用户名: 密码: 验证码:
基于免疫计算的无线通信网络资源优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着3G通信系统的迅速发展和无线接入技术的不断进步,越来越多的人们能够享受到无线通信带来的便捷。以移动通信为代表的无线通信系统是一种资源受限的系统,随着无线业务需求的高速增长,无线资源(基站站址资源、频谱资源、码资源、功率资源、带宽资源等)日渐紧缺。如何有效地利用有限的无线资源来满足日益增长的业务需求,已经成为国内外研究者和移动网络运营商共同关注的问题。无线资源管理(Radio Resource Management, RRM)是无线通信网络的一个重要研究内容。通过对无线通信网络的资源进行分配优化,可以提供更大的覆盖范围、系统容量和系统性能,从而实现在无线资源有限的情况下接入尽可能多的用户。本文对无线通信网络的资源分配优化模型及优化算法进行了系统的研究,主要研究工作如下:
     1.基站选址对无线通信网络的服务质量有着重要的影响,在选址时应全面考虑基站覆盖面积、基站建设代价、维护方便程度等要素。基站选址优化是无线通信网络优化的一个重要内容,即在考虑信号质量、建设代价、覆盖约束以及其它网络参数的情况下优化基站的数目和位置,其目标是用较低的基站建设代价来获得一个高覆盖率的网络。本文对无线通信网络的基站选址优化问题进行了研究。首先,针对TD-SCDMA网络基站选址问题的特点,构建了选址优化模型,设计了基于实数编码的克隆增殖算子、克隆变异算子及克隆选择算子,提出了一种基于免疫计算的TD-SCDMA网络基站选址优化方案。接着,对WCDMA网络基站选址问题进行了研究。由于WCDMA网络存在较明显的呼吸效应,即容量与覆盖相互影响,其基站规划问题较为复杂。本文利用链路预算确定WCDMA网络的最大可接受路径损耗,从而计算出小区的最大半径、基站的最大覆盖面积以及容量约束下需要的基站总数目;利用负载因子估计每个基站支持的用户总数目;提出了一种基于免疫计算的WCDMA网络基站选址优化方案。最后,对IEEE802.16j网络的基站及中继站联合选址优化问题进行了研究。当IEEE802.16j中继系统工作在透明中继模式时,移动终端必须处在基站的覆盖范围内以保证能中继传播。本文构建了IEEE802.16j网络基站及中继站联合选址优化模型,并提出了求解模型的免疫优化算法。仿真实验结果表明,本文所提的基站选址优化方案能以较小的网络建设代价满足覆盖要求,其性能优于文献方案,具有较好的理论价值。
     2.导频信道与其他下行信道共同分享下行功率。由于基站的最大发射功率是额定的,导频功率占的比例大了,分给下行信道的功率所占比例就会减少。过大的导频功率会增加下行链路干扰和小区重叠面积,还会导致导频污染;另一方面,若导频功率过小,会导致小区主导面积下降,从而导致相邻小区超载或出现网络覆盖漏洞。因此,需要根据基站覆盖区域及业务支持能力的需求,对基站导频功率进行优化。本文对WCDMA网络基站导频功率优化问题进行了研究,构建了WCDMA网络基站导频功率优化问题的数学模型,提出了一种基于免疫计算的基站导频功率优化方案。考虑到家庭基站在解决局部区域网络容量、盲区覆盖等问题的重要作用,本文还对家庭基站的导频功率优化问题进行了研究,基于网络拓扑结构和传播流量分布,提出了家庭基站导频功率及毫微微小区半径的优化配置方案。仿真实验结果验证了本文所提方案的有效性,具有较好的理论价值。
     3.各种异构接入网络的无缝融合是下一代通信网络的显著特征之一。联合会话接纳控制是针对异构无线通信系统的一种宏观资源管理,其目的是使用户会话在各个无线接入网络中均衡分布。本文对单运营商异构网络环境下的联合会话接纳控制问题进行了研究,构建了联合会话接纳控制问题的数学模型,提出了基于免疫计算的联合会话接纳控制方案,并通过仿真实验验证了本文方案。实验结果表明,与文献方案相比,本文方案在阻塞率和频谱效用之间获得了更好的性能折中,同时更好地兼顾了同一运营商内各个接入网络之间的公平。
     4.在异构网络融合场景下,垂直切换是保证无线业务连续性的有效手段,同时也是调整各个无线接入网络负载的有效方法,垂直切换判决方案决定了垂直切换的性能。本文对异构网络融合场景下的垂直切换判决问题进行了研究,构建了垂直切换判决问题的数学模型,提出了一种基于简谐振子免疫优化算法的垂直切换判决方案,并进行了实验验证。实验结果表明,本文方案能够有效地平衡网络负载、增加终端电池的生存时间。
     5.在融合多种无线接入技术的异构网络环境中,用户业务在时域和空域上分布的不均衡性是影响整个异构网络性能的主要因素。本文对异构网络融合场景下的负载均衡问题进行了研究,提出了一种基于接入选择和业务转移的动态负载均衡机制。本文把接入选择建模为约束优化问题,利用求得的结果把接入任务均衡地分配到各个基站小区中。另外,为了削弱热点小区突发性业务对系统负载均衡性的破坏,本文还提出了基于基站负载率阈值的业务转移策略。仿真实验结果表明,本文所提出的动态负载均衡方案在接入阻塞率、切换掉线率、负载均衡性、系统利用率等指标上均优于文献方案。
With the rapid development of3G communications systems and wireless accesstechnology, more and more people can enjoy the convenience brought by the wirelesscommunication. Mobile communications systems are resource-constrained systems.With the needs of the wireless business in the sustained rapid growth, the wirelessresources, such as base station location resources, spectrum resources, code resources,power resources, bandwidth resources and so on, are becoming more and moreshortages. Thus how to effectively utilize the limited wireless resources to meet growingbusiness needs have become the issues of common concern for researchers and mobilenetwork operators. Radio resource management (RRM) is an important research hot ofthe wireless communication network. It can provide the maximum coverage, systemcapacity and system performance, by optimizing the allocation of the resources of thewireless communication network, so as to support many users to access the limitedradio resources. The optimization model and optimization algorithm for resourcesallocation of wireless communication network are researched. The author’s majorcontributions are outlined as follows:
     1. The base station location has an important influence on the quality of service forwireless communications networks.It should take full account of the coverage area ofbase station, construction cost, maintenance convenience, and other factors, when weplan base stations location. Base station location optimization is an important element ofthe wireless communication network optimization,it's task is to optimize the numberand location of base stations with considering signal quality, construction costs, andcoverage constraints, and other network parameters, it's target is to obtain a highercoverage network with a lower base station construction cost. The problem of basestation location planning in wireless network has been studied. Firsty, the locationoptimization model for TD-SCDMA network base station was expound, three cloningoperators with real-number encoding were designed, a solution of base station locationplanning based on immune computing was proposed. Secondly, the problem of basestation location planning in the WCDMA network has been studied. There is obviousrespiratory effect in the WCDMA network, capacity and coverage of mutual influence,which makes the problem of base station location planning becoming very complicated.The link budget is used to determine the maximum acceptable path loss of WCDMAnetwork, in order to estimate the radius of a cell and the coverage area of a base station.The load factor is used to estimate the total number of users supported by each base station. The solution of optimization locations based on immune algorithm is proposed.Finally, the location planning problem of base station and relay station in IEEE802.16jnetwork has been studied. When IEEE802.16j relay system works in a transparentrepeater mode, mobile terminals must be in the coverage of the base station in order toensure that the relay propagation. The mathematical model of location planning of basestation and relay station is expounded, a solution of location planning based on immunecomputing is proposed. Experimental results show that the proposed solution ofoptimization locations can meet the coverage needs with low cost of networkconstruction relatively, and has the advantages of good theoretical value.
