [64] 杨久俊,董延玲,林伦,等.连续相组分梯度分布对水泥基材料力学性能的影响[J].硅酸盐学报,2004,32(10):1225~1228.
    [65] 董延玲.混凝土界面区组分梯度分布的改善及其对混凝土性能影响[D].郑州:郑州大学,2004.
    [66] 杨久俊,海然,张海涛,等.碳纤维梯度分布对水泥基材料热电性能的影响[J].混凝土与水泥制品,2004,(4):30~33.
    [67] 海然.分散相梯度分布对水泥基材料物理力学性能的影响[D].郑州:郑州大学,2003.
    [68] 海然,杨久俊,吴科如.玻璃纤维梯度分布对水泥基材料力学性能的影响[J].新型建筑材料,2005,(6):12~14.
    [69] 马保国,董荣珍,朱洪波,等.饰面混凝土的结构设计与性能调控[J].硅酸盐学报,2004,32(3):346~350.
    [70] MA Bao-guo, DONG Rong-zhen, ZHU Hong-bo, et al. Durability of High Performance Color Hardener[J]. Journal of Wuhan University of Technology (Materials Science), 2004, 19 (4): 79~81.
    [71] 朱祖熹.当今国内外盾构隧道防水技术比较谈[J].地下工程与隧道,2002,(1):14~20.
    [72] 黄慷,杨林德.崇明越江盾构隧道工程耐久性失效风险研究[J].现代隧道技术,2004,41(2):8~13.
    [73] 刘斯凤,秦鸿根,庞超明.地铁混凝土的抗裂防渗性能研究[J].三峡大学学报(自然科学版),2006,28(1):48~50.
    [74] 佐藤吉彦(日本).日本高速铁路的全寿命维护[J].中国铁道科学,2001,22(1):6~15.
    [75] 王增忠,柳玉杰,陈英存,等.混凝土建设项目全寿命经济分析,基建优化,2005,26(1):49~52.
    [76] 韩桂泉,周品.结构功能一体化铝基复合材料的应用[J].航天制造技术,2005,(2):1~4.
    [77] 吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [78] Mehta P K, Paulo J M M. Concrete Structure, Properties, and Materials (Second Edition) [M]. Prentice Hall, 1993.
    [79] Birchall J D, Howard A J, Kendall K. Flexural strength and porosity of cements[J]. Nature, 1981, 289 (19): 388~389.
    [80] Birchall J D, Howard A J, Kendall K. A Cement Spring[J]. Journal of Materials Science Letters, 1982, 1 (3): 125~126.
    [81] Bache H H. Densified Cement Ultrafine Powder Based Materials[C]. In: 2nd International Conference on Superplasticizer in Concrete, Ottawa, Canada, 1981.
    [82] Richard P, Cheyrezy M. Composition of Reactive Powder Concretes[J]. Cement and Concrete Research, 1995, 25 (7): 1501~1511.
    [83] Adeline R, Lacheme M, Blaif P. Design and Behavior of the Sherbrooke footbridge[C]. In: Proceedings of International Symposium on High Performance and Reactive Powder Concrete, Canada, 1998.
    [84] 廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996.
    [85] Chia Kok Seng, Zhang min-hong. Water Permeability and Chloride Penetrability of High-strength Lightweight Aggregate Concrete[J]. Cement and Concrete Research, 2002, 32 (4): 639~645.
    [86] 寺村悟,坂井悦朗.高强度化混合材开发[J].1992,(8):546.
    [87] 龙广成.活性粉末混凝土组分、结构与性能的研究[D].上海:同济大学,2003.
    [88] 李北星,梁文泉,张文生,等.无宏观缺陷水泥基复合材料的水敏特性及其破坏机理研究[J].硅酸盐学报,2000,28(4):325~330.
    [89] Mahmoud M, Reda T, Nidel G S. Enhancing Fracture Toughness of High Performance Carbon Fiber Cement Composites[J]. ACI Materials Journal, 2001, 98 (2): 168~178.
    [90] 王成启,吴科如.砂胶比对碳纤维增强水泥砂浆力学性能的影响[J].混凝土,2003,(3):19~21.
    [91] 廉慧珍,路新瀛.按耐久性设计高性能混凝土的原则和方法[J].建筑技术,2001,32,(1):8~11.
