用户名: 密码: 验证码:
复杂混沌系统的存在性及动力学特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混沌,在经历了半个世纪的发展之后已经渗透到了不同的自然科学和工程领域,并且混沌应用已经逐步彰显出巨大的生命力。近年来,混沌研究从简单的认识、分析发展到了从理论层面深入地研究混沌的本质,进而在科学和工程技术领域中控制和利用混沌,例如混沌保密通信、流媒体加密等。对于混沌行为更加复杂的超混沌系统,由于其具有更强的随机性和不可预测性,从而拥有很大的应用潜力。本文在前人工作的基础上,在混沌系统的动力学分析和混沌性判定、超混沌系统的建模和理论分析方面进行了深入的研究。主要创新工作总结如下:
     (1)基于非线性状态反馈的方法,提出了两个强的四维自治超混沌系统。从Lyapunov指数谱、分形图、相图、Poincare截面等方面进行了数值分析,新提出的系统具有非常丰富的动力学演化行为,可以经历周期、拟周期、混沌和超混沌状态,并且处于超混沌的参数范围较广、两个正Lyapunov指数值较大。此外,利用中心流形理论详细地分析了一个超混沌系统的叉式分岔和Hopf分岔行为。在另一个系统中观察到了一条由周期通向超混沌的间歇振荡道路,从而提供了一条新的通往超混沌的可能性道路。两个超混沌系统动态复杂、丰富,具有较强的理论意义和应用价值。
     (2)研究了三个不同的三维连续混沌系统,即著名的Chen系统、Qi等提出的一个复杂混沌系统和一个流行病模型。利用拓扑马蹄理论,对这些系统中的典型混沌吸引子的存在性进行了严格的计算机辅助证明,不仅证明了它们具有拓扑马蹄,而且给出了系统拓扑熵的下界估计。Qi等提出的复杂混沌系统不仅具有较大的正lyapunov指数值,而且具有较大的拓扑熵下界估计值,说明了Qi等提出的混沌吸引子具有较为复杂的动力学行为。
     (3)研究了两个典型的经济系统中的混沌动态。一个是由Kopel提出的微观经济模型,即古诺双寡头模型,利用拓扑马蹄引理证明了双寡头模型中混沌吸引子的存在性。同时也详细分析了该模型中出现的种种非线性现象,包括过渡混沌、非光滑商业周期、混沌吸引子共存、两种类型的间歇混沌等。还分析了混沌市场对竞争双方所获利润的影响,得到了混沌市场并不是完全有害的结论,即任何一个竞争者都可能从一个处于混沌状态的市场中获取更高的利润。最后又设计了一个状态反馈控制器来控制双寡头模型中的混沌,取得了很好的控制效果,即竞争者公平地共享市场。另一个模型是宏观经济模型,即商业周期模型,同样也利用计算机辅助证明的方法分析了该系统的拓扑马蹄动态,进而证明了混沌吸引子的存在性。
     (4)对分数阶的Chen系统和两个改进的分数阶Chua电路进行了探讨和研究。首先证明了分数阶Chen系统中混沌吸引子的存在性,并对该系统进行了模拟电路实现研究。当经典的Chua系统中的非线性函数采用正弦波函数时,其分数阶系统可以产生单方向的卷数可调的多涡卷吸引子;当非线性函数采用某种形式的锯齿波函数时,改进的分数阶Chua系统可以产生网格状的横纵向卷数均可调的多涡卷吸引子。
Over the past half century, the world has witnessed the rapid development of Chaos theory. Chaos has penetrated into almost every science and engineering field, and its application has shown the tremendous vitality in many aspects of human life. Recently, researchers have turned their close attention from the simple analysis of chaos to deeply analyze the essence of chaos theoretically, so as to control and make use of chaos in engineering fields, such as the chaotic secure communication and the streaming media encryption. In particular, hyperchaos is more complex than chaos, and has stronger randomness and unpredictability. Therefore, hyperchaos has great potential applications in chaos-needed fields. In this dissertation, the existence of chaos and dynamical behavior analysis of some chaotic systems, and also the generation and theoretical analysis of two hyperchaotic systems are investigated systematically. The main work can be summarized as follows:
     (1) Based on the state feedback control method, two strong four-dimensional autonomous continuous hyperchaotic systems are proposed. By analyzing the Lyapunov exponent spectra, bifurcation diagram, phase portraits, Poincare sections, it can be obtained that the new systems have very rich dynamical behaviors, and they can evolve into period, quasi-period, chaos and hyperchaos. The two new hyperchaotic systems both have wider hyperchaotic parameter region, two relatively larger positive Lyapunov exponents. Furthermore, the pitchfork bifurcation and Hopf bifurcation in one hyperchaotic system are analyzed in detail. Moreover, a new intermittent route from period to hyperchaos is observed in another hyperchaotic system. The two new hyperchaotic systems have complex and rich nonlinear dynamics, and thus have great theoretical significance and application value.
