用户名: 密码: 验证码:
东海天然气水合物地球物理特征及全波形反演方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球物理方法是目前海域天然气水合物和游离气识别与预测分析的重要手段,并且已经由早期主要研究地层的速度和振幅信息发展到利用波形特征进行叠前反演,提取多种属性、多种弹性参数进行综合分析的阶段,因此对水合物地层进行综合地球物理属性研究具有重要的理论意义和实践意义。
     本文通过对2001年东海973航次在冲绳海槽取得的多道地震数据进行有针对性的特殊处理,并通过精细地地震地层解释,发现海槽南部存在大量的泥底辟构造并伴生天然气水合物。针对DMS01-5测线上的泥底辟构造,分别从叠加速度分析、砂泥岩比分析、计算海底热流与实测海底热流对比分析、流体势能分析和波阻抗反演分析等几方面探讨了泥底辟型天然气水合物的地球物理特征,并对该处底辟顶部和其周围岩层中似海底反射(BSR)的成因进行了探讨,认为这里的BSR并不代表天然气水合物稳定带的底界,而分别对应于天然气水合物生成带的底界和游离气的顶界。
     基于波动方程的一维半空间叠前全波形反演可以求取多个弹性参数,同时可以获得水合物沉积层精细的速度结构,这对天然气水合物和游离气的识别进而估算天然气水合物和游离气的含量至关重要。本文系统讨论了在Kennett广义反射透射系数矩阵正演基础上叠前全波形反演的遗传算法。Kennett广义反射透射系数矩阵正演算法包含了自由表面反射、薄互层层间多次反射波、透射反射波以及P-SV波之间的相互转换波,适合水合物层精细速度结构研究。采用遗传算法进行全波形反演克服了传统局部线性最优化方法依赖初始模型,需要利用目标函数导数信息的不足之处,算法收敛速度较快并且具有一定的稳定性。
The most gas hydrates and free gases in the marine strata were identified and predicted by using the seismic data for quantitative analysis over the past decades. Most of these quantitative studies relied on the P wave seismic velocities and the seismic reflection amplitude variation associated with the presence of the gas hydrates and free gases. Additional information was contained in the detailed waveforms. As a result, multi-attribute analysis of prestack seismic data for identification of gas hydrates was developed.
     Many mud diapirs had been recognized in southern Okinawa Trough by a multi-channel seismic 973 surveying on R/V KEXUE I in 2001. Gas hydrates had been found in the layers immediately above mud diapirs and in the host sediment. Formation of mud diapirs on the seismic line DMS01-5 and their seismic characteristics associated with gas hydrates were studied via stacking velocity analysis, heat flow calculation from the bottom simulating reflector (BSR), fluid potential analysis, density and interval velocity measurements, and impedance inversion. It has been found that the BSRs are not always be indicative of the base of the gas hydrate stability zone (BGHSZ), which could indicate the base of the saturated gas hydrate formation zone (BSGHFZ) and the top of the free-gas zone (TFGZ) in different mud-diapir-associated strata.
     In this thesis a prestack full waveform inversion using a genetic algorithm was presented to obtain the P and S wave seismic velocities of a horizontally, finely layered elastic medium. The generalized reflection transmission matrix method intruded by Kennett was chosen to calculate a complete seismic response for a stratified elastic half space, which including free-surface waves, mode conversions and multiple reflections. Genetic algorithm was a global optimization algorithm, which worked with a group of models simultaneously and used stochastic processes to guide the search for an optimal solution with little priori constrains, other than the conventional local linearization algorithms which required a good starting model and the derivative information.
引文
Al-Chalabi, M., An analysis of stacking, rms, average, and interval velocities over a horizontally layered ground, Geophys. Prosp., 1974, 22: 458-475.
    Andreassen, K., Hart, P. E., and Grantz, A., Seismic studies of a bottom simulating reflector related to gas hydrate beneath a continental margin of the Beaufort Sea, J. Geophys. Res., 1995, 100: 12659–12673.
    Andreassen, K., Hart, P.E., and Mackay, M., Amplitude versus offset modeling of the bottom simulating reflection associated with submarine gas hydrates, Marine Geology, 1997, 137: 25-40.
    Berné, S, Vagner, P, Guichare, F, et al, Pleistocene forced regressions and tidal sand ridges in the East China Sea. Marine Geology, 2002, 188: 293-315.
