用户名: 密码: 验证码:
人呼吸道甲型流感病毒受体的分布和感染H5N1流感病毒的病理变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.背景和目的
     2003年12月至今,H5N1禽流感相继在欧亚和非洲爆发,令人震惊的是到目前为止,WHO证实已造成335人感染,有引起世界性大流感的趋势。目前, H5N1病毒如何跨种属障碍感染人的分子机制仍未完全清楚。禽流感病毒在人感染率极低,同样人流感病毒很难在水禽类复制,其主要原因为受体结合特异性限制,流感病毒通过其表面HA与宿主细胞唾液酸受体特异性结合而感染宿主,绝大多数禽流感病毒与唾液酸α-2,3Gal受体结合,而人流感病毒与唾液酸α-2,6Gal受体结合,相应的禽类和人分别表达唾液酸α-2,3Gal受体和唾液酸α-2,6Gal受体为主。这种受体类型和分布不同被认为流感病毒在禽类和人之间跨种属传递的主要障碍。本研究目的是探讨人呼吸道各年龄组各部位流感病毒受体的分布规律、为H5N1病毒直接感染人提供理论依据以及禽流感病毒H5N1感染人的病理学特点和组织嗜性。
     2.方法
     2.1亲和组织化学法检测人呼吸道唾液酸α-2,3Gal和α-2,6Gal受体的表达。
     2.2人呼吸道组织的流感病毒体外感染。
     2.3应用免疫组织化学法,检测和观察人感染高致病禽流感病毒尸体解剖全身各组织器官和人呼吸道组织体外感染流感病毒后病毒抗原的分布。
     2.4免疫组化-免疫荧光双染法:免疫组化法单克隆抗体抗SP-A、CD68分别标记II型肺泡细胞和巨噬细胞,免疫荧光染色法抗流感病毒NP单克隆抗体标记流感病毒蛋白NP。
     2.5采用普通光学显微镜观察法,对1例人感染高致病禽流感病毒H5N1的系统尸体解剖病例组织标本进行病理学观察。
     3.结果
     3.1人呼吸道流感病毒受体的分布,唾液酸α-2,6Gal受体在气管、支气管呈高密度分布,随着支气管分级逐渐降低分布减少,至肺泡分布最少;而唾液酸α-2,3Gal受体以呼吸部即呼吸细支气管和肺泡为主,气管、支气管和细支气管少量分布。
     3.2胎儿、婴幼儿、儿童青少年和成年人呼吸道唾液酸α-2,3Gal和α-2,6Gal受体的表达无显著性差异。
     3.3 14例人标本,呼吸细支气管上皮细胞、肺泡Ⅱ型上皮细胞、肺巨噬细胞均被10株H5N1病毒感染,10株病毒感染无明显差异,而支气管至终末细支气管上皮细胞仅个别细胞感染,气管上皮细胞无感染。
     3.4人感染高致病禽流感H5N1病毒各组织器官的病理特点:脱屑性气管支气管炎,肺脏弥漫性肺泡上皮损伤和/或坏死、肺泡间隔淋巴浆细胞浸润和纤维化。肺外器官:肾小管局灶坏死,骨髓细胞少量细胞坏死,中枢神经系统少量细胞变性、坏死,脾脏白髓萎缩、红髓充血,肝细胞脂肪变性,胰腺外分泌部部分腺泡上皮坏死。
     3.5 H5N1病毒在各组织器官的分布:肺泡的II型肺泡细胞、巨噬细胞,肾小球系膜细胞,胰腺外分泌部腺泡上皮细胞和骨髓细胞、巨噬细胞流感病毒NP均呈阳性表达,显示出这些细胞为H5N1病毒主要攻击对象。其它胃肠道粘膜腺上皮、肾小管上皮细胞、中枢神经系统细胞、扁桃体巨噬细胞、气管和支气管上皮细胞、骨骼肌细胞、心肌细胞和脾脏的巨噬细胞少量阳性表达。
     4.结论
     4.1人呼吸道上皮细胞均有流感病毒唾液酸α-2,6Gal和α-2,3Gal受体的分布,以唾液酸α-2,6Gal受体分布为主。气管、支气管唾液酸α-2,6Gal受体呈高密度分布,随着支气管分级逐渐降低分布减少,至肺泡分布最少,而唾液酸α-2,3Gal受体以呼吸部即呼吸细支气管和肺泡为主,气管、支气管和细支气管仅少量分布。同时,人呼吸道发育成熟过程中,唾液酸α-2,3Gal和α-2,6Gal受体的表达无明显变化。
     4.2呼吸道组织对H5N1病毒敏感,呼吸细支气管上皮、肺泡Ⅱ型上皮细胞和肺泡巨噬细胞是其攻击的主要靶细胞,细支气管、支气管和气管少量上皮也可感染,支持唾液酸α-2,3Gal受体分布特点。
     4.3人气管至肺泡细胞同时表达肺泡唾液酸α-2,6Gal受体和α-2,3Gal受体,同时感染人和禽流感病毒。提示人也是重要流感病毒“基因混合器”,可能有助于病毒重配和形成大流行株的潜能。
     4.4 H5N1主要感染下呼吸道表达唾液酸α-2,3Gal受体的细胞,提示高致病禽流感病毒H5N1具有致命性但可能不易发生人传染人。
     4.5 H5N1病毒可引起播散性感染,累及全身多组织器官,肺脏是其侵害的最主要靶器官,其次是肾脏、骨髓、胰腺和中枢神经系统等。H5N1病毒在骨髓大量复制,可形成新的感染灶,加重病毒血症和全身各组织器官感染受累及为临床上疑似高致病禽流感病毒感染严重病例应用骨髓穿刺检测H5N1病毒不失为一种新的途径。
1 Background and object
     Since December 2003, avian H5N1 influenza viruses currently circulating in poultry in Eurasian and African countries have caused repeated infection in humans, constituting a significant and persistent pandemic threat. So far, 335 WHO-confirmed human cases of the virus infection have been identified. The molecular mechanism of interspecies transmission from avian species to human has still not been fully described. Avian influenza viruses do not efficiently infect humans. Conversely, human viruses replicate poorly in ducks. Host tropism of influenza viruses is restricted by receptor specificity. The binding of Influenza virus to host cell is mediated via the viral surface protein hemaggglutinin(HA), which recognized cell surface sialic acid (SA). HA from human or avian influenza viruses differ in their ability to recognize different receptor structure. Human influenza viruses preferentially bind to the SAα-2,6 Gal, whereas avian viruses prefer the SAα-2,3 Gal, which predominate in their respective target species, these different linkage types and their distribution have been considered as the major barrier for interspecies tansmission between avian species and human. The object in this report is to study the distribution and prevalence of SAα2,3Gal and SAα2,6Gal in the airway epithelia of different anatomical areas of the human respiratory tract of different age groups for providing evidence for transmission from avian to human of H5N1 viruses, and the pathological characteristic and tissue tropism of avian influenza A virus subtype H5N1 in human.