     2. The pilot channel shares downlink power with the other for downlink channel.Since the maximum transmit power of base stations is rated, pilot power accounts for alarge proportion, the proportion of other downstream channel power will be reduced.Too large pilot power will increase the downlink interference, cell overlapping area,also lead to a larger area of the pilot pollution. On the other hand, if the pilot power istoo small, then it will lead to decreased cell coverage area, which will lead tooverloading of the adjacent cell or network coverage holes. Therefore, it is verynecessary to optimize the base station pilot power according to the demand of basestation coverage and business support capabilities. The femtocell can effectivelyimprove the network capacity of local area, and solve the problem of coverage blindspots, so the femtocell pilot power allocation problem in next-generation cellularnetwork has been studied in this paper. Based on the network topology structure andcommunication flow distribution, an allocation solution for the pilot power of femtocelland the radius of femto cell are given. Experimental result shows that the proposedsolution can effectively allocate pilot power, and has the advantages of good theoreticalvalue.
     3. The seamless integration of various heterogeneous access networks is one of thesalient features of the next-generation network. The joint session admission control ismacro perspective resource management for heterogeneous wireless communicationsystem, its purpose is to the user session in various wireless access network balanceddistribution. The joint call admission control problem in heterogeneous networkenvironment of single operator has been studied. The mathematical model of joint calladmission control problem is expounded, a novel joint call admission control solutionbased on immune computing is proposed, and simulation experiments are done tovalidate the proposed solution. Experimental result shows that the proposed solution, compared with other solutions, obtains better performance tradeoffs between recentutility and frequency spectrum, balances preferably each radio access network of thesame operator.
     4. Vertical handoff in heterogeneous network convergence scenario is an effectivemeans to ensure wireless business continuity, and also an effective way to adjust thevarious wireless access network load distribution. The vertical handoff decisionalgorithm determines the performance of vertical handoff. The vertical handoff decisionproblem in heterogeneous network convergence scenario has been studied. In this paper,a mathematical model for vertical handoff decision problem is expounded, an artificialsimple harmonic oscillator immune algorithm-based vertical handoff decision scheme isproposed, and simulation experiments are done to validate proposed solution.Experimental result shows that the proposed solution, compared with literature solutions,can not only balance the overall load among all networks but also increase the collectivebattery lifetime of mobile terminals, and has the advantage of good reference value.
     5. In heterogeneous network environment integrated multiple radio accesstechnology, the non-uniform distribution of users' calls in the time domain and in theairspace is the important factor affecting the performance of heterogeneous wirelessnetwork. The load balance problem in heterogeneous network convergence scenario hasbeen studied, and a novel dynamic load balance scheme based on access selection andcalls transfer is proposed. In this paper, access selection is modeled as a constrainedoptimization problem, and the access calls is assigned to all base station evenly inaccordance with the optimization result. In addition, in order to weaken thedestructiveness of sudden calls from hot area to the system load balance, a calls transferstrategy based on the threshold of base station load rate is given. Experimental resultshows that the proposed solution performs better than literature solutions in accessblocking rate, calls dropping rate, load balance and system utilization rate.
引文
[1]彭木根,王文博.3G无线资源管理与网络规划优化[M].北京:人民邮电出版社,2006.
    [2]张同须. LTE现状及未来发展综述[J].电信工程技术与标准化,2010,(11):1-6.
    [3]张大鹏.LTE系统中无线资源管理技术的研究[D].北京邮电大学博士论文,2011.
    [4]张传福,彭灿,刘丑中等.第三代移动通信资源管理与新业务[M].北京:人民邮电出版社,2008.
    [5]彭木根,王文博.无线资源管理与3G网络规划优化[M].北京:人民邮电出版社,2008.
    [6]北京邮电大学无线新技术研究所. TD-SCDMA无线网络规划优化及无线资源管理[M].北京:人民邮电出版社,2007.
    [7]朱新宁.宽带无线网络无线资源管理关键技术研究[D].北京邮电大学博士论文,2010.
    [8]王金鹏.移动通信系统中无线资源管理及其性能研究[D].大连海事大学博士论文,2011.
    [9]曾宇辉.下一代无线通信系统资源管理及QoS增强研究[D].华中科技大学博士论文,2011.
    [10]张力.未来移动通信系统中广播组播的无线资源管理[D].北京邮电大学博士论文,2010.
    [11]李军.异构无线网络融合理论与技术实现[M].北京:电子工业出版社,2009.
    [12] LARRY RAISANEN,ROGER M, WHITAKER B. Comparison and evaluation ofmultiple objectives genetic algorithms for the antenna placement problem [J].Mobile Networks and Applications,2005,(10):79-88.
