用户名: 密码: 验证码:
无机离子化学传感器及过氧化氢生物传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子电极能够直接、灵敏、快速测定无机离子,是电分析化学研究领域中的一个重要方向。过氧化氢传感器在临床、环境、食品等领域具有广阔的应用前景,也是生物传感器研究领域中一个十分活跃的课题。本论文分为两个部分。第一部分着重于设计、合成新型有机物,及其作为离子载体用于PVC溶剂聚合膜离子选择性电极的基础研究,并将电极初步应用于实际样品分析。第二部分着重于生物传感器固定化方法的研究,并将其用于多种高灵敏、高稳定的过氧化氢生物传感器的设计和研制。
     第一部分无机离子化学传感器的研究
     设计合成了四种有机物或有机金属配合物,并将它们分别作为新型载体,制备和研究了4种高选择性的PVC膜离子电极
     1.合成了牛磺酸双核铜配合物为中性载体研制阴离子选择电极。该电极对硫氰酸根有良好的电位响应并呈现出anti-Hofmeister行为,其选择性顺序SCN~->I~->ClO_4~->Sal~->NO_3~->NO_2~->Br~->Cl~->SO_3~->SO_4~(2-)。在20℃pH 5.0的磷酸缓冲溶液中,其线性范围为1.0×10~(-1)~1.0×10~(-6) mol/L,检测下限为8.0×10~(-7) mol/L,斜率为-56.5 mV/pc_(SCN~-)。紫外、红外和交流阻抗研究表明电极的高选择性与载体的立体结构和分析物与中心金属离子的作用相关。将该电极用于废水和人体尿液中硫氰酸根的测定,获得了较满意的结果。
     2.合成了Schiff碱金属配合物水杨醛肟铜(Ⅱ)、锌(Ⅱ)、镍(Ⅱ)为中性载体制备阴离子选择性电极。实验结果表明,水杨醛肟铜(Ⅱ)对水杨酸根(Sal~-)具有高选择性及优良的电位响应性能,电极呈现出反Hofmeister选择性行为,其选择性次序为Sal~->ClO_4~->SCN~->I~->NO_2~>NO_3~->Br~->Cl~->Ac~->SO_4~(2-)。该电极在20℃pH 4.0的0.01 mol/L磷酸缓冲溶液中对水杨酸根(Sal~-)在1.0×10~(-1)~7.0×10~(-6) mol/L范围内呈近能斯特响应,检出下限为6.0×10~(-6) mol/L,斜率为-58.5mV/pc_(Sal~-)。采用交流阻抗技术和紫外可见光谱技术研究了电极的响应机理。该电极具有响应快、重现性好、检出限低、制备简单等优点。将电极用于药品及人体尿液分析,其结果令人满意。
     3.合成了四碘络镉-罗丹明B(TICRhB)离子对化合物,研究了基于该离子缔合物为载体的金属络阴离子选择性电极的电位响应特性。以TICRhB为荷电载体的PVC膜电极在pH 3-6的HNO_3缓冲介质中对Cd~(2+)呈现出良好的电位响应特性。电极的电位响应线性范围为1.0×10~(-2)~2.0×10~(-6)mol/L,检测下限1.0×10~(-6)mol/L,斜率29.0mV/dec.;大多数金属阳离子和阴离子不干扰镉的测定。载体电极的膜中加入阳离子添加剂TOMACl后电极性能无明显改变。但阴离子添加剂NaTPB的加入却使电极的性能明显提高,表现在检测下限降低和斜率增加。由阴离子和阳离子添加剂对电极性能的不同影响的实验结果可得出结论,载体TICRhB遵循荷电载体作用机理。
     4.合成了一种新含硫Schiff碱——印三酮-1,3-双缩肼基二硫代甲酸苄酯(NBSB)Ninhydrin-1,3-bis(S-benzyldithiocarbazate),该分子结构中含有N,S,O三种杂原子,可以提高载体对过渡金属和重金属离子的结合能力。采用摩尔电导法研究了NBSB与重金属离子配合物的稳定性。实验结果表明,这是一种良好的Hg(Ⅱ)电极载体,相对大多数金属离子具有高的选择性,常见离子Cu(Ⅱ),Pb(Ⅱ),Cd(Ⅱ)和Ag(Ⅰ)不干扰Hg(Ⅱ)的测定。线性范围为1.0×10~(-2)—2.0×10~(-6)mol/L,检测下限为1.0×10~(-6)mol/L,在pH 3-5的硝酸缓冲介质中斜率为29.0 mV/dec。研究了增塑剂和离子添加剂等因素对电位响应性能的影响。用增塑剂邻硝基苯辛基醚(O-NPOE)制成的电极有最佳的电位响应值:加入2.8wt%KTpClPB能得到最佳的电位响应,斜率接近于能斯特响应理论值(29mV/dec)。由此得出结论,基于载体NBSB的PVC膜Hg~(2+)电极的最佳膜组成为:PVC:NPOE:NBSB:KTpClPB=30.9:61.8:4.5:2.8(wt%)。电极可以成功用作Hg(Ⅱ)浓度的电位滴定的指示电极。
     第二部分过氧化氢生物传感器的研究
     主要通过相反电荷吸附技术以及聚合物分子的多向效应将比表面积大、吸附能力强的纳米材料固定在电极表面,并以此作为亲和支持体为固载辣根过氧化物酶,研制成多种高灵敏、高稳定的过氧化氢生物传感器。
     1.通过在酸性条件下,电聚合硫瑾(thionine)单体分子,形成多孔(由在高电位的作用下氢气的产生形成)高聚复合膜,然后利用NH_2-Au之间的相互作用将纳米Au固定于电极表面,再通过金纳米粒子比表面积大、吸附能力强等特性,将辣根过氧化物酶固定在电极表面,从而制得高灵敏度、高选择的过氧化氢生物传感器。传感器的检测下限为7.5×10~(-7)mol/L H_2O_2,线性范围是9.6×10~(-6)~1.2×10~(-3)mol/L H_2O_2。将传感器用于测定牛奶样品中的过氧化氢含量,获得满意的结果。
     2.利用DNA与纳米银复合物固定过氧化物酶。实验结果表明,固定的过氧化物酶HRP能够有效地促进电子的传递。详细研究了过氧化氢在电极HRP/nanosilver/DNA/Au表面的电催化还原过程。考察了电位对复合电极HRP/nanosilver/DNA/Au检测过氧化氢的影响。更重要的是,DNA聚离子复合膜能够增强传感器的稳定性和提高传感器的抗干扰能力。传感器的检测下限为5.0×10~(-7)mol/L(信噪比为3),线性范围是1.5×10~(-6)~2.0×10~(-3)mol/L。将传感器用于测定消毒剂中过氧化氢的浓度,结果令人满意。
Carrier-based ion-selective electrodes (ISE) have found wide spread application for their response characteristics including fast response time, wide linear dynamic range, low detection limit, and good selectivity. The wide uses of ISE in routine chemical analysis have been accompanied by a search for ionophores that can chemically recognize specific cations or anions and offer either new or improved selectivity to different ions. This thesis focuses on design and synthesis of several novel compounds and studies on solvent polymeric membrane ion-selective electrodes incorporating these compounds. The electrodes can be successfully applied to practical sample analysis.
     Biosensors based on enzyme-modified electrodes are valuable in clinical diagnosis, bromatology, environmental monitoring and biochemical analysis. This thesis focuses on the immobilization of the enzyme and involves several novel amperometric hydrogen peroxide biosensor based on nanoparticles.
     Part I of the thesis deals with design of some novel carriers for poly (vinyl chloride) (PVC) membrane ion-electrode with high selectivity to Thiocyanate, Salicylate, Cadmium (II) and Mercury (II) ion respectively.
     1. The response characteristics of a new potentiometric membrane electrode with unique selectivity towards thiocyanate ion were reported. The electrode was prepared by incorporating bis-taurine-salicylic binuclear copper (II) complex into a plasticized PVC-membrane. The resulting electrode exhibits anti-Hofmeister selectivity sequence: SCN~-> I~-> ClO_4~-> Sal~-> NO_3~- > NO_2~-> Br~-> Cl~-> SO_3~->SO_4~(2-)and a near-Nernstian potential linear range for thiocyanate from 1.0×1.0~(-1) to 1.0×1.0~(-6) mol·L~(-1) with a detection limit of 8.0×10~(-7) mol·L~(-1) and a slope of -56.5 mV/pcscn~- in phosphate buffer solution of pH 5.0 at 20°C. The UV/Vis spectra, IR spectroscopy and AC impedance studies showed that the excellent selectivity to thiocyanate was related to the unique interaction between the central metal and the analyte and a steric effect associated with the structure of the carrier. The electrode was successfully applied to the determination of thiocyanate in wastewater and human urine samples.
     2. The response characteristics of a new potentiometric membrane electrode with unique selectivity towards salicylate ion are reported. The electrode is prepared by incorporating bis-salicylaldoxime complex of copper (II) into a plasticized PVC-membrane. The resulting electrode exhibits anti-Hofmeister selectivity sequence: Sal~- > ClO_4~- > SCN~- > I~- > NO_2~-> NO_3~-> Br~-> Cl~-> Ac~-> SO_4~(2-)and a near-Nernstian potential linear range for salicylate from 1.0×1.0~(-1) to 3.0×10~(-6) mol·L~(-1) with a detection limit of 7.0×10~(-7) mol·L~(-1) and a slope of -58.5 mV/pcsal~- in pH 4.0 of phosphate buffer solution at 20°C. The UV/Vis spectra and A.C. impedance studies showed that the excellent selectivity for salicylate was related to the unique interaction between the central metal and the analyte and a steric effect associated with the structure of the carrier. The electrode was successfully applied to the determination of salicylate in human urine and pharmaceutical preparations.
     3. A novel tetraiodocadmate (II)-selective membrane electrode consisting of tetraiodocadmate (II)-rhodamin B ion pair (TICRhB) dispersed in a PVC matrix plasticized with 2-nitrophenyl octyl ether (o-NPOE) was prepared. The sensor demonstrated a near-Nernstian response for 1×10~(-2) to 2×10~(-6) mol/L cadmium (II) at 25℃with an anionic slope of 29.0. It revealed very good selectivity for Cd~(2+) with negligible interference from many cations and anions, and could be used in a pH range of 3 to 6.