    Bouchon, M., and Ake, K., Discrete wavenumber representation of seismic source wave fields, Bull. Seis. Soc. Am., 1977, 71: 959-971.
    Brooks J M, Cox H B, Bryant W R, et al., Association of gas hydrates and oil seepages in the Gulf of Mexico. Org. Geochem. 1986,10: 221-234.
    Brown K, Westbrook G K., Mud diapirsm and subcretion in the Barbados ridge accretionary complex: The role of fluids in accretionary processes. Tectonics, 1988, 7: 613-640.
    Bunks C., Saleck F. M., Zaleski S., Multiscale seismic waveform inversion. Geophysics, 1995, 60(5): 1457-1473.
    Cande S C, Leslie R B, Parra J C, et al., Interaction between the Chile Ridge and Chile Trench: geophysical and geothermal evidence, J Geophys Res, 1987, 92: 495 – 5201.
    Carcione, J.M., and Tinivella, U., Bottom-simulating reflectors: Seismic velocities and AVO effects, Geophysics, 2000, 65(1): 54-67.
    Cary, P.W., and Chapman, C.H., Automatic 1-D waveform inversion of marine seismic refraction data, Geophys. J., 1988, 93: 527-546.
    Chapman, C.H., A new method for computing synthetic seismograms, Geophys. J. Roy. Astr. Soc., 1978, 54: 481-518.
    Chen, M. P., Riedel, M., Hyndman, R.D., and Dosso, S.E., AVO inversion of BSRs in marine gas hydrate studies, Geophysics, 2007, 72(2): 31-43.
    Connolly, P., Elastic impedance, The Leading Edge, 1999, 18(4): 438-452. Dai J., Xu, H., Detection and estimation of gas hydrates using rock physics and seismic inversion: Examples from the northern deepwater Gulf of Mexico. The Leading Edge, 2004, 23 (1):60-66.
    Davis E E, Hyndman R D, Villinger H. Rates of fluid expulsion across the northern Cascadia accretionary prism: constraints from new heat flow and multichannel seismic reflection data. J Geophys Res, 1990, 95: 8869 – 8889.
    Dickens, G. R., Quinby-Hunt, M.S., Methane hydrate stability in seawater, Geophys. Res. Lett., 1994, 21: 2115-2118.
    Dietrich, M., Modeling of marine seismic profiles in the t-x and z-p domain, geophysics, 1988,53:453-465.
    Dietrich, M., and Karmendi, F., Perturbation of the planewave reflectivity of a depth dependent elastic medium by weak inhomogeneities, Geophys. J. Internat., 1990, 100: 203-214.
    Dix,C.H., Seismic velocities from surface measurement, Geophysics, 1955, 20: 68-86. Dvorkin, J., and Nur, A., Rock physics for characterization of gas hydrates, in: The Future of Energy Gases, U. S. Geol. Surv. Prof. Pap. 1993, 1570: 293-298.
    Dvorkin, J., Praasad, M., and Sakai, A., Elasticity of marine sediments, Geophys. Res. Lett., 1999, 26: 1781-1784.
    Ecker C., Dvorkin J., and Nur A. Sediments with gas hydrate: Internal structure from seismic AVO. Geophysics, 1998, 63:1659-1669.
    Ecker, C., Jack, D., and Amos, M.N., Estimating the amount of gas hydrate and free gas from marine seismic data, Geophysics, 2000, 65(2): 565-573.
    Ecker, C., Seismic Characterization of Methane Hydrate Structures, California: Stanford University, 2001.
    Ferguson I J, Westbrook G K, Langseth M G, Heat flow and thermal models of the Barbados ridge accretionary complex . J Geophys Res, 1993, 98: 4121–4142.
    Fillippone W. R., Estimation of formation parameter and the predicting of overpressure from seismic data: Research Symposium on Geopressures Studies, SEG Meeting, Dalles, Taxes, 1982.
    Fryer, G. J., A slowness approach to the reflectivity method of seismogram synthesis, Geophys. J. R. Astron. Soc., 1981, 63: 747-758.
    Fuchs, K., Müller,G., Computation of synthetic seismograms with the reflectivity method and comparison with observations. Geophys J. Roy. Astr. Soc. 1971, 23: 417-433.
    Fullagar, P. K., Spike recovery deconvolution: in Fitch, A. A., Ed., Developments in geophysical exploration methods, Vol.6, Elsevier Science Publ. Co., Inc, 1985.