    [13] Zhang Hong-yuan, XI Yu-geng, GU Han-yu. A rolling window optimizationmethod for large-scale WCDMA base stations planning problem. EuropeanJournal of Operational Research,2007,183,370-383.
    [14] Yang J, Aydin M E, Zhang J. UMTS base station location planning:a mathematicalmodel and heuristic optimisation algorithms. IET Communications,2007,1,(5):1007-1014.
    [15] Edoardo Amaldi, Antonio Capone,Federico Malucelli. Radio planning andcoverage optimization of3G cellular networks [J].Wireless Network,2008,(14):435–447
    [16]朱思峰,刘芳,柴争义.基于免疫计算的WCDMA网络基站选址优化[J].电子与信息学报,2011,33(6):1492-1495.
    [17]刘阅希,杨丰瑞. TD-SCDMA无线基站选址的原则和解决方案[J].电信工程技术与标准化,2007,(12):67-70.
    [18]石朗昱. TD-SCDMA与2G共站址勘察设计[J].电信工程技术与标准化,2008,(12):30-33.
    [19]黄邵军,李炳杰,张国华. TD-SCDMA通信基站架设的分层多目标优化模型[J].电视技术,2009,49(7):81-83.
    [20]朱思峰,刘芳,柴争义.基于免疫计算的TD-SCDMA网络基站选址优化[J].通信学报,2011,32(1):106-110.
    [21]朱思峰,陈国强,张新刚.免疫记忆克隆算法求解3G基站选址优化问题[J].华中科技大学学报(自然科学版),2011,39(7):63-66.
    [22]朱思峰,陈国强,张新刚等.多目标优化量子免疫算法求解基站选址问题[J].华中科技大学学报(自然科学版),2012,40(1):56-61.
    [23]马彰超,王文博.中继增强型蜂窝网络接入选择策略的研究[J].中国电子科学研究院学报,2009,4(2):216-220.
    [24] Lin B, Ho P, Xie L, Shen X. Optimal relay station placement in IEEE802.16jnetworks. In Proceedings of the2007International conference on WirelessCommunications and Mobile Computing,2007.
    [25] Lin B, Ho P, Xie L, Shen X. Relay station placement in IEEE802.16j dual-relayMMR networks. In IEEE WCNC,2008.
    [26] Yu Y, Murphy S, Murphy L. Planning base station and relay station locations inIEEE802.16j multi-hop relay networks. In IEEE Consumer Communications andNetworking Conference,2008.
    [27] Yu Y, Murphy S, Murphy L. A clustering approach to planning base station andrelay station locations in IEEE802.16j multi-hop relay networks. In IEEEInternational Conference on Communications,2008.
    [28] Yu Y, Murphy S, Murphy L. Planning base station and relay station locations forIEEE802.16j Network using genetic algorithm. In IEEE CCNC,2010.
    [29] Valkealahti K, Pakkinen J, Flanagan A. WCDMA common pilot power control withcost function minimization[C].in Proceeding of the56th IEEE VehicularTechnology Conference(September2002) pp.2244–2247.
    [30] Duong D V, Qien G E. Optimal pilot spacing and power in rate-adaptive MIMOdiversity systems with imperfect CSI [J]. IEEE Transactions on WirelessCommunications,2007,6(3):845-851.
    [31]韩湘,魏急波.一种MIMO系统中叠加导频的最优设计方法[J].电子学报,2007,35(4):732-735.
    [32] Siomina I, Yuan D. Minimum pilot power for service coverage in WCDMAnetworks [J]. Wireless Networks,2008,14(3):393-402.
    [33] GolovinS E, Ventura N. Optimization of the pilot-to-data power ratio in thewireless MIMO-OFDM system with low-complexity MMSE channel estimation[J]. Computer Communications,2009,32(3):465-476.
    [34] Zhou X G, Lamahewa T A, Sadeghi P. Two-way training: Optimal power allocationfor pilot and data transmission [J]. IEEE Transactions on WirelessCommunications,2010,9(2):564-569.
    [35] http://www.e2r2.motlabs.com[2004-01-01]
    [36] Qingyang S, Jamalipour A. Quality of service provisioning in wireless LAN/UMTSintegrated systems using analytic hierarchy process and gray relational analysis
    [A].Global telecommunications conference workshops[C]. Texas: Springer-verlag,2008.220-224.
    [37] Lilith N, Dogancay K. Dynamic channel allocation for mobile cellular traffic usingreduced-state reinforcement learning[C]. Proceedings of IEEE WirelessCommunications and Networking Conference,Georgia,USA,2004,4:2195-2200.
    [38]朱思峰,刘芳,柴争义.异构无线网络中基于免疫计算的联合会话接纳控制[J].电子学报,2011,39(11):2648-2653.
    [39]刘敏,李忠诚,过晓冰.异构网络中垂直切换算法的评测与改进[J].软件学报,2007,18(7):1652-1659.
    [40]邓强.异构无线网络中的接纳控制与垂直切换研究[D].北京邮电大学博士论文,2010.
    [41] Mehbodniya Abolfazl, Aissa Sonia, Chitizadeh Jalil. A location-aware verticalhandoff algorithm for hybrid networks[J]. Journal of Communications,2010,5(7):521-529.
    [42] Liu Sheng-mei, Meng Qing-min,Pan Su, et al. A simple additive weighting verticalhandoff algorithm based on SINR and AHP for heterogeneous wireless networks[J].Journal of Electronics and Information Technology,2011,33(1):235-239.
    [43] Kaveh Shafiee, Alireza Attar. Optimal distributed vertical handoff strategies invehicular heterogeneous networks[J]. IEEE Journal on Selected Areas inCommunications,2011,29(3):534-544.
    [44] Liu Xingwei, Fang Xuming,Chen Xu, et al. A bidding model and cooperativegame-based vertical handoff decision algorithm[J]. Journal of Network andComputer Applications,2011,34(4):1263-1271.
    [45] Chi Sun, Enrique Stevens-Navarro, Vahid Shah-Mansouri, et al. A constrainedMDP-based vertical handoff decision algorithm for3G heterogeneous wirelessnetworks [J]. Wireless Networks,2011,17(4):1063-1081.