     4. In this work, a novel mercury membrane electrode based on ninhydrin-1, 3-bis (S-benzyldithiocarbazate (NBSB) Schiff's base as a neutral carrier is presented. The electrode exhibits a wide linear dynamic range between 1.0×10~(-1) to 2.0×10~(-6) mol/L with a good Nernstian slope of 29.0 mV/decade and a detection limit of 1.0×10~(-6) mol/L. It has a response time of less than 10 s and can be used for at least 10 weeks without any considerable divergence in the potentials. It can be used in the pH range from 3.0 to 5.0. The electrode is highly selective for Hg~(2+) over a large number of cations, such as Cu( II), Pb( II), Cd( II) and Ag( I ). The electrode was used in the direct determination of Hg~(2+) in aqueous solution with satisfactory results.
     Part II of the thesis deals with several novel amperometric hydrogen peroxide biosensors based on gold nanoparticles.
     1. A new strategy for immobilization of horseradish peroxidase (HRP) has been developed by self-assembling gold nanoparticles to multiporous polythionine (PTH) film modified carbon paste interface. A thionine film was initially electropolymerized onto carbon paste interface in a mildly acidic thionine solution at a bias voltage of -1.0 ~ 1.5 V. This process is accompanied by the hydrogen evolution reaction, and the released hydrogen gas made the PTH film with multiporous structure. The multiporous PTH film provided a biocompatible microenvironment for gold nanoparticles and enzyme molecules, greatly amplified the coverage of HRP molecules on the electrode surface. Voltammetric and time-based amperometric techniques were employed to characterize the properties of the biosensor derived. The performance and factors influencing the performance of the biosensor were also proposed. The immobilized HRP displayed a catalytic property to the reduction of H_2O_2. The H_2O_2 biosensor achieved 95% of the steady-state current within 2 s, and exhibited a linear range of 9.6×10~(-6) - 1.2×10~(-3) mol/L H_2O_2 with a detection limit of 7.5×10~(-7) mol/L (S/N =3). Furthermore, the biosensor remained about 90% of its original sensitivity after two weeks' storage.
     2. The present paper describes the modification of horseradish peroxidase (HRP)-silver nanoparticles (nanosilver)-DNA polyion complex film on a gold electrode surface to develop a novel electrochemical biosensor for the detection of hydrogen peroxide (H_2O_2). With the help of DNA and nanosilver, the immobilized HRP displays a pair of well-defined redox peaks with an electron transfer rate constant of 3.27±0.91 s~(-1) in pH 7.0 PBS. Moreover, the presence of DNA provided a biocompatible microenvironment for silver nanoparticles and enzyme molecules, greatly amplified the immobilized amount of HRP molecules on the electrode surface, and improved the sensitivity of the biosensor. Under the optimal conditions, the proposed biosensor has an electrocatalytic activity towards the reduction of hydrogen peroxide, which shows a linear dependence on the H_2O_2 concentration ranging from 1.5×10~(-6) to 2.0×10~(-3) mol/L with the detection limit of 5.0×10~(-7) mol/L at the signal-to-noise ratio is 3. The K_m~(app) value of HRP in the polyion complex film has been determined to be 1.62 mmol. The properties of polyion composite film, together with the bioelectrochemical catalytic activity, could make them useful in the development of bioelectronic devices and investigation of protein
引文
[1] 高小霞,电分析化学导论,北京:科学出版社,1986,pp.113-132
    [2] 李启隆,电分析化学,北京:北京师范大学出版社,1997,pp.34-52
    [3] Umezawa YS. Analytical chemistry division commission on analytical nomenclature, Pure and Appl Chem 1976, 48, 127
    [4] 周伟舫.电化学测量,上海:上海科技技术出版社,1983,pp.400-405
    [5] Lengyel B, Blum E, The behaviour of the glass electrode in connection with its chemical composition, Trans Faraday Soc 1934, 30:461
    [6] Eisenman G. Ed: Glass Electrode for Hydrogen and Other Cations, Principles and Practice, Marcel Dekker, N.Y. 1967
    [7] Pungor E, Rokosingi H, Influence od adsorbent on the formation of Liesegang rings. Acta Chem Acad Sci Hung 1961, 27:63
    [8] Frant MS, Ross JW. Electrode for sensing fluoride ion activity in solution. Science 1966, 154:3756
    [9] 俞汝勤,离子选择性电极分析方法,北京:人民教育出版社,1982,pp.30-46
    [10] Stefance Z, Simon W, Ion specific electrochemical behavior of macrotetrolides in membranes. Microchem J 1967, 12:125
    [11] Pioda LAR, Stankova V, Simon W. Highly selective potassium ion responsive liquid membrane Electrode. Anal Lett 1969, 2: 665
    [12] Moody GJ, Oke RB, Thomas JDR. A calcium-sensitive electrode based on a liquid ion exchanger in a poly(vinyl chloride) matrix. Analyst 1970, 95:910
    [13] 谢声洛.离子选择性分析技术,北京:化学工业出版社,1985,pp.40-45
    [14] Stefanace Z, Simon W. Highly selective cation electrode systems based on in-vitro behavior of macrotetrolides in membranes. Chimia 1966, 20:436
    [15] Agtarap A, Chamberlin JW, Pinkerton M. The structure of monensic acid, a new biologically active compound. J Am Chem Soc 1967, 89: 5737.
    [16] Pioda LAR, Stankova W, Simon W. Highly selective potassium ion response liquid membrane electrode. Anal Lett 1969, 2:605
    [17] Ergozhin EE, Mukhitdinova BA, Stefanova OK. Redox polymers based on polyamines. Reactive Polymers 1992, 16:321
    [18] Gehrig P, Rusterholz B, Simon W. Very lipophilic sodium-selective ionophore for chemical sensors of high lifetime. Anal Chim Acta 1990, 233:295
    [19] Kedem O, Loebel E, Furmansky M, Ger Offen Pat 1970, 2027128, 1971, CA:74:70998
    [20] Plattner PA, Nager U, Boller A. Mitteilung uber die isolierung neuartiger antibiotika aus Fusarien. Helv Chim Acta 1948, 31:594
    [21] Dobler M, Dunitz JD, Kragewski JJ. Structure of the K~+ complex with enniatin B, a macrocyclic antibiotic with K~+ transport properties. J Mol Biol 1969, 42:603
    [22] Gachon P, Kergomard A, Veschambre V, et al. Grisorixin, a new antibiotic related to nigericin. Chem Commun 1970, 20:1421
    [23] Alleaume M, Hickel D. The crystal structure of grisorixin silver salt. J Chem Soc D 1970, 20:1422
    [24] Bobacka J. Conducting polymer-based solid-state ion-selective electrodes. Electroanalysis 2006, 18:7
    [25] Kubota T, Matsutani S. Studies on the antibiotic nigericin (polyetherin A). J Chem Soc 1970, 5:695
    [26] Gavalas VG, Berrocal MJ, Bachas LG. Enhancing the blood compatibility of ion-selective electrodes. Anal Bioanal Chem 2006, 384:65
    [27] Wieland Th, Luben G, Ottenheym H, et al. Antamanid Seine Entdeckung, Isolierung, Strukturaufklarung und Synthese. Angew Chem 1968, 80:209
    [28] Morf WE, Simon W. Estimation of alkali and alkaline earth ion selectivity of electrically neutral carrier-antibiotics and model compounds. Helv Chim Acta 1971, 54:2683
    [29] Schulthess D, Ammann D, Simon W. A lipophilic derivative of vitamin B12 as a selective carrier foranions. Helv Chim Acta 1984, 67:1026
    [30] Oggenfuss P, Morf WE, Funck RJJ, et al. Ion-selective electrodes. Pungor E Buzas J ed Akademiai Kiado, Budapest, 1981, 9:73
    [31] Funck RJJ, Morf WE, Schulthess P, et al. Bicarbonate-sensitive liquid membrane electrodes based on neutral carriersfor hydrogenions. Anal Chem 1982, 54:423
    [32] 中国科学院兰州化学物理研究所、青海盐湖研究所、江苏泰县无线电厂、离子选择性电极分析技术(试刊),1977,5
    [33] Gupta VK, Jain AK, Kumar P. PVC based membranes of dicyclo-hexano-24-crown-8 as Cd(Ⅱ)-selective sensor. Electrochim Acta 2006, 52:736
    [34] Gupta VK, Goyal RN, Agarwal S, et al. Nickel(Ⅱ)-selective sensor based on dibenzo-18-crown-6 in PVC matrix. Talanta 2007, 71:795
    [35] Arvand M, Zanjanchi MA, Heydari L. Novel thiocyanate-selective membrane sensor based on crown ether-cetyltrimethyl ammonium thiocyanate ion-pair as a suitable ionophore. Sens Actu B 2006, 122:301
    [36] Bereczki R, Csokai V, Grun A, et al. Crown bridged thiacalix arches as cesium-selective ionophores in solvent polymeric membrane electrodes. Anal Chim Acta 2006, 569:42
    [37] Ganjali MR, Rouhollahi A, Martian AR, et al. Thermodynamic study of the binding of hexathia-18-crown-6-tetraone with some transition and heavy Metal ions in dimethyl sulfoxide solution. J Chem Soc Faraday Trans 1998, 94:1959
    [38] Bates P, Kataky R, Parker D, Enantiomer-selectivity of ion-selective electrodes. Analyst 1994, 119:181
    [39] Kimura K, Miura T, Matsuo M, Polymetric membrane sodium-selective electrode based on lipophilic calyx[4] arene derivaties. Anal Chem 1990, 62:1510
    [40] Katherine MO, Svehla G. Calixarene-based potentiometric ion-selective electrodes for silver. Anal Lett 1992, 39:1549
    [41] Funck RJJ, Meyerhoff ME, Schlthess P. Bicarbonate-sensitive liquid membrane electrodes based on neutral carriers for hydrogen ions. Anal Chem 1982, 54:423
    [42] Oesch U, Brozozka Z, Xu A, et al. Desigen of neutral hydrogen ion carriers for solvent polymeric membrane electrodes of selected pH range. Anal Chem 1986, 58: 2285
    [43] Wu HL, Yu RQ. A PVC membrane pH-sensitive electrode based on methyldioctadecylamine as neutral carrier. Talanta 1987, 34:577