     2 Methods
     2.1 The expression of SAα2,3Gal and SAα2,6Gal receptor in tissues of trachea, bronchus, bronchiole and alveolus were detected using lectin histochemical analysis.
     2.2 The ex vivo infection of freshly-excised human tracheal, bronchial, bronchiolar and pulmonary tissues.
     2.3 The distribution of influenza virus antigen in the one case of full autopsy tissue samples from the patient with fatal H5N1 influenza and ex vivo influenza viruses-infected tissues of trachea, bronchus, bronchiole and alveolus were analyed by immunohistochemistry.
     2.4 Double staining: The monoclonal antibody against surfactant protein A of type II alveolar cell and the monoclonal antibody against CD68 of macrophage with immunohistochemistry, respectively. The monoclonal antibody against NP protein of influenza virus with immunofluorescence were carried on the ex vivo infection of human lung tissues.
     2.5 Pathological features of 1 case of systematic autopsy tissues from the patient with fatal H5N1 influenza was studied by light microscopy.
     3 Results
     3.1 Distribution of SAα2,6Gal was mainly detected in the trachea and bronchus and to a lesser degree in the alveolar cell. In contrast, SAα2,3Gal receptor was more regularly observe in respiratory bronchiole and lung alveolus cells, and only sporadic expression of SAα2,3Gal was observed in trachea, bronchus and bronchiole epithelial cells.
     3.2 There were no significant difference for SAα2,6Gal andα2,3Gal receptor expression levels in the respiratory tract between antenates, infants, children and adults.
     3.3 Respiratory bronchiole epithelium cells, TypeⅡpenumonocytes and pulmonary macrophages were infected by all 10 strains in 14 cases of human sample and no difference in infection among 10 strains H5N1 viruses. But only sporadic infection of in bronchus and terminal bronchiole epithelium cells were observed, and trachea was not observed.
     3.4 Pathological feature of avian influenza A H5N1: Tracheal and bronchial desquamative inflammation. The pulmonary pathology was diffuse alveolar damage and/or necrosis, desquamative pneumonia plus interstitial lymphoplasmacytic infiltration and fibrosis. Pathological change of extrapulmonary organ and tissue, tubular focal necrosis of kidney, some of cells necrosis in bone marrow, The central nervous system (CNS) showed a few of cells degeneration and necrosis. the spleen showed atrophic white pulp and congested red pulp, hepatocyte steatosis, some gland epithelium cell of pars exocrina pancreatic necrosis was noted.
     3.5 The distribution of H5N1 viruses in all tissues and organs: Immunohistochemistry showed positive monoclonal antibody against NP of influenza virus in alveolar type II pneumocytes and macrophages, glomerular mesangial cells, pars exocrina pancreatic epithelium and various kinds of haemopoietic stem cells and macrophages. Positive reactions of monoclonal antibody against NP of influenza virus was also detected in a few of tracheal and bronchial epithelial cells, intestinal mucosal glandular epithelium, renal tubular epithelial cells, central nervous systemic gliocytes, tonsillar macrophages, skeletal muscle myocytes, cardiocytes , and macrophages in spleen.
     4 Conclutions
     4.1 Both SAα2,6Gal and SAα2,3Gal were expressed but SAα2,6Gal predominated in human respiratory tract. Distribution of SAα2,6Gal was mainly detected in the trachea and bronchus and to a lesser degree in the alveolar epithelium. In contrast, SAα2,3Gal receptor was more regularly observe in respiratory bronchiole and lung alveolus cells, and only sporadic expression of SAα2,3Gal was observed in trachea, bronchus and bronchiole epithelial cells. Also, There was no tendency for SAα2,6Gal andα2,3Gal receptor expression levels in the respiratory tract with respiratory system development.
     4.2 Respiratory tract tissues were susceptible to H5N1 viral infection. Respiratory bronchiole, typeⅡpenumonocyte and alveolar macrophage were the major target cells of H5N1 viral infection in human. Only sporadic infection of in bronchiolar, bronchial, tracheal epitheliums were observed. These supported the distribution of SAα2,3Gal receptor in respiratory tract.
     4.3 From bronchial epithelium to penumonocyte in human respiratory tract both expressed SAα-2,6Gal and SAα-2,3Gal, and were infected by human and avian viruses. These findings suggest that humans themselves may act as“mixing vessels”to facilitate reassortment events and potential generate an influenza virus with pandemic potential.
     4.4 H5N1 preferentially infects cells in the lower respiratory tract, where the avian virus receptor is prevalent. The result indicated that the H5N1 avian influenza virus is so lethal to humans but so difficult to spread.
     4.5 In human, H5N1 virus might cause a disseminated infection and multi-organ damages which were primary and predominant lung, next to kidney, bone marrow, pancreas and CNS and so on.