    [92] Lu Xin-ying. Application of the Nernst-Einstein Equation to Concrete[J]. Cement and Concrete Research, 1997, 27 (2): 293~302.
    [93] 中国工程院土木水利与建筑学部工程结构安全性与耐久性研究咨询项目组.混凝土结构耐久性设计与施工指南[M].北京:中国建筑工业出版社,2004.
    [94] ASTM C1202-94. Standard Test Method for Electrical Indication of Concrete Ability to Resist Chloride Ion Penetration, 1994.
    [95] Yu S. W, Page C L. Diffusion in Cementitious Materials: Ⅰ. Comparative Study of Chloride and Oxygen Diffusion in Hydrated Cement Pastes[J]. Cement and Concrete Research, 1991, 21 (4): 581~588.
    [96] Ngala V T, Page C L, Parrott L J. Diffusion in cementitious materials: Ⅱ. Further Investigations of Chloride and Oxygen Diffusion in Well-cured OPC and OPC_30%PFA Pastes[J]. Cement and Concrete Research, 1995, 25 (4): 819~826.
    [97] Hooton R D, Titherington M P. Chloride Resistance of High-performance Concretes Subjected to Accelerated Curing[J]. Cement and Concrete Research, 2004, 34 (9): 1561~1567.
    [98] 刘建忠,刘加平,邓敏,等.矿物掺合料对混凝土抗压强度和氯离子渗透性能的影响[J].混凝土与水泥制品,2005,(4):11~13.
    [99] 曹芳,马保国,李友国,等.混凝土的渗透性能及测试方法的对比分析[J].混凝土,2002,(10):15~17.
    [100] Al-Amoudi O S B. Attack on Plain and Blended Cements Exposed to Aggressive Sulfate Environments[J]. Cement and Concrete Composites, 2002, 24 (3): 305~316.
    [101] Tian B, Mennashi D C. Does Gypsum formation during sulfate attack on Concrete Lead to Expansion[J]. Cement and Concrete Research, 2000, 30 (1): 117~123.
    [102] 马保国,高小建,罗忠涛.矿物掺合料对水泥砂浆TSA侵蚀的影响[J].材料科学与工程,2006, 24(2):230~234.
    [103] Kjellsen K O, Wallevik O H, Fjallberg L. Microstructure and Microchemistry of the Paste-Aggregate Interface Transition Zone of High-Performance Concrete[J]. Advances in Cement Research, 1998, 10 (1): 33~40.
    [104] Chatterji S. Concrete Durability and CaO/SiO2 Mole Ratio of CSH [J]. Cement and Concrete Research, 1995, 25 (5): 929~932.
    [105] 袁润章.胶凝材料学[M].武汉:武汉工业大学出版社,1996.
    [106] 唐明,巴恒静,李颍.纳米级SiOx与硅灰对水泥基材料的复合改性效应研究[J].硅酸盐学报,2003,31(5):523~527.
    [107] 王文军,朱向荣,方鹏飞.纳米硅粉水泥土固化机理研究[J].浙江大学学报(工学版),2005,39(1):148~153.
    [108] Fu X, Hou W, Yang C, et al. Studies on High-strength Slag and Fly Ash Compound Cement[J]. Cement and Concrete Research, 2000, 30 (8): 1239~1243.
    [109] 李永鑫.含钢渣掺和料的水泥混凝土组成、结构与性能的研究[D].北京:中国建筑材料科学研究院,2003.
    [110] Michal G A, Marek Z. Depth-sensing Indentation Method for Evaluation of Efficiency of Secondary Cementitious Materials[J]. Cement and Concrete Research, 2004, 34 (4): 721~724.
    [111] Lee F M著.唐明述,杨南如,胡道和,等译.水泥和混凝土化学(第三版)[M].北京:中国建筑工业出版社,1984.
    [112] 连丽,印海东,廖卫东.混凝土界面区的显微硬度研究[J].国外建材科技,2005,26(2):8~11.
    [113] 李永鑫,陈益民.磨细矿物掺合料对水泥硬化浆体孔结构及砂浆强度的影响(英文)[J].硅酸盐学报,2006,34(5):575~579.