    [44] 袁若,吴海龙,俞汝勤,新型含氮化合物作中性载体pH选择电极研究,中国科学1992,225:455
    [45] Hofmeister F. Zur lehre vonder wirkung der salze. Arch Exp Pathol Pharmakol 1988, 24:247
    [46] Morf WE. The principles of ion-selective electrodes and of membrane transport. Akadamiai Kiado: Budapest, and Elsevier: Amsterdam, New York, 1981, 143
    [47] Pranitis DM, Telting-Diaz M, Meyerhoff ME. Poteneiometric ion-,gas-, and bio-selective membrane electrodes. Crit Rev Anal Chem1992, 23:163
    [48] Kunin R, Ion exchange resins. Wiley: New York, 1958, pp.174-298
    [49] Sollner K, Shean G M, liquid ion exchange membrane of ex treme selectivity and high permeability foranions, J. Am. Chem. Soc., 1964, 86, 1901
    [50] Hulanicki A, Lewandowski R. Effect of solvent in nitrate-selective electrode. Chem Anal (Pol) 1974, 19:53
    [51] 倪平英,杜秀月,吴国梁,PVC膜高氯酸根离子选择电极的研制和应用.分析化学,1982,12:11
    [52] Daunert S, Wallace S, Florido A, et al. Anion selective electrodes based on electropolymerized porphyrin films. Anal Chem 1991, 63:1676
    [53] Simon W, Pretsch E, Morf W E, et al. Design and application of neutral carrier-based ion-selective electrodes. Analyst 1984, 109:207
    [54] Wuthier U, Pham HV, Zund R, et al. Tin organic compounds as neutral carriers for anion selective electrodes. Anal Chem 1984, 56:535
    [55] Glazier S, Arnold M. Selectivity of membrane electrodes based on derivatives of. dibenzyltin dichloride. Anal Chem 1991, 63:754
    [56] Chaniotakis NA. Potentiometric. phosphate selective electrode based on a multidendate tin(Ⅳ) carrier. Anal Chim Acta 1993, 282:345
    [57] Liu D, Chen WC, Shen GL, et al. Polymeric membrane salicylate-sensitive electrodes based on organotin (6) carboxylates. Analyst 1996, 121:1495
    [58] Li ZQ, Yuan R, Ying M, et al. Pentacoordinare organotin complexes as neutral carriers for salicylate-selective PVC membrane electrodes. Talanta 1998, 46:943
    [59] Li ZQ, Song XP, Shen GL, et al. Salicylate-selective PVC membrane electrodes based on tribenzyltin(Ⅳ) phenolates as neutral carriers. Anal Lett 1998, 31:1473
    [60] 刘冬,陈文灿,何德良,等.以双核有机锡化合物为载体的PVC膜磷酸根离子敏感电极.高等学校化学学报 1996,17:1528
    [61] Liu D, Chen WC, Yang RH. Polymeric membrane phosphate, sensitive electrode based on binuclear organotin compound. Anal Chim Acta 1997, 338:209
    [62] 李志强,沈国励,俞汝勤.有机锡化合物为性载体的高选择性硫氰酸根离子电极.高等学校化学学报1999,20:47
    [63] Berdnikova LP, Shvedene NV, Pletnev IV. Hydroxamic acids and their in situ formed complexes as the active component of membrane ion-selective electrodes. R J Coordination Chem 2002, 28:816
    [64] Xu L, Yuan R, Chai YQ, et al. A novel salicylate-selective electrodes based on a Sn(Ⅳ) complex of salicylal-imino acid schiff base. Anal Bioanal Chem 2005, 381: 781
    [65] Xu L, Yuan R, Fu YZ. Potentiometric membrane electrode for salicylate based on an organotin complex with a salicylal Schiff base of amino acid. Anal Sci 2005, 21: 287
    [66] Xu L, Yuan R, Chai Y Q, et al. Novel membrane potentiometric thiocyanate sensor based on tribenzyltin(Ⅳ) dithiocarbamate. Electroanalysis 2005, 17: 1003
    [67] Schulthess P, Ammann D, Simon W, et al. A lipophilic derivative of vitamin B_(12) as a selective carrier for anions. Helv Chim Acta 1984, 67: 1026
    [68] Schulthess P, Ammann D, Krautler B, et al. Nitrite-selective liquid membrane electrode. Anal Chem 1985, 57: 1397
    [69] Daunert S, Bachas LG. Anion-selective electrode based ona hydrophobic vitamin B_(12) derivative. Anal Chem 1989, 61: 499
    [70] Stepanek R, Krautler B, Schulthess P, et al. Lindemann as a cationic carrier for nitrite-selective liquid-membrane electrodes. Anal Chim Acta 1986, 182: 83
    [71] Hodinar A, Jyo A. Contribution of membrane-components to the overall response of anion carrier. Chem Lett 1988, 993: 136
    [72] Chaniotakis NA, Chasser AM, Meyerhoff ME. Influence of porphyrin structure on anion selectivities of manganese (Ⅲ) porphyrin-based membrane electrodes. Anal Chem 1988, 60: 185
    [73] Chaniotakis NA, Park SB, Meyerhoff ME. Salicylate-selctive membrane electrode based on Tin(Ⅳ)Tetraphenylpor—phyrln. Anal Chem 1989, 61: 566
    [74] Kunin R, Ion Exchange Resins. Wiley: New York, 1958, pp. 174-298
    [75] Gao D, Li JZ, Zheng GD, et al. Metalloporphyrin derivatives as neutral carriers for PVC membrane electrodes. Anal Chem 1994, 66: 2245
    [76] Gao D, Gu J, Zheng GD, et al. Nitrite-sensitive liquid membrane, electrodes based on metalloporphyrin derivatives. Analyst 1995, 120: 499
    [77] Ying M, Yuan R, Zhang XM, et al. Salieylate-sensitive membrane electrode based on Copper(Ⅱ) tetraaza[14] annulene. Analyst 1997, 122: 1143
    [78] Yorn I, Shin J, Paeng Ⅰ, et al. Potentiometric behavior of metalloporphyrin-based ion-selective electrodes: Use of silicone rubber matrix for serum chloride analysis. Anal Chim Acta 1998, 367: 175
    [79] Oh KC, Kim KA, Paeng IR, et al. Anion-selective membrane electrodes based on polymer-supported metalloporphyrins. J Electrodanal Chem 1999, 468: 98
    [80] Gupta VK, Jain AK, Singh LP, et al. Anion recognition through novel C-thiophenecalix[4]resorcinarene: PVC based sensor for chromate ions. Talanta 2005, 65: 716
    [81] Shamsipur M, Khayatian G, Tangestaninejad S. Thiocyanate-selective membrane electrode based on (octabromotetraphenylporphyinato) manganese(Ⅲ) chloride. Electroanalysis 1999, 11: 1340
    [82] Zhang XB, Guo CC, Jian LX, et al. Thiocyanate-selective membrane electrode based on (octabromotetraphenylporphyinato) manganese(Ⅲ) chloride. Anal Chim Acta 2000, 419:227
    [83] Gorski L, Meyerhoff ME, Malinowska E. Polymeric membrane electrodes with enhanced, fluoride selectivity using Zr(Ⅳ)-porphyrins functioning as neutral carriers. Talanta 2004, 63:101
    [84] Gorski L, Malinowska E. Fluoride-selective sensors based on polyurethane membranes doped with Zr(Ⅳ)-porphyrins. Anal Chim Acta 2005, 540:159
    [85] Li JZ, Pang XY, Yu RQ. Substituted cobalt phthalocyanine complexes as carriers for hitrite-seasitive electrodes. Anal Chim Acta 1994, 297:437
    [86] Li JZ, Wu XC, Yuan R, et al. Cobalt phthalocyanine derivatives as neutral carriers for nitrite-sensitive poly(vinyl chloride) membrane electrodes. Analyst 1994,119: 1363
    [87] 李俊忠,胡敏,俞汝勤.脂溶性的酞菁钴(Ⅲ)为载体的高选择性亚硝酸根PVC膜.化学学报1995,53:1118
    [88] Yuan R, Chai YQ, Liu D, et al. Schiff base complexes of cobalt(Ⅱ) as neutral carries for highly selective iodide electrode. Anal Chem 1993, 65:2572
    [89] 刘冬,袁若,陈文灿,等.以钴Schiff碱配合物为载体PVC膜碘离子选择性电极的研究.高等学校化学学报1994,15:991
    [90] Yuan R, Song YQ, Chai YQ, et al. Design of schiff base complexes of Co(Ⅱ) for the preparation of iodide-selective polymeric membrane electrodes. Talanta 1999, 48:649
    [91] 李志强,沈国励,俞汝勤.新型中性载体硫氰酸根离子选择电极研究.高等学校化学学报 2000,21:373
    [92] 袁若,柴雅琴,刘冬,等.一种新型高选择性.电极科学通报1994,p.573
    [93] 刘冬,袁若,陈文灿,等.具有反Hofmeister行为的新型液膜碘离子选择性电极的研究.化学通报1995,p.27
    [94] Shahrokhian S, Amini MK, Kia R, et al. Salicylate-selective electrodes based on Al(Ⅲ) and Sn(Ⅳ) salophens. Anal Chem 2000, 72:956
    [95] Shamsipur M, Yousefi M, Hosseini M, et al. Schiff base coplex of Zn(Ⅱ) as a neutral carrier for highly selective PVC membrane sensors for the sulfate ion. Anal Chem 2001, 73:2869
    [96] Asghari AR, Amini MK, Mansour HR, et al. A tetra-coordinate nickel(Ⅱ) complex as neutral carrier for nitrate-selective PVC membrane electrode. Talanta 2003, 61: 557
    [97] Sadeghi S, Fathi F, Esmaeili AA, et al. Novel triiodide ion-selective polymeric membrane electrodes based on some transition metal-Schiff base complexes. Sens Actu B 2006, 114: 928
    [98] Pranitis DM, Meyerhoff ME. Sulfite-sensitive solvent/polymeric-membrane electrode based on bis(diethyldithiocarbamato)mercury(Ⅱ). Anal Chim Acta 1989, 217: 123
    [99] Rothmaier M, Simon W. Chloride-selective electrodes based on mercury organic compounds as neutral carriers. Anal Chim Acta 1993, 271: 135
    [100] Rothmaier M, Schaller U, Morf WE, et al. Response. mechanism of anion-selective electrodes based on mercury organic compounds as ionophores. Anal Chim Acta 1996, 327: 17
    [101] Song YQ, Yuan R, Ying M, et al. A highly selective iodide electrode based on the bis(benzoin)-semiethylenediamine complex of mercury(Ⅱ) as a carrier. F J Anal Chem 1998, 360: 47
    [102] Tohda K, Tange M, Odashima K, et al. Liquid membrane electrode for guanosine nucleotides using a cytosine-pendant tdamine host as the sensory element. Anal Chem 1992, 64: 960
    [103] Mowery MD, Hutchins S, Molina P, et al. Guanidinium-based potentiometricSO_2 gas sensor. Anal Chem 1999, 71: 201
    [104] Hutchins RS, Bansal P, Molina P, et al. Salicylate-selective electrode based on a biomimetic guanidinium ionophore. Anal Chem 1997, 69: 1273
    [105] Haas U, Giera J, Sudmeier U, et al. Ion-selective electrodes-Possibilities and limits of a traceability |[Ionenselektive elektroden moglichkeiten und grenzen einer ruckfuhrung]. TB-Mitteilungen Forschen und Prufen 2005, 115(4): 330