引文
[1] Webster RG, Bean WJ, Gorman OT, et al. Evolution and ecology of influenza A virues. Microbiol Rev, 1992; 56: 152-179
    [2] Murphy BR, Webster RG. Fields virology. 3rd edition Philadelphia: Lippincott-Raven, 1996;1397-1445
    [3] Fouchier RA, Munster V, Wallensten A, et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol ,2005; 79:2814-2822
    [4] Johnson NP, Mueller J. Updating the accounts: global mortality of the 1918-1920‘spanish’influenza pandemic.Bull.Hist.Med.2002; 76:105-115
    [5] Enserink M, Kaiser J. Avian flu finds new mammal hosts. Science, 2004;305:1385
    [6] Rogers GN and Paulson JC. Receptor determinants of human and animal influenza virus isolate: differences in receptor specificity of the H3 hemagglutinin based on species origin. Virology, 1983; 127:361-373
    [7] Rogers GN and Souza BLD. Receptor binding properties of human and animal H1 influenza virus isolates.Viology, 1989; 173: 317-322
    [8] Connor RJ, Kawaoka Y, Webster RG , et al. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. J Virol, 1994; 295:17-23
    [9] Ito T, Suzuki Y, Suzuki A, et al. Recognition of N-glycolyneuraminic acid linked togalactose by theα-2,3 linkage is associated with intestinal replication of influenza A in duck. J Virol, 2000; 74: 9300-9305
    [10] Couceiro JN, Paulson JC, Baum LG, et al. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium: the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res, 1993; 290: 155-165
    [11] Ito T, Couceiro JNSS, Kelm S, et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol, 1998; 72:7376-7373
    [12] Horimoto T, and Kawaoka Y. Influenza: lessons from past pandemics, warnings from current incidents. Nat.Rev.Microbiol., 2005;3:591-600
    [13] Matrosovich M, Tuzikov A, Bovin N, et al. Early alterations of the receptor-binding properties of H1, H2 and H3 avian influenza virus heamagglutinins after their introduction into mammals. J.Virol., 2000;74:8502-8512
    [14] Kim JA, Ryu SY , Seo SH.Cell in the respiratory and intestinal tract of chickens have different proportions of both human and avian influenza virus receptors. J Microbiol., 2005; 43: 366-369
    [15] Matrosovich M, Zhou N N, Kawaoka Y, et al. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol, 1999; 73: 1146-1155
    [16] Wan HQ and Perez D.R. Quail carry sialic acid receptor compatible with binding of avian and human influenza viruses. Virology, 2006; 346: 278-286
    [17] Makarova N V, Ozaki H, Kida H, et al. Replication and transmission of influenza viruses in Japanese quail .Virology, 2003;310:8-15
    [18] Beare AS and Webster RG. Replication of avian influenza viruses in human. Arch.Virol., 1991; 119: 37-42
    [19] Subbarao K, Klimov A, Katz J, et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science, 1998; 279: 393-396
    [20] Claas EC, Osterhaus AD, van Beek R, et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet, 1998; 351:472-477
    [21] Suarez D L, Perdue M L, Cox N, et al. Comparisons of highly virulent H5N1 influenza A viruses isolated from humans and chickens from Hong Kong. J Virol. 1998;72:6678-6688
    [22] Bridges CB, Katz JM, Seto WH, et al. Risk of influenza A (H5N1) infection among health care workers exposed to patients with influenza A (H5N1),Hong Kong. J. Infect. Dis., 2000; 181: 344-348
    [23] Xu X, Subbarao K, Cox NJ, et al. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96(H5N1) virus:similarity of its hemagglutinin gene to those to H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology, 1999; 261:15-19
    [24] Guan Y, Poon LLM, Cheung CY, et al. H5N1 influenza: a protean pandemic threat. Proc.Natl.Acad.Sci.U.S.A., 2004; 101:8156-8161
    [25] Sturm-Ramirez KM, Ellis T, Bousfield B, et al. Reemerging H5N1 influenza virus in Hong Kong in 2002 are highly pathogenic to duck. J Virol., 2004; 78:4892-4901
    [26] Peiris JS, YuWC, Leung CW, et al. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet, 2004;363: 617-619
    [27] World health organization conformed cumulative number of human case of avian influenza A/(H5N1):http://www.who.int/csr/disease/avian_influenza/country/cases_table_2007_11_12/en/index.html
    [28] Li KS, Guan Y, Wang J, et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature, 2004; 430: 209-213
    [29] World Health Organization Global Influenza Program Surveillance Network (2005). Evolution of H5N1 avian influenza viruses in Asia. Infect. Dis., 2005; 11: 1515-1521
    [30] Chen H, Smith GJ, Zhang SY, et al. Avian flu:H5N1 virus outbreak in migratory waterfowl. Nature, 2005(436): 191-192
    [31] Enserink K and Kaiser J. Avian flu finds new mammal hosts. Science, 2004; 305:1385
    [32] Kuiken T, Rimmelzwaan G, van Riel D, et al. Avian H5N1 influenza in cats. Science, 2004; 306: 241
    [33] Tran TH, Nguyen TL, Nugyen TD, et al. Avian influenza A H5N1 in 10 patients in Vietnam. N. Engl.J.Med, 2004; 350: 1179-1188
    [34] Ungchusak K, Auewarakul P, Dowell S, et al. Probable person-to-person transmission of avian influenza A (H5N1). N. Engl.J.Med, 2005; 352: 333-340
    [35] Smith GJD, Fan XH, Wang J, et al. Emegerce and predominace of an H5N1 influenza variant in China. Proc.Natl.Acad.Sci.USA, 2006; 103: 16963-16971
    [36] Fouchier RAM, Schneeberger PM, Rozendaal FW, et al. Avian influenza A virus ( H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome . Proc. Natl. Acad. Sci. USA, 2004; 101: 1356-1361.
    [37]郭元吉,谢健屏,王敏等.从我国人群中再次分离到H9N2亚型流感病毒.中华临床和实验病毒学杂志,2000;14:209-212
    [38] Lin YP , Shaw M, Gregory V , et al. Avian-to-human transmission of H9N2 subtype influenza A viruses : Relationship between H9N2 and H5N1 human isolates. Proc. Natl. Acad. Sci USA , 2000; 97: 9654-9658.