    [46] Sukyoung Lee, Kotikalapudi Sriram, Kyungsoo Kim, et al. Vertical handoffdecision algorithms for providing optimized performance in heterogeneouswireless networks [J]. IEEE Transactions on Vehicular Technology,2009,58(2):865-881.
    [47]张平,冯志勇.认知无线网络[M].北京:科学出版社,2010.
    [48] Muiti-radio access architecture. AN Deliverable D2.4,2005.
    [49] Intermediate report on AROMA algorithms and simulation results. AROMADeliverable D12,2007.
    [50] First report on the evaluation of RRM/CRRM algorithms. EVEREST DeliverableD11,2007.
    [51]刘琪,袁坚,山秀明等.3G/WLAN网络中基于终端移动与业务认知的动态负载均衡机制[J].计算机学报,2010,33(9):1569-1579.
    [52] Ning Guo-qin, Zhu Guang-xi,Peng Lie-xin,et al. Load balancing based on trafficselection in heterogeneous overlapping cellular networks[C]. The First IEEE andIFIP International Conference in Central Asia on Internet. Bishket Kyrgyzstan:IEEE Press,2005:26-29.
    [53]孙卓,郑旭飞,王文博.负载均衡的多接入选择算法[J].电子科技大学学报,2010,39(4):532-536.
    [54]张恒.无线接入网中无线下行覆盖自优化和自主负载均衡方法[D].北京邮电大学博士论文,2011年.
    [55]裴雪兵.新型无线网络的资源管理与负载均衡策略研究[D].华中科技大学博士论文,2009年.
    [56]孙雷.异构无线环境中联合无线资源管理关键技术研究[D].北京邮电大学博士论文,2011年.
    [57]胡毓达,杨万铨.求解群体多目标最优化问题的联合有效数法[J].高等学校计算数学学报,2003,25(9):245-252.
    [58]俞建.多目标最优化问题中弱有效解的稳定性[J].贵州工业大学学报.1995,26(02):123-129.
    [59]美国数学教研组编,林少宫译.优选法理论[M].北京:科学出版社,1992.
    [60]王文龙,王晓敏.多目标线性规划的交互式线性加权内点算法[J].贵州大学学报(自然科学版),2004,19(3):123-129.
    [61]邓永辉.矩阵算法在多目标投资决策中的应用[J].数学理论与应用,2009,34(2):24-29.
    [62]韩滏慧,张志宏.多目标线性规划两种解法的比较[J].北京工商大学学报(自然科学版),2007,25(1):25-31.
    [63]胡毓达.实用多目标最优化[M].上海:上海科学技术出版社,1990.
    [64] Jianshe Wu, Licheng Jiao, and Rui Li. Clustering dynamics of nonlinear oscillatornetwork: application to graph coloring problem[J]. Physica D,2011,240(1):1972-1978.
    [65]赵季红,李强,曲桦等.基于LTE-A技术无线资源管理的跨层联合博弈[J].电信科学,2011,(8):51-57.
    [66]陈行,陶军.无线网络中基于贝叶斯博弈模型的入侵检测算法研究[J].通信学报,2010,31(2):107-113.
    [67]谢识予.经济博弈论[M].上海:复旦大学出版社,2002:18-22.
    [68]刘亚相,孙洪罡,王丽波等.多目标博弈的模糊求解法[J].西北农林科技大学学报(自然科学版),2004,35(2):25-28.
    [69]李金泽,汪训孝.多目标博弈Nash平衡点的存在性[J].西南民族大学学报(自然科学版),2010,36(2):37-42.
    [70]赵薇,蒋岚翔.多目标博弈平衡点存在性定理的推广[J].数学的实践与认识,2011,41(4):241-246.
    [71]石文孝,赵嵩,范绍帅等.基于多目标决策的异构无线网络接入选择算法[J].吉林大学学报(工学版),2011,41(3):795-799.
    [72]周倩,傅明,牛园园.多目标遗传算法在QoS组播路由选择中的应用[J].计算机工程,2011,26(1):24-29.
    [73]曹军,唐伦,陈前斌等.基于粒子群算法的移动路由选择方案[J].广东通信技术,2009,(3):35-39.
    [74]王朝,刘剑飞,孙春等.基于改进粒子群算法的无线传播模型校正[J].电路与系统学报,2010,23(6):19-24.
    [75]石文孝,范绍帅,王柟.基于PSO模糊神经元的异构无线网络接入选择[J].北京邮电大学学报,2011,34(2):58-62.
    [76]王秀芳,吕佳.遗传模拟退火算法在无线网络规划中的应用[J].大庆石油学院学报,2008,18(1):18-23.
    [77]覃德泽.基于模拟退火的多射频多信道网络的路由算法[J].中南林业科技大学学报,2011,36(2):121-127.
    [78] Zitzler E, Thiele L. Multi-Objective evolutionary algorithms:A comparative casestudy and the strength pareto approach[J]. IEEE Trans.on EvolutionaryComputation,1999,3(4):257-271.
    [79]张冠玉.免疫学基础及病原生物学[M].成都:四川科学技术出版社,1999.
    [80] Farmer J D, Packard N H, Perelson A S. The immune system, adaptation, andmachine learning [J]. Physica D,1986,(22):187-204.
    [81]莫宏伟.人工免疫系统原理及其应用[M].哈尔滨:哈尔滨工业大学出版,2003.
    [81]莫宏伟,左兴权,毕晓君.人工免疫系统研究进展[J].智能系统学报,2009,4(1):21-29.
    [82]焦李成,杜海峰,刘芳.免疫优化、计算学习与识别[M].北京:科学出版社,2006.
    [83]焦李成,公茂果,尚荣华等.多目标优化免疫算法、理论与应用[M].北京:科学出版社,2010:53-64.
    [84]李涛.基于免疫的网络监控模型[J].计算机学报,2006,29(9):1515-1522.
    [85]李涛.基于免疫的计算机病毒动态检测模型[J].中国科学(F辑:信息科学),2009,39(4):422-430.
    [86]肖人彬,曹鹏彬,刘勇.工程免疫计算[M].科学出版社,2007.
    [87]丁永生,任立红.人工免疫系统:理论与应用[J].模式识别与人工智能,2009,13(1):52-59.
    [88]张军,刘克胜,王煦法.一种基于免疫调节算法的BP网络设计[J].安徽大学学报(自然科学版),1999,23(1):63-66.