    Ganguly N, Spence G D, Chapman N R, et al. Heat flow variations from bottom simulating reflectors on the Cascadia margin. Marine Geology, 2000, 164: 53-68.
    Gardner, G. H. F., Formation velocity and Density – the Diagnostic Basics for stratigraphic traps. Geophysics, 1974, 39 (6): 882-894.
    Ginsburg G D, Ivanov V L, Soloviev V A., Natural gas bydrates of the world's oceans. Oil and Gas Content of the World's Oceans. PGO Sevmorgeologia, 1984, 141-158.
    Ginsburg G D, Soloviev V A., Mud volcano gas hydrates in the Caspian Sea. Bull. Geol. Soc. Denm, 1994, 41:95-100.
    Goubkin I M, Fedorov S F., Mud volcanoes of the Soviet Union and their connection with the genesis of petroleum fields in Cremea-Caucasu geologic province. USSR Academy of Science, 1938.
    Hajnal, Z., and Sereda, I. T., Maximum uncertainty of interval velocity estimation, Geophysics, 1981, 46: 1543–1547.
    Hamilton, E.L., Vp/Vs and poisson’s ratios in marine sediments and rocks, J. Acoust. Soc. Am., 1979, 66(4): 1093-1101.
    Hato, M., Matsuoka, T., Inamori, T., and Saekj, T., Detection of methane hydrate bearing zones using seismic attributes analysis, The Leading Edge, 2006, 607-609
    Helgelsen, J., Magnus, I., Prosser, S., Saigal, G., Aamodt, G., Dolberg, D., and Busman, S., Comparsion of constrained sparse spike and stochastic inversion for porosity prediction at Kristin Field, The Leading Edge, 2000, 19(4): 400-407.
    Herman, B. M., Anderson, R. N., Truchan, M., Extensional tectonics in the Okinawa Trough. AAPG Memoir, 1978, 29: 199-208
    Hernry, P., Le Pichon, X., Lallemant, S., et al. Fluid flow in and around a mud volcano field seaward of the Barbados accretionary wedge: results from Manon cruise. J. Geophys. Res., 1996, 101: 20297-20323
    Higgins, G. E., Saunders, J. B. Mud volcanoes-their nature and origin: contribution to the geology and paleobiology of the Carribbean and adjacent areas. Verh. Naturforsch. Geschel. Basel, 1973, 84: 101-152
    Holbrook W.S., H. Hoskins, W.T. Wood, R.A. Stephen, Lizarralde, Leg 164 Science Party, Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling, Science 273, 1996, 1840-1843.
    Hubbert, M. K., Entrapment of petroleum under hydrodynamic condition. AAPG Bulletin, 1953, 37(8): 1954-2026.
    Hyndman R D, Foucher J P, Yamano M, et al. Deep sea bottom simulating reflectors: calibration of the base of the hydrate stability field as used for heat flow estimates. Earth and Planetary Science Letters, 1992, 109: 289 – 301.
    Hyndman R D, Wang K, Yuan T, et al. Tectonic sediment thickening, fluid expulsion, and the thermal regime of subduction zone accretionary prisms: the Cascadia margin off Vancouver Island. J Geophys Res, 1993, 98: 21865 – 21876.
    Ivanov M K, Limonov A F, Wan Weering Tj C E., Comparative characteristics of the Black Sea and Mediterranean Ridge mud volcanoes. Mar.Geo.1996,132: 253-271
    Kaul N, Rosenberger A, Villinger H. Comparison of measured and BSR derived heat flow values, Makran accretionary prism, Pakistan, Marine Geology, 2000, 164: 37 – 51.
    Kennett, B. L. N., Theoretical reflection seismograms for an elastic medium, Geophys. Prosp., 1979, 27: 301-321.
    Kennett, B. L. N., Seismic waves in a stratified half-space II – Theoretical seismograms, Geophys. J. Roy. Astr. Soc., 1980, 61: 1-10.
    Kennett, B. L. N., Seismic wave propagation in stratified media, Cambridge Univ. Press, 1983.
    Kennett, B. L. N., and Clarke, T. J., Seismic waves in a stratified half-space-IV P-SV wave decoupling and surface wave dispersion, Geophys. J. Roy. Astr. Soc., 1983, 72: 633-645.