     (2) The topological horseshoe dynamics are investigated in three different three-dimensional continuous systems, namely the famous Chen system, a complex chaotic system presented by Qi et al. and an epidemic disease model. By utilizing the recent famous topological horseshoe theory, the existence of topological horseshoe is verified in each system, and the topological entropy is also estimated during the process of proof. Thus, the existence of chaos is proved in a computer assisted manner. The chaotic system proposed by Qi et al. has not only bigger Lyapunov exponent but also bigger lower bound estimation of topological entropy. The result shows that the Qi chaotic attractor has very complex dynamical behaviors.
     (3) Chaotic dynamics in two different economic systems are investigated in detail. One is a microeconomic model, that is, a Cournot duopoly model proposed by Kopel in 1996. The existence of horseshoe chaos is first verified in this economic model, and then many kinds of nonlinear dynamics, such as transient chaos, nonsmooth business cycle, co-existence of two chaotic attractors, and two different types of economic intermittency, are observed and analyzed. Besides, the influence of chaos on the profits of duopolists is analyzed. It is numerically demonstrated that chaotic market is not totally harmful, that is to say. either of the duopolists could be beneficial from a chaotic market. A state feedback controller is designed to control chaos to the Nash equilibrium, as a result of which the two duopolists share the market with good equity. A macroeconomic model, namely a business cycle model is also learned, the topological horseshoe dynamics are analyzed, and thus the existence of chaos in this model is proved in a computer assisted manner.
     (4) The fractional-order Chen system and two modified fractional-order Chua circuits are analyzed. The computer-assisted proof for the existence of chaos in fractional-order Chen system is provided. The analog circuit implementation of fractional-order Chen system is also given. When the sine function is applied to replace the nonlinear function of Chua's circuit, and the integer order is replaced by a fractional order, the modified fractional order Chua system can generate n-scroll chaotic attractor. Another modified fractional order Chua system with the sawtooth and staircase function being the nonlinearity, can generate n×m-scroll chaotic attractor.
引文
[1]苗东升,刘华杰,混沌学纵横论.北京中国人民大学出版社,1993
    [2]黄润生,黄浩.混沌及其应用.武汉大学出版社,2005
    [3]Kolmogorov A N. On the conservation of conditionally periodic motions for a small change in Hamilton's function (in Russian). Dokl. Akad. Nauk SSSR,1954,98:525-530
    [4]Arnold V I. Proof of a theorem by A N Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian. Usp. Math. Nauk,1963,18(5): 13-40
    [5]Moser J K. On invariant curves of area-preserving mapping of an annulus. Nachr. Akad. Wiss. Gottingen, Math. Phys. KI.Ⅱ.,1962,1:1-20
    [6]Sparrow C. The Lorenz Equations:Bifurcations, Chaos and Strange Attractors. New York: Springer,1982