    [89]张军,刘克胜,王煦法.一种基于免疫调节和共生进化的神经网络优化设计方法[J].计算机研究与发展,2000,37(8):924-930.
    [90] Ishiguro A,Watanabe Y,Ichikawa S,et al. Gait control of hexapod walking robotsusing mutual-coupled immune network[J]. Advanced Robotics,1996,10(2):179-195.
    [91] Tang Z,Yamaguchi T,Tashima K,et al.A multiple valued immune network and itsapplications[J]. IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences,1999,82(6):1102-1108.
    [92] Herzenberg L A,Black S J. Regulatory circuits and antibody response[J]. EuropeanJournal of Immune,1980,(10):1-11.
    [93] Timmis J, Neal M. A resource limited artificial immune system for data analysis.Knowledge Based Systems,2001,14(3-4):121-130.
    [94] de Castro L N,von Zuben F J. An evolutionary immune network for data clustering[C]. Proceedings of6thBrazilian Symposium on Neural Networks, Rio deJaniero,2000:84-89.
    [95] Forrest S. Artificial Immune System[C]. Proceedings of the fifth internationalconference on genetic algorithms and their applications,1993.
    [96] Burnet F M. Clonal selection and after [M].New York:Marcel Dekker Inc.,1978.
    [97] de Castro L N, von Zuben F J. The clonal selection algorithm with engineeringapplications [C]. Proceedings of GECCO’00, Workshop on Artificial ImmuneSystem and Their Application,2000,36-37.
    [98] Kim J, Bentley P J. Towards an artificial immune system for network intrusiondetection: an investigation of dynamic clonal selection[C]. Proceedings of theCongress on Evolutionary Computation,2002,1015-1020.
    [99] Castro L N, Zuben F J. Learning and optimization using the clonal selectionprinciple [J]. IEEE Transaction on Evolutionary Computation,2002,6(3):239-251.
    [10] Du H F, Gong M G, Jiao L C, et al. A novel artificial immune system algorithm forhigh-dimensional function numerical optimization [J]. Progress in NaturalScience.2005,15(5):463-471.
    [101] Du H F, Gong M G, Liu R C. Adaptive chaos clonal evolutionary programmingalgorithm [J]. Science in China (Series F): Information Sciences,2005,48(5):579-595.
    [102] Liu R C, Jiao L C, Du H F. Clonal strategy algorithm based on the immunememory [J]. Journal of Computer Science and Technology,2005,20(5):728734.
    [103]戚玉涛,刘芳,焦李成.求解大规模TSP问题的自适应归约免疫算法[J].软件学报,2008,19(6):1265-1273.
    [104]戚玉涛,刘芳,焦李成.基于分布式人工免疫算法的数值优化[J].电子学报,2009,37(7):1554-1561.
    [105]王磊.免疫进化计算理论及应用[D].西安电子科技大学博士论文,2001.
    [106]王磊,潘进,焦李成.免疫算法[J].电子学报,2001,28(7):74-79.
    [107]刘士荣,张波涛.采用生物信息机制的量子免疫克隆算法[J].模式识别与人工智能,2011,24(3):391-399.
    [108]吴秋逸,焦李成,李阳阳.自适应量子免疫克隆算法及其收敛性分析[J].模式识别与人工智能,2008,21(2):39-46.
    [109]何钦象,柯芬蓉,杨智春.周期变异概率的免疫克隆算法[J].控制理论与应用,2009,26(12):1449-1451.
    [110]李阳阳,焦李成.求解SAT问题的量子免疫克隆算法[J].计算机学报,2007,30(2):176-183.
    [111] Srinivas N, Deb K. Multiobjective optimization using nondominated sorting ingenetic algorithms[J]. Evolutionary Computation,1994,2(3):221-248.
    [112] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective geneticalgorithm: NSGA-II[J]. IEEE Trans. on Evolutionary Computation,2002,6(2):182-197.
    [113] Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative casestudy and the strength pareto approach [J]. IEEE Trans. on EvolutionaryComputation.1999,3(4):257-271.
    [114] Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength paretoevolutionary algorithm[R]. Zurich:Computer Engineering and NetworksLaboratory (TIK), Swiss Federal Inst. Technology (ETH),2001.
    [115] Knowles J D,Corne D W. The pareto archived evolution strategy: a new baselinealgorithm for pareto multi-objective optimization[C].Proceedings of IEEEConference on Evolutionary Computation,1999:98-105.
    [116] Corne D W, Knowles J D. The perato envelope-based selection algorithm formultiobjective optimization[C].Proceedings of IEEE Conference on EvolutionaryComputation,2000:839-848.
    [117] Tan K C, Yang Y J. A distributed cooperative coevolutionary algorithm formultiobjective optimization[J]. IEEE Transaactions on Evolutionary Computation.1999,3(4):257-271.
    [118] Coello Coello C A. A comprehensive survey of evolutionary-based multiobjectiveoptimization techniques[J]. Knowledge and Information Systems,1999,1(3):269-308.
    [119] Coello Coello C A, Cortes N C. An approach to solve multiobjective optimizationproblem based on an artificial immune system[C]. Proceedings of the FirstInternational Conference on Artificial Immune System,2002:212-221.
    [120] Luh G C,Chueh C H,Liu W. MOIA:multi-objective immune algorithm[J].Engineering Opimization,2003,35(2):143-164.
    [121] Jiao Licheng, Gong M G, Shang R H, et al. Clonal selection with immunedominance and anergy based multiobjective optimization[C].EMO’05, Berlin:Springer-Verlag,2005:474-489.
    [122] Shang R H,Ma W P Zhang W. Immune clonal MO algorithm for ZDTproblems[C]. Proceedings of2nd International Conference on Advances in NaturalCompution, Xi’an,2006:870-878.
    [123] Tan G X, Mao Z Y. Study on pareto front of multi-objective optimization usingimmune algorithm[C]. Proceedings of4th International Conference on MachineLearning and Cybernetics,Guangzhou2005:2923-2928.
    [124] Gong M G, Jiao L C, DU H F, et al. Multi-objective immune algorithm withnondominated neighbor-based selection[J]. Evolutionary Computation,2008,16(2):225-255.