    [39] Peiris JSM, Yuen KY, Leung CW, et al. Human infection with influenza H9N2. Lancet, 1999; 354: 916-917
    [40] Ibricevic A, Pekosz A, Walter MJ, et al. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelium cells. J Virol, 2006; 80:7469-7480
    [41] Matrosovich MN, Matrosovich TY, Gray T,et al. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc.Natl.Acad.Sci.2006; 101: 4620-4624
    [42] Shinya K, Ebinal M, Yamada S, et al. Influenza virus receptor in the human airway. Nature, 2006; 440: 435-437
    [43] van Riel D, Munster VJ, Wit Ede, et al. H5N1 virus attachment to lower respiratory tract. Science, 2006; 312: 399
    [44] Nicholls JM, Chan MCW,Chan WY, et al. Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nature Medcine, 2007 ; 13: 147-149
    [45] Gu J, Xie ZG, Gao ZC, et al. H5N1 infection of the respiratory tract and beyond: a molecular pathology study. Lancet, 2007; 370: 1137-1145
    [1] Class EC, Osterhaus AD, van Beek R, et al. Human influenza H5N1 virus related to a highly pathogenic avian influenza virus. Lancet, 1998; 351: 472-477
    [2] Yuen KY, Chan PK, Peiris JSM, et al. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet, 1998; 351: 467-471
    [3] Peiris JSM, Yu WC, Leung CW, et al. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet, 2004; 363: 617-619
    [4] Beigel JH, Farrar J, Han AM, et al. Avian influenza A (H5N1) infection in human. N Engl J Med, 2005; 353:1374-1385
    [5] World health organization conformed cumulative number of human case of avian influenza A/(H5N1): http://www.who.int/csr/disease/avian_influenza/country/cases_table_2007_11_12/en/index.html
    [6] Fouchier RA, Schneeberger PM, Rozendaal FW, et al. Avian influenza A virus(H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad.Sci.USA, 2004; 101: 1356-1361
    [7] Peiris JSM, Yuen KY, Leung CW, et al. Human infection with influenza H9N2. Lancet, 1999;354: 916-917
    [8] Taubenberger JK, Reid AH, Lourens RM, et al. Characterization of the 1918 influenza virus polymerase genes. Nature,2005; 437: 889–893
    [9] Matrosovich MN, Gambaryan AS, Teneberg S, et al. Avian influenza viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higherconservation of the HA receptor-binding site. Virology, 1997; 233: 224-234
    [10] Skele J and Wiley D. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem, 2000; 69: 531-569
    [11] Matrosovich MN, Matrosovich TY, Gray T, et al. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc.Natl.Acad.Sci.USA,2006; 101: 4620-4624
    [12] Couceiro JNSS, Paulson J and Baum LG. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Research, 1993;29: 155-165
    [13] Shinya K, Ebinal M, Yamada S, et al. Influenza virus receptor in the human airway. Nature, 2006; 440: 435-436
    [14] Nicholls JM, Chan MCW, Chan WY, et al. Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nature Medcine, 2007; 13: 147-149
    [15] Haddad GG, Pérez Fontán JJ. Development of the respiratory system. In: Nelson WE, Behrman RE, Kliegmen RM, Arvin AM,eds. Nelson textbook of pediatrics. 15th ed. Philadelphia: WB Saunders Company; 1996. p. 1165-1167
    [16]许良中,杨文涛.免疫组织化学反应结果的判定标准.中国癌症杂志,1996;6:229-231
    [17] Suzuki Y, Kato H, Naeve CW, et al. Single-amino-acid substitution in an antigenic site of influenza virus hemagglutinin can alter the specificity of binding to cell membrane-associated gangliosides. J Virol, 1989; 63: 4298-4302
    [18] Ito T, Suzuki Y, Takada A, et al. Differences in sialic acid-galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. J Virol, 1997; 71: 3357-3362
    [19] Kobasa D, S Kodihalli, M Luo, et al. Amino Acid Residues Contributing to the Substrate Specificity of the Influenza A Virus Neuraminidase. J Virol, 1999; 73:6743-6751
    [20] Suzuki Y, Ito T, Suzuki T, et al. Sialic Acid Species as a Determinant of the Host Range of Influenza A Viruses. J Virol, 2000; 74: 11825-11831
    [21] Ibricevic A, Pekosz A, Walter MJ, et al. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelium cells. J Virol, 2006; 80: 7469-7480
    [22] van Riel D, Munster VJ,Wit Ede, et al. H5N1 virus attachment to lower respiratory tract. Science, 2006; 312: 399
    [23] Gu J, Xie ZG, Gao ZC, et al. H5N1 infection of the respiratory tract and beyond: a molecular pathology study. Lancet, 2007; 370: 1137-1145
    [24] Kandun IN, Wibisono H, Sedyaningsih ER, et al. Three Indonesian clusters of H5N1 virus infection in 2005. N Engl J Med, 2006; 355: 2186–2194
    [25] Kitagawa H and Paulson JC. Differential expression of five sialytransferase genes in human tissues.The Journal of Biochemical Chemistry, 1994; 269: 17872-17878
    [26] Yamada S, Suzuki Y, Suzuki T, et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature, 2006; 444: 378-382
    [1] World Health Organization global influenza program surveillance network. Evolution of H5N1 avian influenza viruses in Asian. Emerg. Inf. Dis.,2005; 11: 1515-1521
    [2] Mikhail N, Matrosovich TY,Tatyana T, et al. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci USA 2004; 101: 4620-4624
    [3] Ibricevic A, Pekosz A, Walter MJ, et al. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelium cells. J Virol, 2006; 80: 7469-7480
    [4] Shinya K, Ebinal M, Yamada S, et al. Influenza virus receptor in the human airway. Nature, 2006; 440: 435-436
    [5] Nicholls JM, Chan MCW, Chan WY, et al. Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nature Medcine, 2007; 13: 147-149
    [6] Beigel JH, Farrar J, Han AM, et al. Avian influenza A (H5N1) infection in humans. N.Engl.J.Med., 2005; 353: 1374-1385
    [7] Uiprasertkul M, Puthavathana P, Sangsiriwut K, et al. Influenza A H5N1 replication sites in human. Eemerg Infect Dis, 2005; 11:1036-1041
    [8] Bridges CB, Katz JM, Seto WH, et al. Risk of influenza A (H5N1) infection among health care workers exposed to patients with influenza A (H5N1), Hong Kong. J.Infect. Dis., 2000;181: 344-348
    [9] Tran H, Nguyen TL, Nguyen TD, et al. Avian influenza A H5N1 in 10 patients in Vietnam. N. Engl.J.Med, 2004; 350: 1179-1188
    [10] Ungchusak K, Auewarakul P, Dowell SF, et al. Probable person-to-person transmission of avian influenza A (H5N1). N. Engl.J.Med, 2005; 352:333-340
    [11] Yamada S, Suzuki Y, Suzuki T, et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature, 2006,444: 378-382
    [1] Yuen KY, Chan PK, Peiris M, et al. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet, 1998; 351: 467-471.