    [114] 陈惠苏,孙伟,Stroeven P.水泥基复合材料集料与浆体界面研究综述(一):实验技术[J].硅酸盐学报,2004,32(1):63~69.
    [115] 陈惠苏,孙伟,Stroeven P.水泥基复合材料集料与浆体界面研究综述(二):界面微观结构的形成劣化机理及其影响因素[J].硅酸盐学报,2004,32(1):70~79.
    [116] 陈惠苏.水泥基复合材料集料—浆体界面过渡区微观结构的计算机模拟及相关问题研究[D].南京:东南大学,2003.
    [117] 陈惠苏,孙伟,赵庆新,等.截面分析法对界面过渡区厚度的放大作用[J].硅酸盐学报,2003,31(11):1130~1134.
    [118] Diamond S, Huang J. The Interfacial Transition Zone: Reality or Myth?[A]. In: Katz A, Bentur A, Alexander M, et al, eds. The Interfacial Transition Zone in Cementitious Composites[C]. RILEM Proceedings 35, London: E&PN SPON, 1998. 3~39.
    [119] Rao G A, Prasad B K R. Influence of the Roughness of Aggregate Surface on the Interface Bond Strength[J]. Cement and Concrete Research, 2002, 32 (2): 253~257.
    [120] Kim J H, Robertson R E. Effect of Polyvinyl Alcohol on Aggregate-paste Bond Strength and the Interfacial Transition[J]. Advanced Cement Based Materials, 1998, 8 (2): 66~76.
    [121] Kjellsen K O, Wallevik O H, Llberg L. Microstructure and Microchemistry of the Paste-aggregate Interfacial Transition of High Performance Concrete[J]. Advances in Cement Research, 1998, 10 (1): 33~41.
    [122] 水中和,秦明强,刘佳,等.抗裂防水剂对新旧混凝土界面结合的影响研究[J].混凝土,2005,(9):55~57.
    [123] 高剑平,潘景龙,王雨光.不同界面剂对新旧混凝土粘结强度影响的试验研究[J].哈尔滨建筑大学学报,2001,34(5):25~29.
    [124] 罗白云,熊光晶,李庚英,等.减缩剂改性新老混凝土修补界面层的细观结构与粘结强度[J].硅酸盐通报,2004,(6):110~112.
    [125] 黄传真,张树生,艾兴,等.新型复合材料界面研究的现状与展望[J].材料导报,1996,(4):15~18.
    [126] 张竞男,胡晓波,鲍光玉,等.粉煤灰高性能混凝土弹性模量的试验研究[J].混凝土,2003,(11):42~44.
    [127] Halamickova P, Detwiler R J, Bentz D P, et al. Water Permeability and Chloride Ion Diffusion in Portland Cement Paste Mortars : Relationship to Sand Content and Critical Pore Diameter[J]. Cement and Concrete Research, 1995, 25 (4): 790~802.
    [128] Costa U, Facoetti M, Massazza F. Permeability of the Cement-aggregate Interface: Influence of the Type of Cement, Water/cement Ration and Superplasticizer[A]. In: Vazquez E ed. Admixtures for Concrete: Improvement of Properties[C]. RILEM Proceedings 5. London: Chapman and Hall, 1990. 392~401.
    [129] 王田凤,毛科峰,邦建军.水泥石氯离子扩散系数预测的有限元方法[J].混凝士,2006,(12):4~5.
    [130] 曲立清,李元,迟培云.青岛海湾大桥桥桩高性能混凝土应用技术研究[J].混凝土,2006,(7):72~75.
    [131] Sujata K, Xi Y, Jennings H M. Interfacial Shrinkage in Mortars[A]. In: Chong K P ed. Materials for the New Millennium. Proceeding of 4th Materials Engineering Conference[C]. New York: American Society of Civil Engineering, 1996. 1669~1676.
    [132] 郝文化.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.
    [133] 张松涛,李民.ANSYS在分析混凝土结构温度场及温度应力中的应用[J].中国水运(理论版),2006,4(5):54~56.
    [134] David G G, Shigen (Eric) Li, Gregory C. F, et al. Splitting Prism Test Method to Evaluate Concrete-to-Concrete Bond Strength[J]. ACI Materials Journal, 1999, 96 (3): 359~366.