    Kimura. M., Uyeda, S., Kato, Y., et al., Active hydrothermal mounds in the Okinawa Trough backarc basin, Japan. Tectonophysics, 1988, 145: 319-324.
    Kong, F C, Lawver, A L, Lee, T Y., Evolution of the southern Taiwan-Sinzi Folded Zone and opening of the southern Okinawa trough. Journal of Asian Earth Sciences, 2000, 18: 325-341.
    Korenaga, J., Holbrook, W.S., Singh, S.C., and Minshull, T.A., Natural gas hydrates on the southeast U.S. margin: constraints from full-waveform and travel time inversions of wide-angle seismic data: Jour. Geophys. Res., 1997, 102: 15345-15365.
    Kvenvolden K A. Methane hydrate- a major reservoir of carbon in the shallow geosphere? Chem. Geol. 1988, 71:41-51.
    Lachenbruch, A.H., Rapid estimation of the topographic disturbance to superficial thermal gradients, Rev.Geophy., 1968, 6: 365-400.
    Lance, S., Henry, P., Le Pichon, X., et al. Submersible study of mud volcanoes seaward of the Barbados accretionary wedge: sedimentology, structure and rhelogy, Mar. Geol. 1998, 145: 255-292.
    Lee, C. S., Shor, G. G., Jr., Bibee, L. D., et al., Okinawa Trough : origin of a back-arc basin. Marine Geology, 1980, 35: 219-241.
    Lee, M.W., Hutchinson, D.R., Collett, T.S., and Dillon, W.P., Seismic velocities for hydrate-bearing sediments using weighted equation, J. Geophys. Res. 1996, 101(B9): 20347-20358.
    Lee, M.W., Hutchinson, D.R., Agena, W.F., Seismic character of gas hydrate on the Southeastern U.S. continental margin, Mar. Geophys. Res., 1998, 16:163-184.
    Letouzey, J., Kimura, M., Okinawa Trough genesis: structure and evolution of backarc basin development in a continent. Mar. Pet. Geol., 1985, 2: 111-130.
    Letouzey, J., Kimura, M., The Okinawa Trough: genesis of a back-arc basin developing along a continental margin. Tectonophysics, 1986, 125: 209-230.
    Limonov A F, Woodside J M, Cita M B., The Mediterranean Ridge and related mud diapirism: a background, Mar. Geol, 1996, 132: 7-19.
    Lu, S. and McMechan, G.A., Estimation of gas hydrate and free gas saturation, concentration, and distribution from seismic data, Geophysic, 2002, 67: 582-593.
    Lu, S. and McMechan, G.A., Elastic impedance inversion of multichannel seismic data from unconsolidated sediments containing gas hydrate and free gas. Geophysics, 2004, 69: 164-179.
    Lüdmann T, Wong H K. Characteristics of gas hydrate occurrences associated with mud diapirism and gas escape structures in the northwestern Sea of Okhotsk. Marine Geology, 2003, 201: 269-286.
    Mallick Subhashis, Some practical aspects of prestack waveform inversion using a genetic algorithm: An example from the east Texas Woodbine gas sand, Geophysics, 1999, 64(2): 326-336.
    Mallick, S., Huang,X., Lauve, J.,and Ahmad, R.,Hybrid seismic inversion: A reconnaissance tool for deepwater exploration, The Leading Edge, 2000, 1230-1237.
    Max, M.D. and Lowrie, A., Oceanic methane hydrates: A “frontier” gas resources. Journal of Petroleum Geology, 1996,19: 41-56.
    Milkov, A.V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol., 2000, 167: 29-42.
    Minshull, T. A., Singh, S. C., and Westbrook, G. K., Seismic velocity structure at a gas hydrate reflector, offshore western Columbia, from full waveform inversion: J. Geophys. Res., 1994, 99: 4715–4734.
    Minshull, T. A., White, R. Sediment compaction and fluid migration in the Makran accretionary prism, J. Geophys. Res., 1989, 89: 11,549-11,559.
    Mohammed A.B.,Colin M.S.,Rashad A., A feasibility study for pore-pressure prediction using seismic velocities in the offshore Nile Delta,Egypt. The Leading Edge, 2000, 1103-1107.
    Oz Yilmaz, The seismic data processing-Processing, inversion and interpretation of seismic data, Tulsa: Society of Exploration Geophysicists, 2001, 271-323.