    [2] Peiris JSM, Yu WC, Leung CW, et al.Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet, 2004; 363: 617-619.
    [3] World health organization conformed cumulative number of human case of avian influenza A/(H5N1):http://www.who.int/csr/disease/avian_influenza/country/case_table_2007_11_12/en/index.html.
    [4] Subbarao K, Klimov A, Katz J, et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science; 1998; 279: 393-396
    [5] Claas EC, Osterhaus AD, van Beek R, et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet, 1998; 351: 472-477
    [6] Tran TH, Nguyen TL, Nguyen TD, et al. Avian influenza A (H5N1) in 10 patients in Vietnam. N.Engl J Med. 2004; 350: 1179–1188
    [7] De Jong MD, Cam BV, Qui PT, et al. Fatal avian influenza A (H5N1) in a child presenting with diarrhea followed by coma. N Engl J Med, 2005; 352: 686-891
    [8] Summary table of SARS cases by country, 1 November 2002-7August 2003.15 August 2003. World Health Organization [online]. Available at http://www.who.int/csr/sars/country/2003_08_15/en/index.html
    [9] Gu J, Xie ZG, Gao ZC, et al. H5N1 infection of the respiratory tract and beyond: a molecular pathology study. Lancet, 2007; 370: 1137-1145
    [10] Ng WF, To KF, Lam WW, et al. The comparative pathology of severe acute respiratory syndrome and avian influenza A subtype H5N1-a review. Human Pathology, 2006; 37: 381-390
    [11] Sturm-Ramirez KM, Ellis T, Bousfield B, et al. Re-emerging H5N1influenza viruses in Hong Kong in 2002 are highly pathogenic to ducks. J Virol, 2004; 78: 1108.
    [12] Kuiken T, Rimmelzwaan G, van Riel D, et al. Avian H5N1 influenza in cats. Science. 2004; 306: 241
    [13] Uiprasertkul M, Puthavathana P, Sangsiriwut K, et al. Influenza A H5N1 replication sites in human. Eemerg Infect Dis, 2005; 11: 1036-1041
    [14] Uiprasertkul M, Puthavathana P, Sangsiriwut K, et al. Influenza A H5N1 replicationsites in humans. Emerging Infectious Diseases, 2005; 11: 1036-1041
    [15] Gambaryan A, Alexander T, Galina P, et al. Evolution of the receptor binding of influenza A (H5) viruses.Virology, 2006; 344: 432-438
    [16] Apisarnthanarak A, Kitphati R, Thongphubeth K, et al. Atypical avian influenza (H5N1). Emerg Infect Dis., 2004; 10:1321–1324
    [17] de Jong MD, Bach VC, Phan TQ, et al. Fatal avian influenza A (H5N1) in a child presenting with diarrhea followed by coma. N Engl J Med. 2005; 352: 686–91
    [18] Chotpitayasunondh T, Ungchusak K, Hanshaoworakul W,et al. Human disease from influenza A (H5N1), Thailand, 2004. Emerg Infect Dis, 2005; 11: 201–209
    [19] Kandun IN, Wibisono H, Sedyaningsih ER, et al. Three Indonesian clusters of H5N1 virus infection in 2005. N Engl J Med, 2006; 355: 2186–2194
    [20] Oner AF, Bay A, Arslan S, et al. Avian influenza A (H5N1) infection in eastern Turkey in 2006. N Engl J Med, 2006; 355: 2179–2185
    [21] de Jong MD, Simmons CP, Thanh TT, et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med, 2006;12:1203–1207
    [22]赵景民,周光德,孙艳玲等.严重急性呼吸综合症的临床病理及发病机制研究.中华临床与实验病毒学杂志.2003(17):217-221
    [1] Webster RG, Bean WJ , Gorman OT,et al. Evolution and Ecology of Influenza A Virues. Microbiol Rev ,1992;56:152-179
    [2] Murphy B R, Webster RG.. Fields Virology. 3rd edition Philadelphia: Lippincott-Raven, 1996;1397-1445
    [3] Enserink M and Kaiser J. Avian flu finds new mammal hosts. Science,2004;305:1385
    [4] Osterhaus ADME, Rimmelzwaan GF, Martina BEE,et al. Influenza B virus in seals. Science,2000;288:1051-1053
    [5] Fouchier RA, Munster V, Wallensten A, et al. Characterization of a novel Influenza A virus Hemagglutinin subtype (H16) obtained from Black-Headed gulls. J Virol ,2005; 79:2814-2822
    [6] Holland J,Spindler K,F Horodyski,et al.Rapid evolution of RNA genomes. Science,1982;215:1577-1585
    [7] Steinhauser DA and Holland JJ. Rapid Evolution of RNA Viruses. Annu. Rev.Microbiol,1987(41):409-433
    [8] Taubenberger JK, Reid AH, Lourens RM,et al. Characterization of the 1918 influenza virus polymerase genes. Nature, 2005;437:889–893
    [9] Horimoto T, Kawaoka Y. Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol ,2005;3:591–600
    [10] Nelson MI, Holmes EC. The evolution of epidemic influenza. Nat Rev Genetic 2007 Epub 2007 Jan 30
    [11] Suzuki Y.Sialobiology of influenza molecular mechanism of host range variation of influenza viruses. Biol.Pharm.Bull.,2005;28:399-408
    [12] Rogers GN and Paulson JC. Receptor determinants of human and animal influenza virus isolate:differences in receptor specificity of the H3 hemagglutinin based on species origin. Virology,1983;127:361-373
    [13] Rogers GN,BL D’Souza. Receptor binding properties of human and animal H1 influenza virus isolates. Viology,1989;173:317-322
    [14] Connor RJ, Kawaoka Y, Webster RG,et al. Receptor specificity in human,avian,and equine H2 and H3 influenza virus isolates. J Virol,1994;295:17-23