    [7]Ruelle D, Takens F. On the nature of turbulence. Comm. Math. Phys.,1971,20(3): 167-192
    [8]Li T Y, Yorke J A. Period three implies chaos. The American Mathematical Monthly,1975, 82:985-992
    [9]Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series. Physica D,1985,16:285-317
    [10]Chen G, Ueta T. Yet another chaotic attractor. Int J Bifurcat Chaos,1999,9:1465-1470
    [11]Lu J H, Chen G R. A new chaotic attractor coined. Int J Bifurcat Chaos,2002,12:659-661
    [12]Lu J H, Chen G R, Cheng D Z, et al. Bridge the gap between the Lorenz system and the Chen system. Int J Bifurcat Chaos,2002,12:2917-2926
    [13]Qi G R, Chen G R, Du S Z, et al. Analysis of a new chaotic system. Physica A,2005,352: 295-308
    [14]Liu C X, Liu T, Liu L, et al. A new chaotic attractor. Chaos Solitons & Fractals,2004,22: 1031-1038
    [15]Liu C X, Liu L, Liu T, et al. A novel three-dimensional autonomous chaos system. Chaos Solitons Fractals,2009,39:1950-1958
    [16]王杰智,陈增强.袁著祉.一个新的混沌系统及其性质研究.物理学报,2006,55:3956-3963
    [17]Munmuangsaen B, Srisuchinwong B. A new five-term simple chaotic attractor. Physics Letters A,2009,373:4038-4043
    [18]Chen Z Q, Yang Y, Yuan Z Z. A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system. Chaos Solitons & Fractals, 2008,38:1187-1196
    [19]Dadras S, Momeni H R. A novel three-dimensional autonomous chaotic system generating two, three and four-scroll attractors. Physics Letters A,2009,373:3637-3642
    [20]Wang Z H, Qi G Y, Sun Y X, et al. A generalized 3-D four-wing chaotic system. International Journal of Bifurcation and Chaos,2009,19:3841-3853
    [21]Wang L. Yet another 3D quadratic autonomous system generating three-wing and four-wing chaotic attractors. Chaos,2009,19,013107
    [22]Liu W B, Chen G R. A new chaotic system and its generation. International Journal of Bifurcation and Chaos,2003,13:261-267
    [23]Ott E, Grebogi C, Yorke J A. Controlling chaos. Phys. Rev. Lett.,1990,64:1196-1199
    [24]张化光,王智良,黄伟.混沌系统的控制理论.东北大学出版社,2003
    [25]Goldberger A L. Rigney D R. West B J. Chaos and fractals in human physiology. Sci. Am. 1990,262(2):42-49
    [26]Rossler O E. An equation for hyperchaos. Phys Lett A,1979,71:155-157
    [27]Chen Z Q, Yang Y. Qi G, et al. A novel hyperchaos system only with one equilibrium. Phys Lett A 2007,360:696-701
    [28]Wang J Z, Chen Z Q. Yuan Z Z. The generation of a hyperchaotic system based on a three-dimensional autonomous chaotic system. Chinese Physics,2006,15(6):1216-1225
    [29]Gao T G, Chen Z Q, Yuan Z Z, et al. A hyperchaos generated from Chen's system. Int J Mod Phys C,2006,17(4):471-478
    [30]Chen A, Lu J, Lu J H, et al. Generating hyperchaotic Lu attractor via state feedback control. Physica A,2006,364:103-110
    [31]Li Y X, Tang W K S, Chen G R. Hyperchaos evolved from the generalized Lorenz equation. Int J Circuits Theor Appl,2005,33:235-251
    [32]Li Y X, Tang W K S, Chen G R. Generating Hyperchaos via State Feedback Control. Int J Bifurcat Chaos,2005,15:3367-3375
    [33]Gao T, Chen G, Chen Z, et al. The generation and circuit implementation of a new hyper-chaos based upon Lorenz system. Phys Lett A,2007,361:78-86.