    Park, J. O., Tokuyama, H., Shinohara, M., Suyehiro, K., Taira, A., Seismic record of tectonic evolution and backarc rifting in the southern Ryukyu island arc system. Tectonophysics, 1998, 294: 21-37.
    Paull C K, Brewer P G, Ussler W, et al., Evaluation of marine slumping as a mechanism to transfer methane from seafloor gas hydrate deposits into the upper ocean and atmosphere. Proceedings of the Fourth International Conference on gas hydrate. 2002, 19-23.
    Pecher, I.A., Minshull, T.A., Singh, S.C. and Huene, R.V., Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion, Earth and Planetary Science Letters, 1996, 139: 459-469.
    Rowe, M. M., and Gettrust, J. F., Fine structure of methane hydrate-bearing sediments on the Blake Outer Ridge as determined from deep-tow multichannel seismic data, J. Geophys. Res., 1993, 98: 463–473.
    Rudolph, G., Convergence Analysis of Canonical Genetic Algorithms, IEEE, Trans. on Neural Networks, 1994, 5(1): 96-101.
    Sain, K., Minshull, T.A., Singh, S.C. and Hobbs, R.W., Evidence for a thick free gas layer beneath the bottom simulating reflector in the Makran accretionary prism, Marine Geology, 2000,164:3-12.
    Sambridge, M. and Drijkoningen, G., Genetic algorithms in seismic waveform inversion, Geophys., J.Int., 1992, 109: 323-342.
    Sassen, R., Sweet, S.T., Milkov, A.V., Geology and geochemistry of gas hydrates,central Gulf of Mexico continental slope. Trans. Gulf Coast Assoc. Geol. 1999, 49: 462-468.
    Satyavani, N., Thakur, N.K., Kumar, N.A., and Reddi, S.I., Migration of methane at the diapiric structure of the western continental magin of India – insights from seismic data, Marine Geology, 2005, 219: 19-25.
    Sen, M.K., and Stoffa, P.L., Nonlinear one-dimensional seismic waveform inversion using simulated annealing, Geophysics, 1991a, 56: 1624-1638.
    Shipley, T.H., Houston, M.H., Buller, R.T., Seismic evidence for wide-spread possible gas hydrate horizons on continental slopes and margins. Am Assoc Pet Geol Bull, 1979, 63: 2204 – 2213。
    Sibuet, J.C., Deffontaines, B., Hsu, S.K., et al. Okinawa Trough back-arc basin: Early tectonic and magmatic evolution. J. Geophy. Res., 1998, 103(B12):30245-30267.
    Sibuet, J. C., Letouzey, J., Barbier, F., et al., Back arc extension in the Okinawa Trough. Jour. Geophys. Res., 1987. 92(13): 14041-14063.
    Singh, S., Minshull, T. A., and Spence, G., Velocity structure of a gas hydrate reflector, Science, 1993, 260: 204–207.
    Stephen, R. A., Synthetic seismograms for the case of the receiver within the reflectivity zone, Geophys. J. R. Astron. Soc., 1977, 51: 169-181.
    Stoll, R.D., Bryan, G.M., Physical properties of sediments containing gas hydrates, J. Geophys. Res. 1979, 84: 1929-1634.
    Taylor, M.H., Dillon, W.P., Pecher, I.A., Trapping and migration of methane associated with the gas hydrate stability zone at the Blake Rider Diapir: new insights from seismic data, Marine Geology, 2000, 164: 79-89.
    Tang Yong, Jin Xiang-Long, Fang Yin-Xia, Sun P., Li X.,Seismic study of gas hydrate BSR in the Okinawa Trough, Acta Oceanologica Sinica, 2003,25(4): 59-66.
    Tinivella U, A method for estimating gas hydrate and free gas concentrations in marine sediments. Boll. Geofis. Teor. Applic., 1999, 40 (1): 19~30.
    Tinivella, U., Lodolo, E., The black ridge bottom-simulating reflector transect: tomographic velocity field and theoretical model to estimate methane hydrate quantities, Proceeding of the Ocean Drilling Program, Scientific Results, 2000, 164: 273-281.
    Torres-Verdin, C., Victoria, M., Merletti, G., and Pendrel, J., Trace-based and geostatistical inversion of 3-D seismic data for thin sand delineation: An application to San Jorge Basin, Argentina, The Leading Edge, 1999, 18(9): 1070-1077.