    [125] Yang Dongdong, Jiao Licheng, Gong Maoguo, et al. Adaptive ranks and k-nearestneighbour list based multiobjective immune algorithm[J]. ComputationalIntelligence,2010(26)4:359–385.
    [126]杨咚咚,焦李成,公茂果.求解偏好多目标优化的克隆选择算法[J].软件学报,2010,21,(1):14-33
    [127]尚荣华,焦李成,公茂果等.免疫克隆算法求解动态多目标优化问题.软件学报,2007,18(11):2700-2711.
    [128] Jiao Licheng, Li Yangyang, Gong Maoguo, et al. Quantum-inspired immuneclonal algorithm for global optimization[J]. IEEE Transactions on System, Man,and Cybernetics(Part B),2008,38(5):1234–1253.
    [129] Gong Maoguo, Jiao Licheng, Ma Wenping, et al. Multiobjective optimizationusing an immune dominance and clonal selection inspired algorithm[J]. Sciencein China Series F: Information Sciences,2008,51(8):1064–1082.
    [130] Yang Dongdong, Jiao Licheng, Gong Maoguo, et al. Artificial immunemulti-objective SAR image segmentation with fused complementary feature [J].Information Sciences,2011,181(13):2797-2812.
    [1]贾东燕. TD-SCDMA技术特点及网络建设[J].现代电信科技,2009,(2):11-17.
    [2]彭木根,王文博.无线资源管理与3G网络规划[M].北京:人民邮电出版社,2008,378-380.
    [3]李绍军.一种基于Alopex的进化优化算法[J].模式识别与人工智能,2009,22(3):452-456.
    [4] Yang J, Aydin M E. UMTS base station location planning: a mathematical model andheuristic optimization algorithms [J]. IET Communications,2007,21(5):1007–1014.
    [5] Munyaneza J, Kurien A. Optimization of Antenna Placement in3G Networks usingGenetic Algorithms [J]. Communications&Information Technology,2009,(5):70-80.
    [6] Zhang Zhu-hong. Immune optimization algorithm for constrained nonlinearmulti-objective optimization problems [J]. Applied Soft Computing Journal,2007,7(3):840-857.
    [7] Wang Jiang-qing, Tan Jun, Kang Li-shan. Immune optimization algorithm for a newmulticast routing model [J]. Journal of Harbin Engineering University,2006,27(2):286-289.
    [8]行小帅,霍冰鹏.基于免疫的并行单亲遗传算法研究[J].通信学报,2007,28(8):99-104.
    [9] Huang T L, Huang C C, Lien Y N. System optimal compensators placement viaimmune multi-objective algorithm [J]. WSEAS Transactions on Systems,2009,8(5):604-612.
    [10] Zuo Xing-quan, Mo Hong-wei, Wu Jian-ping. A robust scheduling method basedon a multi-objective immune algorithm [J]. Information Sciences,2009,179(19):3359-3369.
    [11] Gong M G, Jiao L C, Du H F, et al. Multi-objective immune algorithm withnondominated neighbor-based selection [J].Evolutionary Computation,2008,6(2):225-255.
    [12]朱思峰,刘芳,柴争义.免疫聚类算法在基因表达数据分析中的应用[J].北京邮电大学学报,2010,33(2):54-58.
    [13]杨咚咚,焦李成,公茂果等.求解偏好多目标优化的克隆选择算法[J].软件学报,2010,21(1):14-33.
    [14] Wang P. Path loss modeling and comparison based on the radio propagationmeasurement at3.5GHz [J]. High Technology Letters,2009,23(3):120-145.
    [15]姚立,何晨.一种新的用于WCDMA基站布局规划的移动台分配方法[J].上海交通大学学报,2007,41(05):25-29.
    [16] Kim N, Choi Y S. The displacement of base station in mobile communication withgenetic approach [J]. Eurasia Journal on Wireless Communications andNetworking,2008,8(4):161-170.
    [17] Yang J, Aydin M E, Zhang J. UMTS base station location planning:a mathematicalmodel and heuristic optimisation algorithms[J]. IET Communication,2007,1(5):1007–1014.
    [18] Zhang H Y, Xi Y G, Gu H Y. A rolling window optimization method for large-scaleWCDMA base stations planning problem [J]. European Journal of OperationalResearch,2007,183(2):370-383.
    [19] Munyaneza J, Kurien A. Optimization of Antenna Placement in3G Networks usingGenetic Algorithms[J]. Communications&Information Technology,2009,36(3):70-80.
    [20]马彰超,王文博.中继增强型蜂窝网络接入选择策略的研究[J].中国电子科学研究院学报,2009,4(2):216-220)
    [21] Lin B, Ho P H, Xie L L, et al. Optimal relay station placement in IEEE802.16jnetworks [C]. Proceedings of the2007International Conference on WirelessCommunications and Mobile Computing. Hawaii,USA:ACM,2007:25-30
    [22] Lin B, Ho P H, Xie L L, et al. Relay station placement in IEEE802.16j dual-relayMMR networks[C]. Proceedings of IEEE ICC’2008. New York: IEEE,2008
    [23] Yu Y, Murphy S, Murphy L. Planning base station and relay station locations inIEEE802.16j multi-hop relay networks[C]. Proceedings of IEEE CCNC’2008.New York: IEEE,2008
    [24] Yu Y, Murphy S, Murphy L. A clustering approach to planning base station andrelay station locations in IEEE802.16j multi-hop relay networks[C]. Proceedingsof IEEE ICC’2008. New York: IEEE,2008
    [25] Yu Y, Murphy S, Murphy L. Planning base station and relay station locations forIEEE802.16j Network using genetic algorithm [C]. Proceedings of IEEE CCNC’2010. New York: IEEE,2010
    [26]朱思峰,陈国强,张新刚.免疫记忆克隆算法求解3G基站选址优化问题[J].华中科技大学学报(自然科学版),2011,39(7):63-66.
    [27]朱思峰,陈国强,张新刚.多目标优化量子免疫算法求解基站选址问题[J].华中科技大学学报(自然科学版),2012,40(1):56-61.
    [28]朱思峰,刘芳,柴争义.基于免疫计算的TD-SCDMA网络基站选址优化[J].通信学报,2011,32(1):106-110.