    [106] Li ZQ, Yuan R, Ying M, et al. Iodide-selective PVC membrane electrodes based on five transitional metal chelates of bis-furfural-semi-o-tolidine. Anal Lett 1997, 30: 1455
    [107] Abbaspour A, Kamyabi MA, Esmaeilbeig AR, et al. Thiocyanate-selective electrode based on unsymmetrical benzoN4 nickel(Ⅱ) macrocyclic complexes. Talanta 2002, 57: 859
    [108] Ganjali M R, Naji L Poursaberi T, et al. Novel sulfate ion-selective polymeric membrane electrode based on a derivative of pyrilium perchlorate. Talanta 2002, 532: 359
    [109] SeguiM J, Sabater JL, Manez RM, et al. Linear polyamines as carriers in thiocyanate-selective membrane electrodes. Talanta 2006, 68: 1182
    [110] Dai J , Yuan R, Chai YQ, et al. Highly thiocyanate-selective PVC membrane electrode based on lipophilic ferrocene derivative. Electroanalysis 2005, 17: 1865
    [111] Dai J , Chai YQ, Yuan R, et al. Bis-dimethylaminobenzaldehyde schiff-base Cobalt(Ⅱ) complex as a neutral carrier for a highly selective iodide electrode. Anal Sci 2004, 2012: 1661
    [112] Ben Rayana MC, Burnett RW, et al. Recommendation for measuring and reporting chloride by ISEs in undiluted serum, plasma or blood. Clin Chem Lab Med 2006, 44: 346
    [113] Zine N, Bausells J, Vocanson F, et al. Potassium-ion selective solid contact microelectrode based on a novel 1, 3-(di-4-oxabutanol)-calix[4]arene-crown-5 neutral carrier. Electrochim Acta 2006, 51: 5075
    [114] Singh AK, Mehtab S. Calcium(Ⅱ)-selective potentiometric sensor based on α-furildioxime as neutral carrier. Sens Actu B 2006, 123: 429
    [115] Soleymanpour A, Rad N A, Niknam K. New diamino compound as neutral ionophore for highly selective and sensitive PVC membrane electrode for Be~(2+)ion. Sens Actu B 2006, 114: 740
    [116] Gupta VK, Chandra S, Mangla R. Magnesium-selective electrodes. Sens Actu B 2002, 86: 235
    [117] Gupta VK, Goyal RN, Agarwal S, et al. Nickel(Ⅱ)-selective sensor based on dibenzo-18-crown-6 in PVC matrix. Talanta 2007, 71: 795
    [118] Mashhadizadeh MH, Sheikhshoaie I, Saeid NS. Nickel(Ⅱ)-selective membrane potentiometric sensor using a recently synthesized schiff base as neutral carrier. Sens Actu B 2003, 94: 241
    [119] Mashhadizadeh M H, Momeni A. Nickel(Ⅱ)selective membrane potentiometric sensor using a recently synthesized mercapto compound as neutral carrier. Talanta 2003, 59: 47
    [120] Mousavi MF, Alizadeh N, Shamsipur M, et al. A new PVC-based 1, 10-dibenzyl-1, 10-diaza-18-crown-6 selective electrode for detecting nickel(11)ion. Sens Actu B 2000, 66: 98
    [121] Mahajan RK, Kaur R, Miyake H, et al. Zn(Ⅱ) complex-based potentiometric sensors for selective determination of nitrate anion. Anal Chim Acta 2007, 584: 89
    [122] Zamani HA, Rajabzadeh G, Ganjali MR. Highly selective and sensitive chromium(Ⅲ) membrane sensors based on 4-amino-3-hydrazino-6-methyl-1, 2, 4-triazin-5-one as a new neutral ionophore. Sens Actu B 2006, 119: 41
    [123] Ekmekci G, Uzun D, Somer G, et al. A novel iron(Ⅲ) selective membrane electrode based on benzo-18-crown-6 crown ether and its applications. J Membrane Science 2007, 288: 36
    [124] Gupta VK, Jain AK, Maheshwari G, et al. Copper(Ⅱ)-selective potentiometric sensors based on porphyrins in PVC matrix. Sens Actu B 2006, 117: 99
    [125] Marques OIA, Pla RM, Escriche L, et al. New membrane for copper-selective electrode incorporating a new thiophosphoril-containing macrocycle as neutral carrier. Mater Sci Eng 2006, 26: 394
    [126] Yoshimoto S, Mukai H, Kitano T, et al. Copper(Ⅱ)-selective membrane electrode based on hydrotris(3-isopropylpyrazolyl)methane in a poly(vinyl chloride) matrix. Anal Chim Acta 2003, 494: 207
    [127] Mashhadizadeh MH, Mostafavi A, Razavi R, et al. Highly selective Cu(Ⅱ) PVC membrane electrode based on 3, 6, 9, 14-tetrathiabicyclo[9.2.1]tetradeca-11, 13-diene as a suitable neutral ionophore. Sens Actu B 2002, 86: 222
    [128] Gholivand MB, Nozari N. Copper(Ⅱ)-selective electrode using 2, 2'-dithiodianiline as neutral carrier. Talanta 2001, 54: 597
    [129] Zhang XB, Han ZX, Fang ZH, et al. 5, 10, 15-Tris(pentafluorophenyl)corrole as highly selective neutral carrier for a silver ion-sensitive electrode. Anal Chim Acta 2006, 562: 210
    [130] Mahajan RK, Kaur I, Kumar M. Silver ion-selective electrodes employing Schiff base p-tert-butyl calix[4]arene derivatives as neutral carriers. Sens Actu B 2003, 91: 26
    [131] Lim SM, Chung HJ, Paeng KJ, et al. Calix[2]furano[2]pyrrole and related compounds as the neutral carrier in silver ion-selective electrode. Anal Chim Acta 2002, 453: 81
    [132] Chen LX, Ju HF, Zeng XS, et al. Silver ion-selective electrodes based on novel containing benzothiazolyl calix[4]arene. Anal Chim Acta 2001, 437: 191
    [133] Mashhadizadeh MH, Momeni A, Razavi R. Cobalt(Ⅱ)-selective membrane electrode using a recently synthesized mercapto compound. Anal Chim Acta 2002, 462: 245
    [134] Singh AK, Singh RP, Saxena P. Cobalt(Ⅱ)-selective electrode based on a newly synthesized macrocyclic compound. Sens Actu B 2006, 114: 578
    [135] Gupta VK, Singh AK, Mehtab S, et al. A cobalt(Ⅱ)-selective PVC membrane based on a Schiff base complex of N, N'-bis(salicylidene)-3, 4-diaminotoluene. Anal Chim Acta 2006, 566: 5
    [136] Aghaie H, Giahi M, Monajjemi M, et al. Tin(Ⅱ)-selective membrane potentiometric sensor using a crown ether as neutral carrier. Sens Actu B 2005, 107: 756
    [137] Ardakani MM, Kashani MK, Niasari MS, et al. Lead ion-selective electrode prepared by sol-gel and PVC membrane techniques. Sens Actu B 2005, 107: 438
    [138] Menon SK, Sewani M. Chemical modifications of calixarenes and their analytical applications. Rev Anal Chem 2006, 25: 49
    [139] Mashhadizadeh MH, Sheikhshoaie I. Mercury(Ⅱ) ion-selective polymeric membrane sensor based on a recently synthesized Schiff base. Talanta 2003, 60: 73
    [140] Singh AK, Bhattacharjee G, Singh R. Mercury(Ⅱ)-selective membrane electrode using tetrathia-diazacyclotetradeca-2, 9-diene as neutral carrier. Sens Actu B 2004, 99: 36
    [141] Akbari A, Mousavi MF, Shamsipur M, et al. A PVC-based 1, 8-diaminonaphthalen electrode for selective determination of vanadyl ion. Talanta 2003, 60: 853
    [142] Katsu T, Ido K, Takaishi K, et al. Thallium(Ⅰ)-selective membrane electrodes based on calix[6]arene or calix[5]arene derivatives. Sens Actu B 2002, 87: 331
    [143] Ganjali M, Norouzi P, Alizadeh T, et al. Fabrication of a highly selective and sensitive Gd(Ⅲ)-PVC membrane sensor based on N-(2-pyridyl)-N-(4-nitrophenyl)thiourea. Sen Actu B 2007, 120: 487
    [144] Messick MS, Krishnan SK, Hulvey MK, et al. Development of anion selective polymer membrane electrodes based on lutetium(Ⅲ) porphyrins. Anal Chim Acta 2005, 539: 223
    [145] Gorski L, Meyerhoff M E, Malinowska E. Polymeric membrane electrodes with enhanced fluoride selectivity using Zr(Ⅳ)-porphyrins functioning as neutral carriers. Talanta 2004, 63: 101
    [146] Mittal SM, Kumar SKA, Sharma HK. PVC-based dicyclohexano-18-crown-6 sensor for La(Ⅲ) ions. Talanta 2004, 62: 801
    [147] Gupta VK, Jain S, Chandra S. Chemical sensor for lanthanum(Ⅲ) determination using aza-crown as ionophore in poly(vinyl chloride) matrix. Anal Chim Acta 2003, 486: 199
    [148] Mahajan RK, Kaur R, Miyake H, et al. Zn(Ⅱ) complex-based potentiometric sensors for selective determination of nitrate anion. Anal Chim Acta 2007, 584: 89
    [149] Asghari AR, Amini MK, Mansour HR, et al. A tetra-coordinate nickel(Ⅱ) complex as neutral carrier for nitrate-selective PVC membrane electrode. Talanta 2003, 61: 557
    [150] Goff T L, Braven J, Ebdon L, et al. High-performance nitrate-selective electrodes containing immobilized amino acid betaines as sensors. Anal Chem 2002, 74: 2596
    [151] Okaev EB, Rakhman EM, Egorov VV. Sulfate-selective electrode and its application for sulfate determination in aqueous solutions. Anal Chim Acta 2006, 562: 216
    [152] Shamsipur M, Yousefi M, Ganjali MR, et al. Highly selective sulfate PVC-membrane electrode based on 2, 5-diphenyl-1, 2, 4, 5-tetraaza-bicyclo[2.2.1]heptane as a neutral carrier. Sens Actu B 2002, 82: 105
    [153] Paeng KJ, Jung HJ, Cho SJ, et al. The potentiometric performances of cyclotetrahydroxysiloxane containing ferrocenyl moiety as an anion-selective membrane electrode. Microchem J 2005, 80: 145
    [154] Ueda K, Hioki H, Kubo M, et al. Highly selective methylammonium-selective membrane electrode made by the modification of the upper rim of calix[6]arene derivatives. Sens Actus B 2005, 106: 772
    [155] Lee HK, Oh H, Nam KC, et al. Urea-functionalized calix[4]arenes as carriers for carbonate-selective electrodes. Sens Actu B 2005, 106: 207
    [156] Bobacka J, Zurawska MM, Lewenstam A. Carbonate ion-selective electrode with reduced interference from salicylate. Biosens Bioelectr 2003, 18: 245
    [157] Ganjali MR, Anbouhi RK, Pourjavid MR, et al. Bis (trans-cinnamaldehyde) ethylene diimine dibromonickel (Ⅱ) complex as a neutral carrier for salicylate-selective liquid membrane and coated graphite sensors. Talanta 2003, 61: 277