    Townend J. Estimates of conductive heat flow through bottom simulating reflectors on the Hikurangi and southwest Fiordland continental margins, New Zealand. Marine Geology, 1997, 141: 209 – 220.
    Trehu, A. M., Lin, G., Maxwell, E., Goldfinger, C., A seismic reflection profile across the Cascadia subduction zone offshore central Oregon: new constraints on methane distribution and crystal structure, J. Geophys. Res. 1995, 100: 15101-15116.
    White, P.S., and Stephen, R.A., Compressional to shear wave conversion in oceanic crust, Geophys. J. Roy. Astr. Soc., 1980, 63: 547-565.
    Wood, W.T., Stoffa, P.L., and Shipley, T.H., Quantitative detection of methane hydrate through high-resolution seismic velocity analysis, J. Geophys. Res., 1994, 99: 9681-9695.
    Xu, W., Ruppel, C., Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous sediments, J. Geophys. Res., 1999, 104: 5,081-5,095.
    Xia G. Y., Sen M. K. and Stoffa P. L., 1-D elastic waveform inversion : A divide-and-conquer approach, Geophysics, 1998, 63(5):1670-1684.
    Yamano, M., Uyeda, S., Aoki, Y., Estimates of heat flow derived from gas hydrates. Geology, 1982, 10: 339 – 3431.
    Yao, Z.X., and Harkrider, D.G., A generalized reflection-transmission coefficient matrix and discrete wavenumber method for synthetic seismograms, Bull. Seism. Soc.Amer., 1983, 73: 1685-1699.
    Yin P, Berne S, Vagner P, et al. Mud volcanoes at the shelf margin of the East China Sea. Marine Geology, 2003, 194: 135-149.
    Yuan, T., Hyndman, R. D., Spence, G. D., and Desmons, B., Seismic velocity increase and deep-sea hydrate concentration above a bottom-simulating reflector on the northern Cascadian slope, J. Geophys. Res., 1996, 101: 13655–13671.
    Yuan T., Spence, G.D., Hyndman, R.D., Minshull, T.A. and Singh, S.C., Seismic velocity studies of a gas hydrate bottom-simulating reflector on the northern Cascadia continental margin: Amplitude modeling and full waveform inversion, J. Geophys. Res., 1999,104: 1179-1191.
    方银霞,黎明碧,金翔龙,李家彪,东海冲绳海槽天然气水合物的形成条件,科技通报,2003, 19(1):1-5.
    郭军华、吴时国、范奉鑫、喻普之, 冲绳海槽西侧陆坡及其邻区天然气水合物构造特征. 海洋与湖沼, 2007.
    金翔龙,喻普之.冲绳海槽的构造特征与演化.中国科学(B 辑),1987,17(2): 196-203.
    李乃胜,姜丽丽,李常珍,冲绳海槽地壳结构的研究.海洋与湖沼, 1998, 29(4): 441-450
    李培英,王永吉,刘振夏, 冲绳海槽年代地层与沉积速率, 中国科学(D 辑), 1999, 29(1):50-56
    李松康,刘军荣,沙世锦. 海上精细目标处理去噪技术应用研究. 北京 2004 国际地球物理会议张贴论文
    李旭,陈运泰,合成地震图的广义反射透射系数矩阵方法,地震地磁观测与研究,1996,17(3):1-20.
    梁劲,王宏斌,郭依群,南海北部陆坡天然气水合物的地震速度研究,现代地质,2006,20(1):123-129.
    刘怀山,周正云.用于研究东海天然气水合物的地震资料处理方法. 青岛海洋大学学报, 2002, 32(3):441-448.
    刘刚,陈开远,陈新军.琼东南盆地松东地区气势分析.天然气工业, 2004, 4(3):36-39.
    刘建华.南冲绳海槽地震反射波特征及其地质解释.东海海洋,2001, 19(1):19-26.
    刘学伟,李敏锋,张聿文等, 天然气水合物地震响应研究-中国南海 HD152 测线应用实例. 现代地质,2005,19(1):33-38
    刘勇,康立山,陈毓屏.非数值并行算法(第二册)-- 遗传算法. 北京:科学出版社, 1998,1-215.
    陆基孟. 地震勘探原理[M]. 山东:石油大学出版社, 1996, 254-261.