    [29]朱思峰,刘芳,柴争义.基于免疫计算的WCDMA网络基站选址优化[J].电子与信息学报,2011,33(6):1492-1495.
    [30]朱思峰,刘芳,柴争义.基于免疫计算802.16j网络基站及中继站选址优化[J].计算机研究与发展(已录用,2012年8月刊出)
    [1] JitvanichphaiB K, Saquib M. Optimum pilot-to-data power ratio for partial RAKEreceiver in Nakagami-m fading channels [J]. IEEE Transactions on WirelessCommunications,2009,8(1):136-147.
    [2] Valkealahti K, Pakkinen J, Flanagan A. WCDMA common pilot power control withcost function minimization[C]. Proceeding of the56th IEEE Vehicular TechnologyConference,2002,2244–2247.
    [3] Duong D V, Qien G E. Optimal pilot spacing and power in rate-adaptive MIMOdiversity systems with imperfect CSI [J]. IEEE Transactions on WirelessCommunications,2007,6(3):845-851.
    [4]韩湘,魏急波.一种MIMO系统中叠加导频的最优设计方法[J].电子学报,2007,35(4):732-735.
    [5] Siomina I, Yuan D. Minimum pilot power for service coverage in WCDMAnetworks [J]. Wireless Networks,2008,14(3):393-402.
    [6] Golovins E, Ventura N. Optimization of the pilot-to-data power ratio in the wirelessMIMO-OFDM system with low-complexity MMSE channel estimation [J].Computer Communications,2009,32(3):465-476.
    [7] Zhou X G, Lamahewa T A, Sadeghi P. Two-way training: Optimal power allocationfor pilot and data transmission [J]. IEEE Transactions on Wireless Communications,2010,9(2):564-569.
    [8] Zitzler E, Thiele L. Multi-Objective evolutionary algorithms: A comparative casestudy and the strength Pareto approach. IEEE Trans.on Evolutionary Computation,1999,3(4):257-271.
    [9] Gong M G, Jiao L C, DU H F, et al. Multi-objective immune algorithm withnondominated neighbor-based selection. Evolutionary Computation,2008,16,(2):225–255.
    [10]杨咚咚,焦李成,公茂果.求解偏好多目标优化的克隆选择算法[J].软件学报,2010,21,(1):14-33.
    [11]尚荣华,焦李成,公茂果.免疫克隆算法求解动态多目标优化问题.软件学报,2007,18(11):2700-2711.
    [12]尚荣华,焦李成,马文萍等.用于约束多目标优化的免疫记忆克隆算法[J].电子学报,2009,37(6):1289-1294.
    [13]林黄娜,蒋铃鸽,何晨.一种基于导频功率控制的WCDMA移动台分配策略[J].上海交通大学学报,2007,41(6):135-142.
    [14] Nowicki A,Trots I, Lewin P A et al. Influence of the ultrasound transducerbandwidth on selection of the complementary Golly bit code length [J]. Ultrasonics,2007,47(1):64-73.
    [15]张贻华,陈志强,叶家骏.40GHz毫米波室内传播损耗分析[J].电子测量技术,2010,33(6):44-47.
    [16] Chandrasekhar V, Andrews J G, Muharemovic T, et al. Power control in two-tierfemtocell networks [EB/OL]. http://arxiv.org/abs/200810.3869.
    [17] Claussen H. Performance of macro-and co-channel femtocells in a hierarchical cellstructure[C]. In IEEE18th International Symposium on Personal, Indoor andMobile Radio Communications,2007.
    [18] Who L T, Claussen H. Effects of user-deployed co-channel femtocells on the calldrop probability in a residential scenario[C]. In IEEE18th InternationalSymposium on Personal, Indoor and Mobile Radio Communications,2007.
    [19]张建敏,张朝阳,黄爱苹.基于OFDM的双层Femtocell网络中子信道、速率和功率的最优分配[J].中国科学技术大学学报,2009,39(10):1034-1038.
    [20]叶璇,张欣,曹亘等.干扰控制技术在LTE家庭基站中的应用[J].电信科学,2010,(5):11-15.
    [21]朱思峰,刘芳,柴争义.下一代蜂窝网络中家庭基站导频功率的免疫优化[J].吉林大学学报(工学版),2012,42(3):776-781.
    [1] Coutinho, Rodolfo W L, Coelho et al. Optimal policy for joint call admission controlin next generation wireless networks [A]. Proceedings of the2010InternationalConference on Network and Service Management[C]. Texas: Springer-verlag,2010.214-217.
    [2] Guo C, Guo Z, Zhang Q, et al. A seamless and proactive end-end mobility solutionfor roaming across heterogeneous wireless networks [J]. IEEE Journal on SelectedAreas in Communications,2008,22(2):834-848.
    [3] Qingyang S, Jamalipour A. Quality of service provisioning in wireless LAN/UMTSintegrated systems using analytic hierarchy process and gray relational analysis [A].Global telecommunications conference workshops[C]. Texas: Springer-verlag,2008.220-224.
    [4] Modeas I, Kaloxylos A, Passas N et al. An algorithm for radio resourcesmanagement in integrated cellular/WLAN networks [A]. Proceedings of the18thAnnual IEEE Int'l Symp on Personal, Indoor and Mobile Radio Communications
    [C]. Texas: Springer-verlag,2009.261-275.
    [5]李明欣,陈山枝,谢东亮等.异构无线网络中基于非合作博弈论的资源分配和接入控制[J].软件学报,2010,21(8):2037-2049.
    [6]陈前斌,周伟光,柴蓉等.基于博弈论的异构融合网络接入选择方法研究[J].计算机学报,2010,33(9):1633-1642.
    [7] Yu F, Krishnamurthy V. Optimal joint session admission control in integratedWLAN and CDMA cellular networks with vertical handoff [J]. IEEE Trans. onMobile Computing,2007,6(1):126-139.
    [8]张向荣,骞晓雪,焦李成.基于免疫谱聚类的图像分割[J].软件学报,2010,21(9):2196-2205.
    [9]朱思峰,刘芳,柴争义.免疫聚类算法在基因表达数据分析中的应用[J].北京邮电大学学报,2010,33(2):54-57.
    [10]朱思峰,刘芳,柴争义.基于免疫计算的TD-SCDMA网络基站选址优化[J].通信学报,2011,32(1):106-110.