    [158] Elmosallamy MAF. New potentiometric sensors for creatinine. Anal Chim Acta 2006, 564: 253
    [159] Beezer AE, King ASH, Martin IK, et al. Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM derivatives. Tetrahedron 2003, 59: 3873
    [160] Mahajan RK, Kaur I, Bakshi MS. J. surfactant detergents. 2004, 7: 25
    [161] Wojciechowski K, Wr6blewski W, Brzozka Z. Anion buffering in the internal electrolyte resulting in extended durability of phosphate-selective electrodes. Anal Chem 2003, 75: 3270
    [162] Qin W, Zwickl T, Pretsch E. Improved detection limits and unbiased selectivity coefficients obtained by using ion-exchange resins in the inner reference solution of ion-selective polymeric membrane electrodes. Anal Chem 2000, 72: 3236
    [163] Sokalski T, Zwickl T, Bakker E, et al. Lowering the detection limit of solvent Polymeric ion-selective electrodes. 1. Modeling the influence of steady-state ion fluxes. Anal Chem 1999, 71: 1204
    [164] Morf W, Badertscher M, Zwickl T, et al. Effects of ion transport on the potential response of ionophore-based membrane electrodes: A theoretical approach. J Phys Chem 1999, 103: 11346
    [165] Pendley B. A chronoamperometric method to estimate ionophore loss from ion-selective electrode membranes. Anal Chem 1999, 71: 3673
    [166] Nagele M, Mi Y, Bakker E, et al. Influence of lipophilic inert electrolytes on the selectivity of polymer membrane electrodes. Anal Chem 1998, 70: 1686
    [167] Shahrokhian S, Hamzehloei A, Bagherzadeh M. Chromium(Ⅲ) porphyrin as a Selective ionophore in a salicylate-selective membrane electrode. Anal Chem 2002, 74: 3312
    [168] Lee BH, Shim YB, Park SB. A lipophilic sol-gel matrix for the development of a carbonate-selective electrode. Anal Chem 2004, 76: 6150
    [169] Ervin EN, White HS. Alternating current impedance imaging of membrane pores using scanning electrochemical microscopy. Anal Chem 2005, 77: 5564
    [170] Mikhelson K, Bobacka J, Ivaska A, et al. Selectivity of lithium electrodes: Correlation with ion-ionophore complex stability constants and with interfacial exchange current densities. Anal Chem 2002, 74: 518
    [1] Schulthess P, Ammann D, Krautler B, et al. Nitrite-selective liquid membrane electrode. Anal Chem 1985, 57: 1397
    [2] Saeed S, Ali H, Mojtaba B. Chromium(Ⅲ) porphyrin as a selective ionophore in a salicylate-selective membrane electrode. Anal Chem 2002, 74: 3312
    [3] Schamsipur M, Youseti M, Ganjali MR, et al. A schiff base complex of Zn(Ⅱ) as a neutral carrier for highly selective PVC membrane sensors for the sulfate ion. Anal Chem 2001, 73: 2869
    [4] Daunert S, Wallace S, Florido A, et al. Anion-selective electrodes based on electropolymerized porphyrin films. Anal Chem 1991, 63: 1676
    [5] Chaniotakis NA, Park SB, Meyerhoff ME. Salicylate-selective membrane electrode based on tin(Ⅳ)-tetraphenylporphyrin. Anal Chem 1989, 61: 566
    [6] Hodina A, Jyo A. Thiocyanate solvent polymeric membrane ion-selective electrode based on cobalt(Ⅲ) alpha, beta, gamma, delta-tetraphenylporphyrin anion carrier. Chem Lett 1988, 6: 993
    [7] Stepanek R, Kraeutler B, Schulthess P, et al. Aquocyano cobalt(Ⅲ)-hepta(2-phenylethyl)- cobyrinate as a cationic carrier for nitrite-selective liquid-membrane electrodes. Anal Chim Acta 1986, 83: 182
    [8] Yuan R, Song YQ, Chai YQ, et al. Design of Schiff base complexes of Co(Ⅱ) for the preparation of iodide-selective polymeric membrane electrodes. Talanta 1999, 48: 649
    [9] Yuan R, Chai YQ, Liu D, et al. Schiff base complexes of cobalt(Ⅱ) as neutral carriers for highly selective iodide electrodes. Anal Chem 1993, 65: 2572
    [10] Song YQ, Yuan R, Ying M, et al. A highly selective iodide electrode based on the bis(benzoin)-semiethylenediamine complex of mercury(Ⅱ) as a carrier. F J Anal Chem 1998, 360: 47
    [11] Sun ZY, Yuan R, Chai YQ, et al. Study of a bis-furaldehyde Schiff base copper(Ⅱ) complex as carrier for preparation of highly selective thiocyanate electrodes. Anal Bioanal Chem 2004, 378: 490
    [12] Khorasani JH, Amini MK, Motaghi H, et al. Manganese porphyrin derivatives as ionophores for thiocyanate-selective electrodes: the influence of porphyrin substituents and additives on the response properties. Sens Actu.B 2002, 87: 448
    [13] Amini MK, Shahrokhian S, Tangestaninejad S. Thiocyanate-selective electrodes based on nickel and iron phthalocyanines. Anal Chim Acta 1999, 402: 137
    [14] Amini MK, Rafi A, Ghaedi M, et al. Bis(2-mercaptobenzoxazolato)mercury(Ⅱ) complexes as carriers for thiocyanate selective electrodes. Microchem J 2003, 75: 143
    [15] Li ZQ, Wu ZY, Yuan R, et al. Thiocyanate-selective PVC membrane electrodes based on Mn(Ⅱ) complex of N, N'-bis-(4-phenylazosalicylidene) o-phenylene diamine as a neutral carrier. Electrochim Acta 1994, 44: 2543
    [16] Liu D, Chen W C, He DL, et al. A PVC membrane electrode sensing phosphate ion based on binuclear organotin. Chem J Chin Univ 1996, 17: 1528
    [17] Jiang YM, Zhang SH, Xu Q, et al. Synthesis, crystal structure and bioactivity of a binuclear copper(Ⅱ) complex. Acta Chim Sin 2003, 61: 573
    [18] Zhang SH, Jiang YM. Synthesis and Crystal Structure of [Cu(TSSB)(phen)].1.5H_2O. Chin J Iong Chem 2002, 18: 497
    [19] Homing EC, Org Synth Coll, Vol 3, Wiley, New York, 1955, pp. 140
    [20] Moody GL, Oke RB, Thomas J. A calcium-sensitive electrode based on a liquid ion exchanger in a poly(vinyl chloride) matrix. Analyst 1970, 95: 910
    [21] Guilbautt GG, Durst RA, Frant MS, et al. Recommendations for nomenclature of ion-selective electrodes: Report from commission on analytical nomenclature. Pure Appl Chem 1976, 48: 127
    [22] Yuan R, Wang X L, Xu L, et al. Highly selective thiocyanate electrode based on bis-bebzoin-semitriethylenetetraamine binuclear copper(Ⅱ) complex as neutral carrier. Electrochem Commun 2003, 5: 717
    [23] Gao D, Li JZ, Yu RQ. Metalloporphyrin derivatives as neutral carriers for PVC membrane electrodes. Anal Chem 1994, 66: 2245
    [24] Liu XY, Sun B, Yun Z. Determination of thiocyanate anion by α-bromo-2, 3, 4, 5, 6-pentafluorotoluene derivatization and high-performace liquidchromatography.Chin J Anal Chem 1993, 21: 1199
    [1] Zaugg S, Zhang X, Sweedler J, et al. Determination of salicylate, gentisic acid and salicyluric acid in human urine by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B Biomed Sci Appl 2001, 752: 17
    [2] Liu JH, Smith PC. Direct analysis of salicylic acid, salicyl acyl glucuronide, salicyluric acid and gentisic acid in human plasma and urine by high-performance liquid chromatography. J Chromatogr B Biomed Appl 1996, 675: 61
    [3] Saha U, Baksi K. Spectrophotometric determination of salicylic acid in pharmaceutical formulations using copper(Ⅱ) acetate as a colour developer. Analyst 1985, 110: 739
    [4] Fung YS, Luk SF. Determination of salicylic acid in pharmaceutical formulations and foods by differential-pulse voltammetry using a glassy carbon electrode. Analyst 1989, 114: 943
    [5] Chaniotakis NA, Park SB. Slicylate-selective membrane electrode based on tin(Ⅳ)-tetraphenylporphyrin. Anal Chem 1989, 61: 566
    [6] Liu D, Chen WC, Shen GL, et al. Polymeric membrane salicylate-sensitive electrodes based on organotin(Ⅳ) carboxylates. Analyst 1996, 121: 1495
    [7] Xu L, Yuan R, Chai YQ, et al. A novel salicylate-selective electrode based on a Sn(Ⅳ) complex of salicylal-imino acid Schiff base. Anal Bioanal Chem 2005, 381: 781
    [8] Chai Y Q, Liu Y, Yuan R, et al. Studies on highly selective salicylate electrode based on new complexes of cobalt(Ⅱ) as neutral carriers. Chem J Chin Univ 2003, 24: 814
    [9] Chai YQ, Jiang F, Yuan R, et al. A highly selective salicylate electrode based on Schiff base complexes of cobalt(Ⅲ). Anal Lett 2003, 36: 2379
    [10] Chai YQ, Yuan R, Dai JY, et al. Tricoordinate Schiff base copper(Ⅱ) complex as neutral carrier for highly selective thiocyanate electrode. Anal Lett 2005, 38: 45
    [11] 江璠,柴雅琴,袁若,等.新型水杨酸根离子选择性电极的研究.分析科学学报2004,20:595
    [12] Ramesh V, Umasundari P, Das KK. Study of bonding characteristics of some new metal complexes of salicylaldoxime (SALO) and its derivatives by far infrared and UV spectroscopy. Spectrochim Acta Part A 1998, 54: 285
    [13] Horning EC. Org Synth Coil Vol Ⅲ [M]. Wiley, New York. 1955, pp.140
    [14] Sollner K, Shean GM. Liquid ion-exchange membranes of extreme selectivity and high permeability for anions. J Am Chem Soc 1964, 86: 1901
    [15] Pharmacopeia committee of the ministry of health of China, Chinese Pharmacopeia, Vol Ⅱ, Chinese Health Press, Beijing, 1985, 4
    [16] Trinder P. Rapid determination of salicylate in biological fluids. J Biochem 1954, 57, 301
    [1] Abbas MN, Zahran E. Novel solid-state cadmium ion-selective electrodes based on its tetraiodo- and tetrabromo-ion pairs with cetylpyridinium. J Electroanal Chem 2005, 576:205