    栾锡武 张训华,东海及琉球沟弧盆系的海底热流测量与热流分布 地球物理学进展,2003,18(4):670-678.
    栾锡武,秦蕴珊,张训华,龚建明,东海陆坡及相邻槽底天然气水合物的稳定域分析,地球物理学报,2003,46(4):467-475.
    马在田,耿建华,董良国,宋海斌,海洋天然气水合物的地震识别方法研究,海洋地质与第四纪地质,2002,22(1):1-8.
    秦蕴珊,赵一阳,陈丽蓉,东海地质[M]. 北京:科学出版社. 1987.
    阮爱国,李家彪,初凤友,李湘云,海底天然气水合物层界面反射 AVO 数值模拟,地球物理学报,2006,49(6):1826-1835.
    石琳珂,界面位场的遗传反演方法研究,华北地震科学,1997,15(1):1-9.
    宋海斌,Matsubayashi Osamu,杨胜雄等,含天然气水合物沉积物的岩石物性模型与似海底反射层的 AVA 特征,地球物理学报,2002,45(4):546-556.
    宋海斌,Matsubayashi Osamu, Kuramoto Shin’ichi.天然气水合物似海底反射层层的全波形反演. 地球物理学报, 2003, 46(1) : 42-46.
    宋海斌,松林修,吴能友,郝天珧,海洋天然气水合物的地球物理研究(I):岩
    石物性,地球物理学进展,2001,16(2):118-126.
    宋海斌,耿建华,Wang How-King 等,南海北部东沙海域天然气水合物的初步研究,地球物理学报,2001,44(5):687-694.
    孙春岩,牛滨华,黄新武等,天然气水合物地震似海底反射现象 AVO 正演模拟研究,现代地质,2003,17(3):337-344.
    唐勇,金翔龙,方银霞等.冲绳海槽天然气水合物 BSR 的地震研究. 海洋学报,2003,25(4):59-66.
    王宏斌,梁劲,龚建华等,基于天然气水合物地震数据计算南海北部陆坡海底热流. 现代地质. 2005,19(1):67-73.
    王宏斌,张光学,杨木壮等,南海陆坡天然气水合物成藏的构造环境. 海洋地质与第四纪地质,2003,23(1):81-86
    王舒畋,梁寿生, 冲绳海槽盆地的地质构造特征与盆地演化历史. 海洋地质与第四纪地质, 1986,6(2):17-29
    王小平,曹立明,遗传算法—理论、应用与软件实现,西安交通大学出版社. 2002.
    王秀娟,刘学伟,吴时国.基于热弹性理论的天然气水合物和游离气饱和度估算. 石油物探,2005,44(6): 545~550
    王秀娟,吴时国,徐宁,南海陆坡天然气水合物饱和度估计,海洋地质与第四纪, 2005, 25(3): 89~95
    文鹏飞,张宝金,利用 AVO 研究西沙海槽水合物与 BSR 的对应关系,地学前缘,2005,12(3):277-281.
    吴律.τ-P 变换及应用[M]. 北京: 石油工业出版社. 1993,53-62
    吴时国、张光学、郭常升、钟少军、黄永样, 东沙海区天然气水合物 BSR 形成与稳定分布的地质构造因素. 石油学报, 2004,25(4), 8-16.
    杨木壮 吴能友 吴时国 梁金强 沙志彬 郭依群.南海北部陆坡特殊地质环境与BSR 分布.李家彪主编, 边缘海的形成演化与主要资源的关键问题专集。 海洋出版社,北京, 2004.
    殷八斤,曾灏, 杨在岩, AVO 技术的理论与实践[M]. 北京:石油工业出版社. 1995, 191-217
    张聿文,刘学伟,李海鸥,基于单相与双相介质拟海底反射的 AVO 研究,石油物探,2004,43(3):209-217.
    杨文达,东海陆坡天然气水合物地震波特征研究,上海地质,2004,89:36-42.
    姚伯初,南海天然气水合物的形成和分布,海洋地质与第四纪,2005,25(2):81-90.
    喻普之,李乃胜,东海地壳热流. 北京:海洋出版社,1992.,16, 74-100
    张明,伍忠良,天然气水合物 BSR 的识别与地震勘探频率,海洋学报,2004,26(4):80-88.
    朱红涛,流体势分析研究及应用.新疆石油学院学报, 2001,13(3):9-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700