    [135] 董荣珍.高性能彩色印模饰面混凝土技术的研究[D].武汉:武汉理工大学,2002.
    [136] 李耀天.梯度功能材料研究与应用[J].金属功能材料,2000,7(4):15~23.
    [137] 郭成,朱维斗,金志浩.梯度功能材料的研究现状与展望[J].稀有金属材料与工程,1995,24(3):18~25.
    [138] 水中和,万惠文.老混凝土中骨料—水泥界面过渡区(ITZ)(Ⅰ)—元素与化合物在ITZ的富集现象[J].武汉理工大学学报,2002,24(4):21~23.
    [139] 水中和,万惠文.老混凝土中骨料—水泥界面过渡区(ITZ)(Ⅱ)—元素在界面区的分布特征[J].武汉理工大学学报,2002,24(5):22~25.
    [140] 杨人和,刘宝元,吴中伟.水泥石与石灰石集料界面过渡区孔结构及其CH晶体亚微观结构的研究[J].硅酸盐学报,1989,17(4):302~307.
    [141] 周小能,史思祥,李耀.盾构隧道钢筋混凝土管片制作[J].葛洲坝集团科技,2005,(2):34~38.
    [142] 李民强.预制钢筋混凝土管片生产工法[J].混凝土与水泥制品,2005,(2):34~38.
    [143] 秦中华,黄标生.盾构管片生产中的工艺控制[J].广东建材,2005,(3):37~38.
    [144] 刘福宏,邢金兰,孙振两.盾构管片生产工艺研究[J].天津建设科技,2004,(2):38~40.
    [145] 叶彬彬.地铁管片生产质量控制要点[J].广东建材,2004,(7):41~42.
    [146] JGJ/T 23—2001.回弹法测试混凝土抗压强度技术规程,2001.
    [147] 张苏杭.回弹_取芯法测定混凝土强度的相关回归分析[J].中国农村水利水电,2006,(12):92~94.
    [148] 周新刚.混凝土结构耐久性与损伤防治[M].北京:中国建材工业出版社,1999.
    [149] 罗云峰,成志辉,李民强,等.浅谈地铁管片的表面龟裂现象[J].混凝土与水泥制品,2003,(2):24~25.
    [150] 竺维彬,鞠世健.盾构隧道管片开裂的原因及相应对策[J].现代隧道技术,2003,40(1):21~25.
    [151] 季常煦,王信刚,王凯,等.地下工程结构混凝土的耐久性分析与研究[J].武汉理工大学学报,2006,28(8):43~45.
    [152] Thomas M D A, Bamforth P B. Modelling Chloride Diffusion in Concrete—Effect of Fly Ash and Slag[J]. Cement and Concrete Research, 1999, 29 (4): 487~495.
    [153] Magge M, Helland S, Poulsen E, et al. Service Life Prediction of Existing Concrete Structure Exposedto Marine Environment[J]. ACI Materials Journal, 1996, 93 (6): 602~608.
    [154] Funahashi M. Predicting Corrosion—Free Service Life of a Concrete Structure in a Chloride Environment[J]. ACI Materials Journal, 1990, 87 (6): 581~587.
    [155] 郝晓丽.氯腐蚀环境混凝土结构耐久性与寿命预测[D].西安:西安建筑科技大学,2004.
    [156] 孙富学,荣耀.隧道衬砌结构耐久寿命预测研究[J].地下空间与工程学报,2006,2(3):358~360.
    [157] Berke N S, Hicks M C. Predicting Chloride Profile in Concrete[J]. Corrosion Engineering, 1994, (3): 234~238.
    [158] 余红发,孙伟,鄢良慧,等.混凝土使用寿命预测方法的研究Ⅰ——理论模型[J].硅酸盐学报,2002,30(6):686~690.
    [159] 余红发,孙伟,麻海燕,等.混凝土使用寿命预测方法的研究Ⅱ——模型验证与应用[J].硅酸盐学报,2002,30(6):691~695.
    [160] 余红发,孙伟,麻海燕,等.混凝土使用寿命预测方法的研究Ⅲ——混凝土使用寿命的影响因素及混凝土寿命评价[J].硅酸盐学报,2002,30(6):696~701.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700