    [34]Wang G Y, Zhang X, Zheng Y, et al. A new modified hyperchaotic Lu system. Physica A, 2006,371:260-272
    [35]Wang J Z, Chen Z Q, Chen G R, et al. A new hyperchaotic system and its complex dynamics. International Journal of Bifurcation and Chaos,2008,18(11):3309-3324
    [36]仓诗建,陈增强,袁著祉.一个新四维非自治超混沌系统的分析与电路实现.物理学报,2008,57(3):1493-1501
    [37]Li Y X, Chen G R, Tang W K S. Controlling a unified chaotic system to hyperchaotic. IEEE Trans Circuits Systems Ⅱ,2005,52:204-207
    [38]Tam L M, Chen J H, Chen H K, et al. Generation of hyperchaos from Chen-Lee system via sinusoidal perturbation. Chaos Solitons & Fractals,2008,38(3):826-839
    [39]Qi G Y, van Wyk M A, van Wyk B J, et al. On a new hyperchaotic system. Physics Letters A,2008,372:124-136
    [40]Qi G Y, van Wyk M A, van Wyk B J, et al. A new hyperchaotic system and its circuit implementation. Chaos Solitons & Fractals,2009,38(3):705-721
    [41]Yu S M, Lu J H, Chen G R. A family of n-scroll hyperchaotic attractors and their realization. Physics Letters A,2007,364:244-251
    [42]Ahmad W M. A simple multi-scroll hyperchaotic system. Chaos Solitons & Fractals,2006, 27(5):1213-1219
    [43]Grassi G, Severance F L, Miller D A. Multi-wing hyperchaotic attractors from coupled Lorenz system. Chaos Solitons & Fractals,2009,41(1):284-291
    [44]Dadras S, Momeni H R. Four-scroll hyperchaos and four-scroll chaos evolved from a novel 4D nonlinear smooth autonomous system. Physics Letters A,2010,374:1368-1373
    [45]Gangandhar C H, Rao K D. Hyperchaos based image encryption. International Journal of Bifurcation and Chaos,2009,19(11):3833-3839
    [46]Li C D, Liao X F, Wong K W. Lag synchronization of hyperchaos with application to secure communications. Chaos Solitons & Fractals,2005,23(1):183-193
    [47]Aguilar Bustos A Y, Cruz Hernandez. Synchronization of discrete-time hyperchaotic systems:An application in communications. Chaos Solitons & Fractals,2009,41(3): 1301-1310
    [48]Loria A. Control of the new 4th-order hyper-chaotic system with on input. Communications in Nonlinear Science and Numerical Simulation,2010,15(6):1621-1630
    [49]Yang C, Tao C H, Wang P. Comparison of feedback control methods for a hyperchaotic Lorenz system. Physics Letters A,2010,374(5):729-732
    [50]Chen C H, Sheu L J, Chen H K, et al. A new hyper-chaotic system and its synchronization. Nonlinear Analysis:Real World Applications,2009,10(4):2088-2096
    [51]Sangpet T, Kuntanapreeda S. Adaptive synchronization of hyperchaotic systems via passivity feedback control with time-varying gains. Journal of Sound and Vibration,2010, 329(13):2490-2496
    [52]Tucker W. The Lorenz attractor exists. C. R. Acad. Sci. Paris,1999,328:1197-1202
    [53]Stewart I. The Lorenz attractor exists. Nature,2000,406:948-949
    [54]Tucker W. A rigorous ODE solver and Smale's 14th problem. Found Comput. Math.,2002, 2:53-117
    [55]Silva C P. Sil'nikov theorem-a tutorial. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Application,1993,40(10):675-682
    [56]Zhou T S, Chen G R, Tang Y. Chen's attractor exists. Int. J. Bifur. Chaos,2004,14: 3167-3178
    [57]Wang J Z, Chen Z Q, Yuan Z Z. Existence of a new three-dimensional chaotic attractor. Chaos Solitons & Fractals,2009,42:3053-3057
    [58]Zhou T S, Chen G R, Celikovsky S. Si'lnikov chaos in the generalized Lorenz canonical form of dynamics systems. Nonlinear Dyanmics,2005,39:319-334
    [59]Jiang Y X, Sun J H. Si'lnikov homoclinic orbits in a new chaotic system. Chaos, Solitons & Fractals,2007,32:150-159
    [60]Sun F Y. Shil'nikov heteroclinic orbits in a chaotic system. International Journal of Modern Physics B,2007,21(25):4429-4436