    [2] Moody G, Oke R, Thomas J. A calcium-sensitive electrode based on a liquid ion exchanger in a poly(vinyl chloride) matrix. Analyst 1970, 95:910
    [3] Amemiya S, Buhlmann P, Pretsch E. Cationic or anionic sites? Selectivity optimization of ion-selective electrodes based on charged ionophore. Anal Chem 2000, 72:1618
    [4] Inczedy J, Sc D. Analytical applications of complex equilibria. John Wiley & Sons Inc, New York, London, Sydney, Toronto, 1976, pp. 325
    [1] Ruzicka J, Lamm CG. Selectrode~(TM)—the universal ion-selective solid-state electrode : Part Ⅰ. Halides. Anal Chim Acta 1971, 54:1
    [2] 门洪,李小英,邬广建,等.全固态汞离子选择电极的研究.传感器与微系统2007,26,39
    [3] Mazloum M, Amini MK, Baltork IM. Mercury selective membrane electrodes using 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, and hexathiacyclooctadecane carriers. Sens Actu B 2000, 63:80
    [4] Gupta VK, Jain S, Khurana U. A PVC-based pentathia-15-crown-5 membrane potentiometric sensor for mercury(Ⅱ). Electroanalysis 1997, 9:478
    [5] Fakhari AR, Ganjali MR, Shamsipur M. PVC-based hexathia-18-crown-6-tetraone Sensor for mercury(Ⅱ) ions. Anal Chem 997, 69:3693
    [6] Sheen S, Shih J. Lead(Ⅱ) ion-selective electrodes based on crown ethers. Analyst 1992, 117:1691
    [7] Khan AA, Alam MM. New and novel organic-inorganic type crystalline 'polypyrrolel/polyantimonic acid' composite system: preparation, characterization and analytical applications as a cation-exchange material and Hg(Ⅱ) ion-selective membrane electrode. Anal Chim Acta 2004, 504:253
    [8] Ibrahim I, Cemal Y, Humeyra B, Construction and response characteristics of a sulfite/hydrogensulfite-selective all-solid-state contact electrode based on the 4-methylpiperidinedithiocarbamate complex of mercury(Ⅱ). Analyst 1996, 121: 1873
    [9] Malinowska E. Lead-selective membrane electrodes based on neutral carriers. Part Ⅰ. Acyclic amides and oxamides. Analyst 1990, 115:1085
    [10] Xu L, Yuan R, Chai YQ. Mercury(Ⅱ) ion potentiometric sensor based on a sulfur Schiffs base 1-(2-hydroxy-1,2-diphenylethylidene)thiosemicarbazide as ionophore. Chem Lett 2005, 34:440
    [11] Ye GR, Chai YQ, Yuan R. A mercury(Ⅱ) ion-selective electrode based on N,N-dimethylformamide-salicylacylhydrazone as a neutral carrier. Anal Sci 2006, 22:579
    [12] Gupta VK, Chandra S, Lang H. A highly selective mercury electrode based on a diamine donor ligand. Talanta 2005, 66: 575
    [13] Sahu R, Sondhi S M, Gupta B. Extraction and separation of mercury using 1-(2'-aminoaryl)-4, 4, 6-trimethyl- 1, 4, 5, 6-tetrahydro-6-hydroxy pyrimidine-2-thiol(HPT) and its application to dental amalgam and medicinal sample. Chem Anal (Warsaw) 1996, 41: 293
    [14] Singh AK, Bhattacharjee G, Singh R. Mercury(Ⅱ)-selective membrane electrode using tetrathia-diazacyclotetradeca-2, 9-diene as neutral carrier. Sens Actu B 2004, 99: 36
    [15] An XM, Zhao JS, Synthesis of Fe(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ), Zn(Ⅱ) complexes of sulphur containing Schiff base. Chem J Chin Univ 1988, 9: 541
    [16] Horning EC, Organic Synthesis, Wiley, New York, 1955, Vol. 3, pp, 140
    [17] Moody GL, Oke RB, Thomas JDR. A calcium-sensitive electrode based on a liquid ion exchanger in a poly(vinyl chloride) matrix. Analyst 1970, 95: 910
    [18] Kamata S, Bhale A, Fukunaga Y, et al. Copper(Ⅱ)-selective electrode using thiuram disulfide neutral carriers. Anal Chem 1998, 60: 2464
    [19] Ganjali MR, Rouhollahi A, Mardan AR, et al. Thermodynamic study of the binding of hexathia-18-crown-6-tetraone with some transition and heavy metal ions in dimethyl sulfoxide solution. J Chem Soc (Farady Trans) 1998, 94: 1959
    [20] Rouhollahi A, Ganjali MR, Shamsipur M. Lead ion selective PVC membrane electrode based on 5, 5'-dithiobis-(2-nitrobenzoic acid. Talanta 1998, 46: 1341
    [21] Tavakkoli N, Khojasteh Z, Sharghi H, et al. Lead ion-selective membrane electrodes based on some recently synthesized 9, 10-anthraquinone derivatives. AnalChim Acta 1998, 360: 203
    [22] Javanbakht M, Ganjli MR, Sharghi H, et al. Mercury(Ⅱ) ion-selective electrode based on dibenzo-diazathia- 18-crown-6-dione. Electroanalysis 1999, 11: 81
    [23] Bakker E, Buhlmann P, Prersch E. Carrier-based ion-selective electrodes and bulk optodes. 1. General Characteristics. Chem Rev 1997, 97: 3083
    [24] Simon MA, Kusy RP. The molecular, physical and mechanical properties of highly plasticized poly(vinyl chloride) membranes. Polymer 1993, 34: 5106
    [25] Armstrong RD, Todd M. Study of calcium ion selective electrodes containing Simon ionophores using impedance methods: Bulk properties. J Electroanal Chem 1988, 257: 161
    [26] Mojtaba S, Shohreh R, Ali M, et al. A bromide ion-selective polymeric membrane electrode based on a benzo-derivative xanthenium bromide salt. Anal Chim Acta 2000, 418: 197
    [27] Mohammad KA, Said S, Shahram T. Thiocyanate-selective electrodes based on nickel and iron phthalocyanines. Anal Chim Acta 1999, 402: 137
    [28] Rosatzin T, Bekker E, Suzuki K, et al. Lipophilic and immobilized anionic additives in solvent polymeric membranes of cation-selective chemical sensors. Anal Chim Acta 1993, 280: 197
    [29] Bobacka J, Vaananen V, Lewenstam A, et al. Influence of anionic additive on Hg~(2+) interference on Ag~+-ISEs based on [2.2.2]p, p, p-cyclophane as neutral carrier. Talanta 2004, 63: 135
    [30] Gupta V K, Chandra S, Lang H. A highly selective mercury electrode based on a diamine donor ligand. Talanta 2005, 66: 575
    [31] Umezawa Y, Umezawa K, Buhlmann P, et al. Potcntiomctric sclcctivity coefficients of ion-selective electrodes. Part Ⅱ. Inorganic anions (IUPAC Technical Report. Pure Appl Chem 2002, 74: 923
    [32] Srinivasan K, Rechnitz GA, Selectivity studies on liquid membrane, ion-selective electrodes. Anal Chem 1969, 41: 1203
    [1] Armstrong FA, Wilson GS. Recent developments in faradaic bioelectrochemistry. Electrochim Acta 2000, 45: 2623
    [2] Lotzbeyer T, Schuhmann W, Schmidt HL. Electron-transfer principles in amperometric biosensor: direct electron transfer between enzymes and an electrode surface. Sens Actuators 1996, 33: 50
    [3] Sun DM, Cai CX, Li XG, et al. Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase immobilized on active carbon. J Electroanal Chem 2004, 566: 415
    [4] Zhao YD, Zhang WD, Chen H, et al. Direct electrochemistry of horseradish peroxidase at carbon nanotube power micro-electrode. Sens Actuators B 2002, 87: 168
    [5] Ferapontova EE, Gorton L. Effect of pH on direct electron transfer in the system gold electrode-recombinant horseradish peroxidase. Bioelectrochemistry 2002, 55: 83
    [6] Ferapontova EE, Gorton L. Effect of proton donors on direct electron transfer in the system gold electrode-horseradish peroxidase. Electrochem Commun 2001, 3: 767
    [7] Razola SS, Ruiz BL, Diez NM, et al. Hydrogen peroxide sensitive amperometric biosensor based on horseradish peroxidase entrapped in a polypyrrole electrode. Biosens Bioelectron 2002, 17: 921
    [8] Kong YT, Boopathi MN, Shim YB. Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode. Biosens Bioelectron 2003, 19: 227
    [9] Zhang Y, He PL, Hu NF. Horseradish peroxidase immobilized in TiO_2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis. Electrochim Acta 2004, 49: 1981
    [10] Chen XH, Peng XS, Kong JL, et al. Facilitated electron transfer from an electrode to horseradish peroxidase in a biomembrane-like surfactant film. J Electroanal Chem 2000, 480: 26
    [11] Huang R, Hu NF. Direct electrochemistry and electrocatalysis with horseradish peroxidase in Eastman AQ films. Bioelectrochemistry 2001, 54: 75
    [12] Zhang JZ, Lin B, Wang ZX, et al. Functionalized inorganic-organic composite material derivated by sol-gel for construction of mediated amperometric hydrogen peroxide biosensor. Anal Chim Acta 1999, 388: 71
    [13] Xiao Y, Ju HX, Chen HY. Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer. Anal Chim Acta 1999, 391: 73
    [14] Miao Y, Tan SN. Amperometric hydrogen peroxide biosensor with silica sol-gel/chitosan film as immobilization matrix. Anal Chim Acta 2001, 437: 87
    [15] J Li, LT Xiao, XM Liu, et al. Amperometric biosensor with HRP immobilized on a sandwiched nano-Au/polymerized m-phenylenediamine film and ferrocene mediator. Anal Bioanal Chem 2003, 376: 902
    [16] Ban H, Ueki T, Tamada Y, et al. Fast electron transfer between glucose oxidase and electrodes via phenothiazine mediators with poly(ethylene oxide) spacers attached to the enzyme surface, Electrochem Commun 2001, 3: 649
    [17] Sun JJ, Fang HO, Chen HY. Immobilization of horseradish peroxidase on a self-assembled monolayer modified gold electrode for the detection of hydrogen peroxide. Analyst 1998, 123: 1365
    [18] Wang BQ, Dong SJ. Sol-gel-derived amperometric biosensor for hydrogen peroxide based ong methylene green incorporated in Nation film. Talanta 2000, 51: 565