    [15] T Ito,Y Suzuki,A Suzuki,et al.Recognition of N-glycolyneuraminic acid linked to galactose by theα2,3 linkage is associated with intestinal replication of influenza A in duck. J Virol,2000;74:9300-9305
    [16] Couceiro JN, Paulson JC and Baum LG. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium:the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res,1993;290:155-165
    [17] Webster RG, Yakhno MA, Hinshaw VS,et al. Intestinal Influenza: replication and characterization of Influenza viruses in ducks . Virology, 1978;84:268-278
    [18] Li KS, Xu KM, Peiris JSM, et al. Characterization of H9 subtype influenza viruses from the ducks of southern China : a canadiate for the next influenza pandemic in humans ? J virol , 2003; 77:6988-6994
    [19] Alexander DJ,Parsons G,and Manvell RJ. Experimental assessment of the pathogenicity of eight avian influenza A viruses of H5 subtype for chickens,turkeys,ducks and quails. Avian Pathol.,1986;15:647-662
    [20] Cooley AJ,Van Campen H,Philpott MS,et al. Pathological lesions in the lungs of ducks infected with influenza A viruses. Vet.Pathol.,1989;26:1-5
    [21] Guan Y, Peiris JSM, Kong KF,et al. H5N1 influenza viruses isolated from gees in southeastern China:evidence for genetic reassortment and interspecies transmission to ducks. Virology,2002;292:16-23
    [22] Laudert EA,Sivanandan V,and Halvorson DA. Effect of intravenous inoculation of avian influenza virus on reproduction and growth in mallard ducks. J.Wildl.Dis.,1993;29:523-526
    [23] Capua I and Mutinelli F. Mortality in Muscovy ducks (Cairina moschata) and domestic gees (Anser anser var.domestic) associated with natural infection with a highly pathogenic avian influenza virus of H7N1 subtype. Avian pathol.,2001;30:179-183
    [24] Strum-Ramirez KM, Ellis T, Bousfield B ,et al. Reemerging H5N1 Influenza Viruses in Hong Kong in 2002 Are Highly Pathogenic to Ducks. J virol, 2004;78:4892-4901
    [25] Sturm-Ramirez KM, Hulse-Post, Govorkova DJEA,et al. Are ducks contributing to the endemicity of highly pathogenic H5N1influenza virus in Asia? J Virol.,2005;79:11269-11279
    [26] Nardelli L,Rinaldi A,Pereira HG,et al. Influenza virus infections in Japanese quail.Arch.Exp.Vet.Med.1970;24:231-249
    [27] Guan Y,Shortridge KF,Krauss S,et al. Molecular characterization of H9N2 influenza viruses:were they the donors of the“internal”genes of H5N1 viruses in Hong Kong? Proc.Natl.Acad.Sci.U.S.A,1999;96:9363-9367
    [28] Guo YJ,Krauss S,Senne DA,et al.Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia.Virology,2000;267:279-288
    [29] Saito T,Kawaoka Y,Webster RG. Phylogenetic analysis of the N8 neuraminidase gene of influenza A viruses. Virology,1993;193:868-876
    [30] Suarez DL,Garcia M,Latimer J,et al .Phylogenetic analysis of H7 avian influenza viruses isolated from live bird markets of the Northeast United States. J.Virol,1999;73:3567-3573
    [31] Tashiro M,Reinacher M,and Rott R. Aggravation of pathogenicity of an avian influenza virus by adaptation to quails. Arch.Virol.,1987;93:81-95
    [32] Guan Y,Shortridge KF,Krauss S,et al. H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southereastem China. J.Virol,2000;74:9372-9380
    [33] Chin PS,Hoffmann E,Webby R,et al. Molecular evolution of H6 influenza viruses from poultry in Southeastern China:prevalence of H6N1 influenza viruses possessing seven A/Hong Kong/156/97(H5N1)-like genes in poultry. J.Virol,2002;76:507-516
    [34] Perez DR,Lim W,Seiler JP,et al.Role of quail in the interspecies transmission of influenza H9 viruses;molecular changes that correspond to adaptation from ducks to chickens. J.Virol,2002b;00:000-000
    [35] Webster RG, Guan Y, Peiris JSM, et al. Characterization of H5N1 influenza viruses that continue to circulate in geese in southeastern China. J Virol , 2002; 76: 118-126
    [36] Makarova NV, Ozaki H, Kida H, et al. Replication and transmission of influenza viruses in Japanese quail . Virology, 2003;310:8-15
    [37] Wan HQ and Perez DR. Quail carry sialic acid receptor compatible with binding of avian and human influenza viruses. Virology,2006;346:278-286
    [38] Liu M,He S,Walker D,et al. The influenza virus gene pool in a poultry market in south central China. Virology,2003;395:267-275
    [39] Matrosovich MN,Krauss S,Webster RG. H9N2 influenza A viruses from poultry in Asiahave human virus-like receptor specificity. Virology, 2001;281:156-162
    [40] Peiris JSM,Yuen KY,Leung CW,et al. Human infection with influenza H9N2. Lancet,1999,354:916-917
    [41] Lin YP,Shaw M,Gregory V,et al. Avian-to-human transmission of H9N2 subtype influenza A viruses:relationship between H9N2 and H5N1 human isolates. Proc.Natl.Acad.Sci.U.S.A.,2000;97:9654-9658
    [42] Alexander DJ. A review of avian influenza in different bird species. Veterinary Microbiology, 2000; 74: 3-13
    [43] Eckroade RJ, Silverman LA, Acland HM, et al. Avian influenza in Pennsylvania.In: Proceedings of the Thirty-third Western Poultry Disease Conference , 1-2.