    [11]尚荣华,焦李成,马文萍等.用于约束多目标优化的免疫记忆克隆算法[J].电子学报,2009,37(6):1289-1294.
    [12]孟宪福,解文利.基于免疫算法多目标约束P2P任务调度策略研究[J].电子学报,2011,39(1):101-107.
    [13]朱思峰,刘芳,柴争义.异构无线网络中基于免疫计算的联合会话接纳控制[J].电子学报,2011,39(11):2648-2653.
    [1]异构无线网络融合理论与技术实现[M].北京:电子工业出版社,2009.
    [2] Liu Sheng-mei,Meng Qing-min,Pan Su, et al. A simple additive weighting verticalhandoff algorithm based on SINR and AHP for heterogeneous wireless networks [J].Journal of Electronics and Information Technology,2011,33(1):235-239.
    [3] Kumudu S M, Abbas J. An analytical evaluation of mobility management inintegrated WLAN-UMTS networks [J]. Computers and Electrical Engineering,2010,36(4):735-751.
    [4] Kaveh S, Alireza A, Victor C M. Optimal distributed vertical handoff strategies invehicular heterogeneous networks [J]. IEEE Journal on Selected Areas inCommunications,2011,29(3):534-544.
    [5] Liu Xing-wei, Fang Xu-ming, Chen Xu, et al. A bidding model and cooperativegame-based vertical handoff decision algorithm [J]. Journal of Network andComputer Applications,2011,34(4):1263-1271.
    [6] Chi Sun, Enrique Stevens-Navarro, Vahid Shah-Mansouri, et al. A constrainedMDP-based vertical handoff decision algorithm for3G heterogeneous wirelessnetworks. Wireless Networks,2011,17(4):1063-1081.
    [7]宋艳丽.简谐噪声激励下FitzHugh-Nagumo神经元的动力学行为[J].物理学报,2010,59(04):2334-05
    [8]凌瑞良,冯金福,胡云.含时二维双耦合各向异性谐振子的严格波函数[J].物理学报,2010,59(02):0759-06
    [9]柴争义,刘芳.基于免疫克隆选择优化的认知无线网络频谱分配[J].通信学报,2010,31(11):92-100.
    [10]朱思峰,刘芳,柴争义.基于免疫计算的TD-SCDMA网络基站选址优化[J].通信学报,2011,32(1):106-110.
    [11] Bettstetter C, Resta G, Santi P. The node distribution of the random waypointmobility model for wireless Ad Hoc networks [J]. IEEE Trans. on MobileComputing,2003,2(3):257-269.
    [12]朱思峰,刘芳,柴争义.异构无线网络中基于免疫计算的联合会话接纳控制[J].电子学报,2011,39(11):2648-2653.
    [13]朱思峰,刘芳,柴争义.简谐振子免疫克隆算法求解异构无线网络垂直切换判决问题[J].物理学报,2012,61(9):096401-096410.
    [14] ZHU Si-feng, LIU Fang, CHAI Zheng-yi. Immune optimization algorithm forsolving vertical handoff decision problem in heterogeneous network [J]. WirelessNetwork,(accepted).(SCI检索源期刊)
    [1] Wu G, Mizuno M, Havinga P. MIRAI architecture for heterogeneous network [J].IEEE Communications Magazine,2002,40(2):126-134.
    [2] Ning Guo-qin, Zhu Guang-xi,PENG Lie-xin,et al. Load balancing based on trafficselection in heterogeneous overlapping cellular networks[C]. The First IEEE andIFIP International Conference in Central Asia on Internet. Bishket Kyrgyzstan: IEEEPress,2005:26-29.
    [3]孙卓,郑旭飞,王文博.负载均衡的多接入选择算法[J].电子科技大学学报,2010,39(4):532-536.
    [4]石文孝,范绍帅,王柟等.基于模糊神经网络的异构无线网络接入选择算法[J].通信学报,2010,31(9):151-156.
    [5]李明欣,陈山枝,谢东亮等.异构无线网络中基于非合作博弈论的资源分配和接入控制[J].软件学报,2010,21(8):2037-2049.
    [6]陈前斌,周伟光,柴蓉等.基于博弈论的异构融合网络接入选择方法研究[J].计算机学报,2010,33(9):1633-1642.
    [7]刘琪,袁坚,山秀明等.3G_WLAN网络中基于终端移动与业务认知的动态负载均衡机制[J].计算机学报,2010,33(9):1569-1579.
    [8]冯志勇,张平,张永靖等.可重配置系统中的联合负载控制及其终端选择算法[J].电子与信息学报,2009,31(4):893-896.
    [9] SuKyoung Lee, Kotikalapudi Sriram, Kyungsoo Kim, et al. Vertical handoffdecision algorithms for providing optimized performance in heterogeneous wirelessnetworks [J]. IEEE Transactions on Vehicular Technology,2009,58(2):865-881.
    [10] Liu Sheng-mei, Meng Qing-min, Pan Su, et al. A simple additive weighting verticalhandoff algorithm based on SINR and AHP for heterogeneous wireless networks[J]. Journal of Electronics and Information Technology,2011,33(1):235-239.
    [11] Kaveh S, Alireza A, Victor C M. Optimal distributed vertical handoff strategies invehicular heterogeneous networks [J]. IEEE Journal on Selected Areas inCommunications,2011,29(3):534-544.
    [12] Liu Xing-wei, Fang Xu-ming, Chen Xu, et al. A bidding model and cooperativegame-based vertical handoff decision algorithm [J]. Journal of Network andComputer Applications,2011,34(4):1263-1271.
    [13]孟宪福,解文利.基于免疫算法多目标约束P2P任务调度策略研究[J].电子学报,2011,39(1):101-107.
    [14]柴争义,刘芳.基于免疫克隆选择优化的认知无线网络频谱分配[J].通信学报,2010,31(11):92-100.
    [15]朱思峰,刘芳,柴争义.基于免疫计算的TD-SCDMA网络基站选址优化[J].通信学报,2011,32(1):106-110.
    [16] Bettstetter C, Resta G, Santi P. The node distribution of the random waypointmobility model for wireless Ad Hoc networks [J]. IEEE Trans. on MobileComputing,2003,2(3):257-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700