    [19] Xiao Y, Ju HX, Chen HY. A reagentless hydrogen peroxide sensor based on incorporation of horseradish peroxidase in poly(thionine) film on a monolayer modified electrode. Anal Chim Acta 1999, 391: 299-306
    [20] Li WJ, Wang ZC, Sun CQ, et al. Fabrication of multilayer films containing horseradish peroxidase and polucation-bearing Os complex by means of electrostatic layer-by-layer adsorption and its application as a hydrogen peroxide sensor. Anal Chim Acta 2000, 428: 225
    [21] Willner I, Lapidot N, Riklin A, et al. Electron-transfer communication in glutathione reductase assemblies: electrocatalytic, photocatalytic, and catalytic systems for the reduction of oxidized glutathione. J Am Chem Soc 1994, 116: 1428
    [22] Lotzbeyer T, Schuhmann W, Schmidt HL. A new strategy for the development of reagentless amperometric biosensors based on direct electron-transfer processes. Bioelectrochem Bioenerg 1997, 42: 1
    [23] Wang L, Wang E. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode. Electrochem Commun 2004, 6: 225
    [24] Brown KR, Fox AP, Natan MJ. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO electrodes. J Am Chem Soc 1996, 118: 1154
    [25] Liu SQ, Ju HX. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosens Bioelectron 2003, 19: 177
    [26] Crumbliss AL, Perine SC, Stonehuerner J, et al. Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnol Bioeng 1992, 40: 483
    [27] Patolsky F, Gabriel T, Willner I. Controlled electrocatalysis by microperoxidase-11 and Au-nanoparticle superstructures on conductive supports. J Electroanal Chem 1999, 479: 69
    [28] Zhao JG, Henkens RW, Stonehuerner J, et al. Direct electron transfer at horseradish peroxidase—colloidal gold modified electrodes. J Electroanal Chem 1992, 327: 109
    [29] Yi X, Xian JH, Yuan CH. Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode. Anal Biochem 2000, 278: 22
    [30] Jia JB, Wang BQ, Wu A, et al. A method to construct a third-generation horseradish peroxidase biosensor: selfassembling gold nanoparticles to three-dimensional sol-gel network. Anal Chem 2002, 74: 2217
    [31] Liu SQ, Ju HX. Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode. Anal Biochem 2002, 307: 110
    [32] Lei CX, Hu SQ, Shen GL, et al. Immobilization of horseradish peroxidase to a nano-Au monolayer modi fied chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide. Talanta 2003, 59: 981
    [33] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 1973, 241: 20
    [34] Liu YJ, Yin F, Long YM, et al. Study of the immobilization of alcohol dehydrogenase on Au-colloid modified gold electrode by piezoelectric quartz crystal sensor, cyclic voltammetry, and electrochemical impedance techniques. J Colloid Interface Sci 2007, 258: 75
    [35] Pei RJ, Cheng ZL, Wang EK, et al. Amplification of antigen-antibody interactions based on biotin labeled protein-streptavidin net-work complex using impedance spectroscopy. Biosens Bioelectron 2001, 16: 355
    [36] Tian Y, Shioda M, Kasahara S, et al. A facilitated electron transfer of copper-zinc superoxide dismutase (SOD) based on cysteine-bridged SOD electrode. Biochim Biophys Acta 2002, 1569: 151
    [37] Murray RW, in: AJ Bard (Ed), Electroanaytical Chemistry, vol 13, Marcel Dekker, New York, 1984, p191
    [38] Meites L, Polarographic Techiques, second (ed), Wiley, New York, 1965
    [39] Bond AM. Modern Polagraphic Methods in Analytical Chemistry, Marcel Dekker, New York, 1980
    [40] Ferri T, Poscia A, Santucci R. Direct electrochemistry of membrane-entrapped horseradish peroxidase Part Ⅰ A voltammetric and spectroscopic study. Bioelectrochem Bioenerg 1998, 44: 177
    [41] Ferri T, Poscia A, Santucci R. Direct electrochemistry of membrane-entrapped horseradish peroxidase Part Ⅱ Amperometric detection of hydrogen peroxide. Bioelectrochem Bioenerg 1998, 45: 221
    [42] Li J, Dong SJ. The electrochemical study of oxidation-reduction properties of horseradish peroxidase. J Electroanal Chem 1997, 431: 19
    [43] Aassi MZ, Van-Oss CJ, Absolom, DR (eds) (1984) Molecular immunology. Marcel Dekker, New York
    [44] Chen RT, Broome CV, Weinstein RA, et al. Diphtheria in the United States, 1971-1981. Am J Publ Health 1995, 75: 1365
    [45] Hianik T, Snejdarkova M, Sokolikova L, et al. Immunosensors based on supported lipid membranes, protein films and liposomes modified by antibodies. Sens Actuators B 1999, 57: 201
    [46] Katz E, Willner I. Probing biomolecular interactions at conductive andsemiconductive surfaces by impedance spectroscopy: routes to impedance immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 2003, 15: 913
    [47] Liu GD, Wu ZY, Wang SP, et al. Renewable amperometric immunosensor for Schistosoma japonicum antibody assay. Anal Chem 2001, 73: 3219
    [48] Liu YJ, Yin F, Long YM, et al. Study of the immobilization of alcohol dehydrogenase on Au-colloid modified gold electrode by piezoelectric quartz crystal sensor, cyclic voltammetry, and electrochemical impedance techniques. J Colloi Interface Sci 2003, 258: 75
    [49] Nikolelis DP, Mitrokotsa M. Rapid electrochemical detection of propranolol and metoprolol in pharmaceutical preparations using stabilized lipid films. Langmuir 2004, 16: 741
    [50] Storri S, Santoni T, Minunni M, et al. Surface modifications for the development of piezoimmunosensors. Biosens Bioelectron 1998, 13: 347
    [51] Tang FQ, Li JR, Zhang L, et al. Improvement of enzymatic activity and lifetime of Langmuir-Blodgett films by using submicron SiO_2 particles. Biosens Bioelectron 1992, 7: 503
    [52] Tang FQ, Men XW, Chen D, et al. Nanoparticles-enhance glucose biosensor. Sci China B 1998, 30: 119
    [53] Tang D, Yuan R, Chai Y, et al. New amperometric and potentiometric immunosensors based on gold nanoparticles/tris(2, 2'-bipyridyl) cobalt(Ⅲ) multilayer films for hepatitis B surface antigen determinations. Biosens Bioelectron 2005, 21: 539
    [54] Wang H, Wu ZY, Shen GL, et al. A novel piezoelectric immunosensor for the determination of transferrin. Chem J Chin Univ 2001, 22: 1305
    [55] Wang CC, Wang H, Wu ZY, et al. A piezoelectric immunoassay based on self-assembled mono-layers of cystamine and polystyrene sulfonate for determination of Schistosoma japonicum antibodies. Anal Bioanal Chem 2002, 373: 803
    [56] Wharton M, Vitek CR. Diphtheria. In: Plotkin SA, Orenstein WA (eds) Vaccines, 4th edn. Saunders, Philadelphia, PA, 2000, pp. 211
    [57] Wu Z, Li J, Luo M, et al. A novel capacitive immunosensor based on gold colloid monolayers associated with a sol-gel matrix. Anal Chim Acta 2005, 528: 235
    [58] Boehm MK, Corper AL, Wan T, et al. Crystal structure of the anti-(carcinoembryonic antigen) single-chain Fv antibody MFE-23 and a model for antigen binding based on intermolecular contacts. Biochem J 2005, 346: 519
    [59] Chakraborty UR, Black N, Brooks Jr HG, et al. An immunogold assay system for the detection of antigen or antibody. Annales de Biologie Clinique 1990, 48: 403
    [60] Chen J, Tang J, Yah F, et al. A gold nanoparticles/sol-gel composite architecture for encapsulation of immunoconjugate for reagentless electrochemical immunoassay. Biomaterials 2006, 27: 2313
    [61] Chetcuti AF, Wong DKY, Stuart MC. An indirect perfluorosulfonated ionomer coated electrochemical immunosensor for the detection of the protein human chorionic gonadotrophin. Anal Chem 1999, 71: 4088
    [62] Dolinnaya N, Jan M, Kawde A, et al. Electrochemical detection of abasic site-containing DNA. Electroanalysis 2006, 18: 399
    [63] Dumps P, Meisser A, Pons D, et al. Accuracy of single measurements of pregnancy-associated plasma protein-A, human chorionic gonadotropin and progesterone in the diagnosis of early pregnancy failure. Eur J Obstet Gyn R B 2002, 100: 174
    [64] Gebbert A, Alvarez-Icaza M, Stocklein W, et al. Real-time monitoring of immunochemical interactions with a tantalum capacitance flow-through cell. Anal Chem 1992, 64: 997
    [65] Fumio I. Chemical sensors. Chem Sens 1990, 6: 2
    [66] Murphy E. Measurement of intracellular ionized magnesium. Mineral and Electrolyte Metabolism 1993, 19 (4-5): 250
    [67] Kulys JJ, Razumas VJ, Bioamperometry, mokslas, vilmius, USSR (in Russian), 1986
    [68] Eddowes MJ, Hill AQ, Faraday Discuss Chem Soc 1982, 74: 331
    [69] Kulpmann WR. Determination of electrolytes in serum and plasma |[Bestimmung von Elektrolyten im Serum und Serumwasser]. Wiener Klinische Wochenschrift, Supplement 1992, 192: 37-41
    [70] Zhou YM, Wu ZY, Shen GL, et al. An amperometric immunosensor based in Nation-modified electrode for determination of Schistosoma japonicum antibody. Sen Actuators B 2003, 89: 292
    [71] Ferrett S, Paynter S, Russell DA, et al. Self-assembled monolayers: aversatile tool for the formulation of bio-surface. Trends Anal Chem 2000, 19: 530
    [72] Revell DJ, Knight JR, Blyth DJ, et al. Self-assembled carbohydrate monolayers: formation and surface selective molecular recognition. Langmuir 1998, 14: 4517