    [44] Garcia M, Crawford JM, Latimer JW, et al. Heterogeneity in the hemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico . J Gen Virol, 1996; 77: 1493-1504
    [45] Forsyth WM,Grix DC,Gibson CA.Diagnosis of highly pathogenic avian influenza in chickens:Bendigo 1992.Aust.Vet.J.,1993;70:118-119
    [46] Westbury HA. History of high pathogenic avian influenza in Autralia and the H7N3 outbreak(1995).In:Proceedings of the Fourth International Symposium on Avian influenza,Athens,Georgia.US Animal Health Association,pp.23-30
    [47] Class EC,Osterhaus AD,Beek R van,et al.Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet,1998;351:472-477
    [48] Tran TH, Nguyen TL,Nguyen TD,et al. Avian influenza A H5N1 in 10 patients in Vietnam. N.Engl.J.Med.,2004;350:1179-1188
    [49] Peiris JSM, Yuen KY, Leung CW, et al. Human infection with influenza H9N2. Lancet, 1999;354:916-917
    [50]郭元吉,谢健屏,王敏等.从我国人群中再次分离到H9N2亚型流感病毒.中华临床和实验病毒学杂志,2000;14:209-212
    [51] Koopmans M,Wilbrink B,Conyn M,et al. Transmission of H7N7 avian influenza A virus to human beings durings a large outbreak in commercial poultry farms in the Netherlands.Lancet ,2004;363:587-593
    [52] Kim JA,Ryu SY,and Seo SH. Cell in the respiratory and intestinal tract of chickens havedifferent proportions of both human and avian influenza virus receptors.J. Microbiol,2005;43:366-369
    [53] Matrosovich M,Krauss S,Webster RG. H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology,2001;281:156-162
    [54] Kaplan MM, Webster RG. The epidemiology of influenza.Sci.Am.,1977;12:88-106
    [55] Scholtissek C, Bürger H, Bachmann PA,et al. Genetic relatedness of hemagglutinins of the H1 subtype of influenza A viruses isolated from swine and birds. Virology,1983;129:521-523
    [56] Hinshaw VS, Alexander DJ, Aymard M,et al. Antigenic comparison of swine-influenza-like H1N1 isolates from pigs,birds and humans:An intermational collaborative study. Bull.WHO,1984;62:871-878
    [57] Kundin WD. Hong Kong A-2 influenza virus infection among swine during a human epidemic in Taiwan. Nature,1970;228:857
    [58] Shortridge KF, Webster RG, Butterfield WK,et al. Persistence of Hong Kong influenza virus variants in pigs. Science,1977;196:1454-1455
    [59] Guan Y, Shortridge KF, Krauss S,et al. Emergence of avian H1N1 influenza viruses in pigs in China. J Virol.,1996;70:8041-8046
    [60] Shortridge KF, Webster RG.Geographical distribution of swine (Hsw1N1) and Hong Kong (H3N2) influenza virus variants in pigs in southeast Asia. Intervirology,1979;11:9-15
    [61] Shortridge KF, Webster RG, Butterfield WK, et al. Persistence of Hong Kong influenza virus variants in pigs. Science,1977;196:1454-1455
    [62] Shortridge KF, Cherry A, Kendal AP,et al. Further studies on the antigenic properties of H3N2 strains of influenza A viruses isolated from swine in southeast Asia. J.Gen.Virol.,1979;44:251-254
    [63] Nerome,KY Kanegae,KF Shortridge,et al. Genetic analysis of porcine H3N2 viruses originating in southern China. J.Gen.Virol.,1995;76:613-624
    [64] Shu LL, Lin YP, Wright SM,et al. Evidence for interspecies transmission and reassortment of influenza Aviruses in pigs in southern China. Virology,1994;202:825-833
    [65] Castrucci MR, Donatelli I, Sidoli L,et al.Genetic reassortment between avian and human influenza A viruses in Italian pigs. Viroloy,1993;193:503-506
    [66] Brown IH, Haarris PA, McCauley JW,et al. Multiple genetic reasortment of avian andhuman influenza A viruses in European pigs,resulting in the emergence of an H1N2 virus of novel genotype. J.Gen.Virol.,1998;79:2947-2955
    [67] Zhou NN, Senne DA, Landgraf JS,et al. Genetic reassortment of avian,swine,and human influenza A viruses in American pigs. J.Vitol.,1999;73:8851-8856
    [68] Kida H, Shortridge KF, Webster RG. Origin of the hemagglutinin gene of H3N2 influenza viruses from pigs in China. Virology, 1988; 162: 160-166
    [69] Sugimura T, Yonemochi H, Ogawa T,et al. Isolation of a recombinant influenza virus (Hsw1N2) from swine in Japan. Arch.Virol.,1980;66:271-274
    [70] Peiris JSM, Guan Y, Markwell D et al. Concirculation of avian H9N2 and contemporary“human”H3N2 influenza A viruses in pigs in southeastern China: Potential for genetic reassortment? J Virol , 2001;75: 9679-9686
    [71] Brown IH, Alexander DJ, Chakraverty P, et al. Isolation of an influenza A virus of unusual subtype (H1N7) from pigs in England,and the subsequent experimental transmission from pig to pig.Vet.Microbiol.,1994;39:125-134
    [72] Karasin AI, Brown IH, Carman S et al. Isolation and characterization of H4N6 avian influenza viruses from pigs with pneumonia in Canada . J Virol, 2000; 74:9322-9327
    [73] Scholtissek C, Burger H, Kistner O,et al. The nucleoprotein as a possible major factor in determining host specificity of influenza H3N2 viruses. Virology , 1985; 147:287-294
    [74] Kida H, Ito T, Yasuda J ,et al. Potential for transmission of avian Influenzaviruses to pigs . J Gen Virol , 1994; 75: 2183-2188