    [61]Wang J W, Zhao M C, Zhang Y B, et al. Si'lnikov-type orbits of Lorenz-family systems. Physica A,2007,375:438-446
    [62]Zhou L Q, Chen F Q. Hopf bifurcation and Silnikov chaos of Genesio system. Chaos, Solitons & Fractals,2009,40(3):1413-1422
    [63]Wiggins S. Introduction to applied nonlinear dynamical systems and chaos. New York: Springer-Verlag,1990
    [64]李清都.混沌系统分析与电路设计:[博士学位论文].武汉:华中科技大学,2008
    [65]Kennedy J, Yorke J. Topological horseshoes. Tran. Amer. Manth. Soc.,2001.353: 2513-2530
    [66]Zgliczynski P, Gidea M. Covering relations for multidimensional dynamical systems. J. Differential Equations,2004,202:32-58
    [67]Yang X S, Tang Y. Horseshoes in Piecewise continuous maps. Chaos Solitons & Fractals, 2004,19(4):841-845
    [68]Yang X S. Metric horseshoe. Chaos Solitons & Fractals,2004,20(5):1149-1156
    [69]Yang X S, Li H M, Huang Y. A planar topological horseshoe theory with applications to computer verifications of chaos. J. Phys. A:Math. Gen.,2005(38):4175-4184
    [70]Yang X S, Bai X M. Estimates of topological entropy of continuous maps with applications. Discrete Dynamics in Nature and Society,2006,2006:18205
    [71]Yang X S. Topological horseshoes in continuous maps. Chaos, Solitons & Fractals,2007, 33:225-233
    [72]Yang X S, Yu Y G, Zhang S C. A new proof for existence of horseshoe in the Rossler system. Chaos, Solitons & Fractals,2003,18:223-227
    [73]Yang X S, Yang F Y. A rigorous verification of chaos in an inertial two-neuron system. Chaos, Solitons & Fractals,2004,20:587-591
    [74]Yang X S, Li Q D. Existence of horseshoe in a foodweb model. International Journal of Bifurcation and Chaos,2004,14(5):1847-1852
    [75]Yuan Q, Li Q D, Yang X S. Horseshoe chaos in a class of simple Hopfield neural networks. Chaos, Solitons & Fractals,2009,39(4):1522-1529
    [76]Yang X S, Li Q D. Horseshoe chaos in cellular neural networks. International Journal of Bifurcation and Chaos,2006,16(1):157-161
    [77]Yang X S, Tang Y, Li Q D. Horseshoe in a two-scroll control system. Chaos, Solitons & Fractals,2004,21:1087-1091
    [78]Huang Y, Yang X S. Horseshoe in a class of simple circuits. Chaos, Solitons & Fractals, 2006,29:131-140
    [79]Torvik P J, Bagley R L. On the appearance of the fractional derivative in the behavior of real material. J. of Applied Mechanics:Transaction of the ASMF,1984,51(2):294-298
    [80]Heaviside O. Electromagnetic theory. New York:Chelsea,1971
    [81]Bagley R L, Calico R A. Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Contr. Dyn.,1991,14:304-311
    [82]Sugimoto N. Burgers equation with a fractional derivative:hereditary effects on nonlinear acoustic wave. J. Fluid Mech.,1991,25:631-653
    [83]Ichise M, Nagayanagi Y, Kojima T. An analog simulation of noninteger order transfer functions for analysis of electrode processes. J. Electroanal. Chem.,1971,33:253-265
    [84]Hartley T T, Lorenzo C F, Qammer H K. Chaos in a fractional order Chua's system. IEEE Transactions on Circuits and Systems-1:Fundamental Theory and Applications,1995,42: 485-490
    [85]Grigorenko I, Grigorenko E. Chaotic dynamics of the Fractional Lorenz system. Physical Review Letters,2003,91,034101
    [86]Yu Y G, Li H X, Wang S, et al. Dynamic analysis of a fractional-order Lorenz chaotic system. Chaos Solitons & Fractals,2009,42:1181-1189
    [87]Zhang W W, Zhou S B, Li H, et al. Chaos in a fractional-order Rossler system. Chaos Solitons & Fractals,2009,42:1684-1691
    [88]Lu J G, Chen G R. A note on the fractional-order Chen system. Chaos Solitons & Fractals, 2006,27:685-688
    [89]Li C P, Peng G J. Chaos in Chen's system with a fractional order. Chaos Solitons & Fractals,2004,22:443-450
    [90]陈向荣,刘崇新,王发强等.分数阶Liu混沌系统及其电路实验的研究与控制.物理学报,2008,57:1416-1422
    [91]Gejji V D, Bhalekar S. Chaos in fractional ordered Liu system. Computers and Mathematics with Applications,2010, in press
    [92]Podlubny I. Fractional-order systems and controllers. IEEE Trans. on Automatic control, 1999,44(1):208-214
    [93]Tricaud C, Chen Y Q. An approximate method for numerically solving fractional order optimal control problems of general form. Computers & Mathematics with Applications, 2010,59:1644-1655
    [94]Wang X Y, He Y J, Wang M J. Chaos control of a fractional order modified coupled dynamos system. Nonlinear Analysis:Theory Methods & Applications,2009,71: 6126-6134
    [95]Tavazoei M S, Haeri M. Chaos control via a simple fractional-order controller. Physics Letters A,2008,372:798-807
    [96]Zhou T S, Li C P. Synchronization in fractional-order differential systems. Physica D: Nonlinear Phenomena,2005,12:111-125
    [97]Chen X G, Liu C X, Wang F Q. Circuit realization of the fractional-order unified chaotic system. Chinese Physics B,2008,17(5):1614-1669
    [98]Vanecek A, and Celikovsky S. Control Systems:Fro Linear Analysis to Synthesis of Chaos. London:Prentice-Hall,1996
    [99]Chua L O, Lin G N. Canonial realization of Chua's circuits family. IEEE Trans Circuits Systems,1990,37:885-902
    [100]Cafagna D, Grassi G. New 3D-scroll attractors in hyperchaotic Chua's circuits forming a ring. Int J Bifurcat Chaos,2003,13:2889-2903
    [101]张琪昌,王洪礼,竺致文等.分岔与混沌理论及应用.天津大学出版社,2005
    [102]Ashwin P. Boundary of Two Frequency Behaviour in a System of Three Weakly Coupled Electronic Oscillators. Chaos, solitons & Fractals,1998,9:1279-1287
    [103]Green K. Krauskopf B, Engelborghs K. Bistability and torus break-up in a semiconductor laser with phase-conjugate feedback. Physica. D,2002,173:114-129
    [104]Chakravarthy S K. Nayar C V. Quasiperiodic (QP) oscillations in electrical power system. Electrical Power & Energy Systems,1996,18(8):483-492
    [105]Zheng Z G. Frustration effect on synchronization and chaos in coupled oscillators. Chin. Phys,2001,10:703-707
    [106]Ding W C, Xie J H. Torus T2 and its routes to chaos of a vibro-impact system. Phys. Lett. A,2006,349:324-330
    [107]Seimenis J. The method of rational approximations:periodic orbits and quasiperiodicity. Reports on mathematical physics,1995,36:433-438
    [108]Li T C, Chen G R, Tang Y. On stability and bifurcation of Chen's system. Chaos Solitons Fractals,2004,19:1269-1282
    [109]Lu J H, Zhou T S, Chen G R, et al. Local bifurcation of the Chen system. Int. J. Bifur. Chaos,2002,12:2257-2270
    [110]Ueta T, Chen G R. Bifurcation analysis of Chen's attractor. Int. J. Bifur. Chaos,2000,10: 1917-1931
    [111]Chang Y, Chen G R. Complex dynamics in Chen's system. Chaos Solitons Fractals,2006, 27:75-86
    [112]Yu X H, Xia Y. Detecting unstable periodic orbits in Chen's chaotic attractor. Int. J. Bifur. Chaos,2000,10:1987-1991
    [113]Chen G R, Li C P. A Note on Bifurcation Control. Int. J. Bifur. Chaos,2003,13:667-669
    [114]王繁珍,齐国元,陈增强等.一个新的三维混沌系统的分析、电路实现及同步.物理学报,2006,55:4005-4012
    [115]Yu Y G, Zhang S C. Hopf bifurcation analysis of the Lu system. Chaos Solitons Fractals, 2004,21:1215-1220
    [116]Ma J H, Chen Y S. Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (Ⅰ). Appl. Math. Mech. (English Edition) 2001,22:1240-1251
    [117]Ma J H, Chen Y S. Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (Ⅱ). Appl. Math. Mech. (English Edition) 2001,22:1375-1382