    [75] Pensaert M, Otis K, Vandeputte J,et al. Evidence for the natural transmission of influenza A viruses from wild ducks to swine and its potential importance for man. Bull.W.H.O.,1981;59:75-78
    [76] Ito T, Couceiro JNSS, Kelm S, et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. Virology, 1998;72:7376-7373
    [77] Castrucci MR, Donatelli I, Sidoli L,et al. Genetic reassortment between avian and human influenza A viruses in Italian pigs. Viroloy,1993;193:503-506
    [78] Johnson NP, and Mueller J. Updating the accounts:global mortality of the 1918-1920‘spanish’influenza pandemic. Bull.Hist.Med.2002;76:105-115
    [79] Gamblin SJ, Haire LF,Russell RJ,et al. The structure and receptor binding properties of the1918 influenza hemagglutin. Science,2004;303:1838-1842
    [80] Stevens J ,Corper AL, Basler CF,et al. Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science,2004;303:1866-1870
    [81] Kobosa D,Takada A,Shinya K,et al. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature,2004;431:703-707
    [82] Tumpey TM, Basler CF, Aguilar PV, et al. Characterization of the reconstituted 1918 Spanish influenza pandemic virus. Science,2005;310:77-80
    [83] Horimoto T and Kawaoka Y. Influenza:lessons from past pandemics,warnings from current incidents. Nat.Rev.Microbiol.,2005;3:591-600
    [84] Matrosovich M,et al. Early alterations of the receptor-binding properties of H1,H2 and H3 avian influenza virus heamagglutinins after their introduction into mammals. J.Virol.,2000;74:8502-8512
    [85] Couceiro JNSS,Paulson J and Baum LG. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium;the role of the host cell in selection of hemagglutinin receptor specificity. Virus Research,1993;29:155-165
    [86] Yuen KY,Chan PK,Peiris M,et al. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet,1998;351):467-471
    [87] Subbarao K, Klimov A, Katz J,et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science,1998;279:393-396
    [88] X Xu,Subbarao K, Cox NJ, et al.Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96(H5N1) virus:similarity of its hemagglutinin gene to those to H5N1 viruses from the 1997 outbreaks in Hong Kong.Virology,1999(261):15-19
    [89] JSM Peiris, WC Yu, CW Leung,et al.Re-emergence of fatal human influenza A subtype H5N1 disease.Lancet,2004(363):617-619
    [90] World health organization conformed cumulative number of human case of avian influenza A/(H5N1):http://www.who.int/csr/disease/avian_influenza/country/case_table_2007_11_12/en/index.html.
    [91] Smith GJD,Fan XH,Wang J,et al. Emegerce and predominace of an H5N1 influenza variant in China. Proc.Natl.Acad.Sci.USA,2006;103:16963-16971
    [92] Fouchier RAM, Schneeberger PM, Rozendaal FW, et al. Avian influenza A virus ( H7N7)associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome . Proc Natl Acad Sci USA, 2004; 101: 1356-1361
    [93] Lin YP , Shaw M, Gregory V ,et al. Avian-to-human transmission of H9N2 subtype influenza A viruses : Relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci USA , 2000; 97: 9654-9658
    [94] Peiris JSM, Yuen KY, Leung CW, et al. Human infection with influenza H9N2. Lancet,1999;354:916-917
    [95] Matrosovich MN,Matrosovich TY,Gray T,et al. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc.Natl.Acad.Sci.2006;101:4620-4624
    [96] Ibricevic A,Pekosz A,Walter MJ,et al. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelium cells. J Virol,2006;80:7469-7480
    [97] Shinya K,Ebinal M,Yamada S,et al. Influenza virus receptor in the human airway. Nature,2006;440:435-437
    [98] Bridges CB,Katz JM, Seto WH,et al. Risk of influenza A (H5N1) infection among health care workers exposed to patients with influenza A (H5N1),Hong Kong. J.Infect. Dis.,2000;181:344-348
    [99] Micheal LP, Garcia M, Senne D,et al. Virulence-associated sequence duplication at the hemagglutinin cleavage site of avian influenza viruses. Virus Res.,1997;49:173-186
    [100] Steinhauer DA. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virololgy,1999;258:1-20
    [101] Chin PS, Hoffmann E, Webby R, et al. Molecular evolution of H6 influenza viruses from poultry in southern China: prevalence of H6N1 influenza viruses possessing seven A/Hong Kong/156/97(H5N1)-like genes in poultry . J Virol, 2002,;76:507-516
    [102] Guan Y, Poon LLM ,Cheung CY,et al. H5N1 influenza:a protean pandemic threat. Proc.Natl.Acad.Sci.U.S.A.,2004;101:8156-8161
    [103] Strum-Ramirez KM, Ellis T, Bousfield B ,et al. Reemerging H5N1 Influenza Viruses in Hong Kong in 2002 Are Highly Pathogenic to Ducks. J virol, 2004;78:4892-4901
    [104] Shinya, K, M Hatta, S Yamada,et al. Characterization of a human H5N1 influenza A virus isolated in 2003. J. Virol.,2005; 79:9926–9932
    [105] Enserink K and Kaiser J. Avian flu finds new mammal hosts.Science,2004;305:1385
    [106] Kuiken T, Rimmelzwaan G,Van Reil D,et al. Avian H5N1 influenza in cats.Science,2004;306:241
    [107] Yamada S,Suzuki Y,Suzuki T,et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature,2006;444:378-382

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700