    [118]Gao Q, Ma J H. Chaos and Hopf bifurcation of a finance system. Nonlinear Dyn.2009, 58:209-216
    [119]杨晓松,李清都.混沌系统与混沌电路.北京:科学出版社,2007
    [120]Moneim I A. The effect of using different types of periodic contact rate on the behaviour of infectious diseases:A simulation study. Computers in Biology and Medicine,2007,37: 1582-1590
    [121]Day R. Irregular growth cycles. American Economic Review.1982,72:406-414
    [122]Boldrin M, Woodford M. Equilibrium models displaying endogenous Fluctuations and Chaos:a Survey. Journal of Monetary Economics,1990,25:189-222
    [123]Puu T. Chaos in duopoly pricing. Chaos, Solitons & Fractals,1991.1:573-581
    [124]Puu T. The chaotic duopolists revisited. Journal of Economic Behavior & Organization, 1998,33:385-394
    [125]Puu T. Complex dynamics with three oligopolists. Chaos, Solitons & Fractals,1996,7: 2075-2081
    [126]Kopel M. Simple and complex adjustment dynamics in Cournot duopoly models. Chaos, Solitons & Fractals,1996,7:2031-2048
    [127]Pomear Y, Manneville P. Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys.,1980,74:189-197
    [128]Grebogi C, Ott E, Romeiras F, et al. Critical exponents for crisis-induced intermittency. Physical Review A,1987,36(11):5365-5380
    [129]Agiza H N. On the analysis of stability, bifurcation, chaos and chaos control of Kopel map. Chaos Solitons & Fractals,1999,10:1909-1916
    [130]Govaerts W, Ghazizni R K. Stable cycles in a Cournot duopoly model of Kopel. Journal of Computational and Applied Mathematics,2008,218:247-258
    [131]Matsumoto A. Let it be:chaotic price instability can be beneficial. Chaos, Solitons & Fractals,2003,18:745-758
    [132]Pyragas K. Continuous control of chaos by self-controlling feedback. Phys Lett A.,1992, 170:421-428
    [133]Chen L. Controlling chaos in an economic model. Physica A,2007,374:349-358
    [134]Holyst J A, Urbanowicz K. Chaos control in economical model by time-delayed feedback control. Physica A,2000,287:587-598
    [135]Puu T. Nonlinear economic dynamics. Berlin:Springer-Verlag,1989
    [136]Goodwin R M. Chaotic economic dynamics. Oxford:Clarendon Press,1990
    [137]Ma J H, Cui Y Q, Xia L L. A study on the complexity of a business cycle model with great excitements in non-resonant condition. Chaos Solitons & Fractals,2009,39(5): 2258-2267
    [138]Chian A C-L, Borotto F A, Rempel E L, et al. Attractor merging crisis in chaotic business cycles. Chaos Solitons & Fractals,2005,24:869-875
    [139]Podlubny I. Fractional differential equations:An introduction to fractional derivatives, fractional differential equations, some methods of their solution and some of their applications. Academic Press,1999
    [140]Ahmad W M, Sprott J C. Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals,2003,16:339-351
    [141]Chua L O. The genesis of Chua's circuit. Arch. Elektron. Ubertra-gungslech.,1992. 46:250-257
    [142]Tang W K S. Zhong G Q, Chen G R, et al. Generation of N-scroll attractors via sine function. IEEE transactions on Circuits and Systems 1:Fundamental Theory and Applications,2001,48(11):1369-1372
    [143]Yu S M, Tang W K S, Chen G R. Generation of n×m-scroll attractors under a chua-circuit framework. International Journal of Bifurcation and Chaos,2007,17(11): 3951-3964
    [144]Diethelm K, Ford N J, Freed A. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics,2002,29:3-22
    [145]Rosenstein M T, Collins J I, Luca C D. A practical method for calculating largest exponents from small data sets. Physica D,1993,65:117-134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700