    [73] Ulman A. An introduction to ultrathin organic. Academic Press, Boston, MA, 1991
    [74] Ulman A. Formation and structure of self-assembled monolayers. Chem Rev 1996, 96: 1533
    [75] Cai M, Ho M, Pemberton JE. Surface vibrational spectroscopy of alkylsilane layers covalently bonded to monolayers of (3-mercaptopropyl)-trimethoxysilane on Ag substrates. Langmuir 2000, 16: 3446
    [76] Laibinis PE, Whitesides GW, Lallara D, et al. Comparison of the structures and wettig properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces Cu Ag Au. J Am Chem Soe 1991, 113: 7152
    [77] Bryant MA, Pemberton JE. Surface Raman scattering of self-assembled monolayers formed from 1-alkanethiols at Ag. J Am Chem Soc 1991, 113: 3629
    [78] Wang GR, Wang L, Rendeng Q, et al. Correlation between nanostructural parameters and conductivity properties for molecularly-mediated thin film assemblies of gold nanoparticles. J Mater Chem 2007, 17(5): 457-462
    [79] Krishnan RS, Mackay ME, Duxbury PM, et al. Self-assembled multilayers of nanocomponents. Nano Letters 2007, 7(2): 484
    [80] Taurozzi JS, Tarabara VV. Silver nanoparticle arrays on track etch membrane support as flow-through optical sensors for water quality control. Environmental Engin Sci 2007, 24 (1): 122
    [81] Willner I, Basnar B, Willner B. Nanoparticle-enzyme hybrid systems for nanobiotechnology. FEBS J 2007, 274 (2): 302
    [82] Willner I, Willner B, Katz E. Biomolecule-nanoparticle hybrid systems for bioelectronic applications. Bioelectrochemistry 2007, 70(1): 2
    [83] Huang CC, Chang HT. Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury(Ⅱ) in aqueous solution. Anal Chem 2006, 78 (24): 8332
    [84] Cumming DRS, Bates AD, Callen BP, et al. Gold nanoparticle wires made using RNA-based self-assembly. J. Vacuum Science and Technology B: Microelectronics and Nanometer Structures 2006, 24 (6): 3196
    [85] Zhong CJ, Lu S, Wang L, et al. Novel sensing array nanomaterials: Molecularly-mediated assemblies of nanoparticles. 2006 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2006 Technical Proceedings 3, 2006, 3: 427
    [86] Singh, A., Hede, S., Sastry, M. Spider silk as an active scaffold in the assembly of gold nanoparticles and application of the gold-silk bioconjugate in vapor sensing. Small 2007, 3(3): 466
    [87] Pratsinis SE. Overview-Nanoparticulate dry (flame) synthesis & applications. 2006 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2006 Technical Proceedings 1, pp. 301-307
    [88] Guo H, Tao S. Silver nanoparticles doped silica nanocomposites coated on an optical fiber for ammonia sensing. Sens Actuators B: Chemical 2007, 123(1): 578
    [89] Park S, Weaver MJ. A versatile modification scheme for attaching metal nanoparticles onto gold: characterization by electrochemical infrared spectroscopy. J Phys Chem. B 2002, 106: 8667
    [90] Bharathi S, Nogami M, lkeda S. Novel electrochemical interfaces with a tunable kinetic barrier by self-assembling organically modified silica gel and gold nanoparticles. Langmuir 2001, 17: 1
    [91] Shankaran DR, Uehera N, Kato T. Determination of sulfur dioxide based on a siliver dispersed functional self-assembled electrochemical sensor. Sen Act B 2002, 87: 442
    [92] Tremont RJ, blasini DR, Cabrera CR. Controlled self-assembly of mercapto and silane terminated molecules at Cu surfaces. J Electroanal Chem 2003, 556: 147
    [93] Milsom EV, Novak J, Oyama M, et al. Electrocatalytic oxidation of nitric oxide at TiO2-Au nanocomposite film electrodes. Electrochem Commun 2007, 9(3): 436
    [94] Xiao Y, Ju HX, Chen HY. Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode. Anal Biochem 2000, 278: 22
    [95] Lin J, Zhou WL, O'Connor CJ. Formation of ordered arrays of gold nanoparticles from CTAB reverse micelles. Mater Lett 2001, 49: 282
    [96] Schmid G (Ed). Cluster sand Colloids: From Theory to Applications VCH, Weinheim, 1994, Chapter 1
    [97] Milsom EV, Dash HA, Jenkins TA, et al. The effects of conductivity and electrochemical doping on the reduction of methemoglobin immobilized in nanoparticulate TiO2 films. Bioelectrochemistry 2007, 70 (2): 221
    [98] Cao YW, Jin RC, Mirkin CA. DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 2001, 123: 7961
    [99] Hyatt MA. Colloidal Gold: Principle, Methods and Applications. Academic Press, New York, 1998, pp. 3
    [1] Salimi A, Sharifi E, Noorbakhsh A, et al. Direct voltammetry and electrocatalytic properties of hemoglobin immobilized on a glassy carbon electrode modified with nickel oxide nanoparticles. Electrochem Commun 2006, 8: 1499
    [2] Rajashekhara E, Hosoda A, Sode K, et al. Volatile fatty acid-sensing system involving coenzyme-A transferase. Biotechnol Prog 2006, 22(1): 334
    [3] Konno T, Watanabe J, Ishihara K. Conjugation of enzymes on polymer nanoparticles covered with phosphorylcholine groups. Biomacromolecules 2004, 5(2): 342
    [4] Rubio-Retama J, Hernando J, Lopez-Ruiz B, et al. Synthetic nanocrystalline diamond as a third-generation biosensor support. Langmuir 2006, 22(13): 5837
    [5] Zhao W, Xu J, Shi C, et al. Multilayer membranes via layer-by-layer deposition of organic polymer protected prussian blue nanoparticles and glucose oxidase for glucose biosensing. Langmuir 2005, 21(21): 9630
    [6] Ramanathan K, Jonsson B, Danielsson B. Thermometric sensing of peroxide in organic media. Application to monitor the stability of RBP-retinol-HRP complex. Anal Chem 2000, 72(15): 3443
    [7] Xu Y, Peng WL, Liu XJ, et al. A new film for the fabrication of an unmediated H_2O_2 biosensor. Biosens Bioelectron 2004, 20: 533
    [8] Tsai Y, Li S, Chen J. Cast thin film biosensor design based on a Nation backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function. Langmuir 2005, 21(8): 3653
    [9] Delvaux M, Walcarius A, Demoustier C. Electrocatalytic H_2O_2 amperometric detection using gold nanotube electrode ensembles. Anal Chim Acta 2004, 525: 221
    [10] Yuan R, Tang D P, Chai YQ, et al, Ultrasensitive potentiometric immunosensor based on SA and OCA techniques for immobilization of HBsAb with colloidal Au and polyvinyl butyral as matrixes. Langmuir 2004, 20: 7240
    [11] Ortiz G, Gonzalez M, Reviejo A, et al. Graphite-poly(tetrafluoroethylene) composite enzyme electrodes as suitable biosensors in predominantly nonaqueous media. Anal Chem 1997, 69: 3521
    [12] Luo X, Killard A, Morrin A, et al. Enhancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline. Anal Chim Acta 2006, 575: 39
    [13] Tang D P, Yuan R, Chai Y Q, et al, New ampcrometric and potcntiomctric immunosensors based on gold nanoparticles/tris(2, 2'-bipyridyl)cobalt(Ⅲ) multilayer films for hepatitis B surface antigen determinations. Biosens Bioelectron 2005, 21: 539
    [14] Wu S, Zhao H, Ju H, et al. Electrodeposition of silver-DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose. Electrochcm Commun 2006, 8: 1197
    [15] Murray RW, In: Bard AJ. Ed. Electroanalytical Chemistry. Marcel Dekker, New York, 1984, vol 13, pp 191
    [1] Delvaux M, Walcarius A, Demoustier C. Electrocatalytic H_2O_2 amperometric detection using gold nanotube electrode ensembles. Anal Chim Acta 2004, 525: 221
    [2] Hurdis E, Romeyn Jr H. Accuracy of determination of hydrogen peroxide by cerate oxidimetry. Anal Chem 1954, 26: 320
    [3] Fang Y, Cai R, Deng J, et al. Lettuce seed meal tissue-based membrane electrode with high biocatalytic activity for hydrogen peroxide. Anal Chem 1992, 4: 819
    [4] Hanaoka S, Lin J, Yamada M. Chemiluminescent flow sensor for H_2O_2 based on the decomposition of H_2O_2 catalyzed by cobalt(Ⅱ)-ethanolamine complex immobilized on resin. Anal Chim Acta 2001, 426: 57
    [5] Tripathi V, Kandimalla V, Ju H. Amperometric biosensor for hydrogen peroxide based on ferrocene-bovine serum albumin and multiwall carbon nanotube modified ormosil composite. Biosens Bioelectron 2006, 21: 1529
    [6] Tang D, Yuan R, Chai Y. Electron-transfer mediator microbiosensor fabrication based on immobilizing HRP-labeled Au colloids on gold electrode surface by11-mercaptoundecanoic acid monolayer. Electroanalysis 2006, 20: 259
    [7] Gu T, Hasebe Y. Peroxidase and methylene blue-incorporated double stranded DNA-polyamine complex membrane for electrochemical sensing of hydrogen peroxide. Anal Chim Acta 2004, 525: 191
    [8] Belange D, Nadreau J, Fortier G. Rotating ring-disk electrode studies of polypyrrole-glucose oxidase biosensors. Electroanalysis 1992, 4: 933
    [9] Nassar A, Rusling J. Electron transfer between electrodes and heme proteins in protein-DNA films. J Am Chem Soc 1996, 118: 3043
    [10] Liu Y, Yuan R, Chai Y, et al. Direct electrochemistry of horseradish peroxidase immobilized on gold colloid/cysteine/nafion modified platinum disk electrode. Sens Actuators B 2006, 115: 109
    [11] Vianello F, Zennaro L, Rigo A. A coulometric biosensor to determine hydrogen peroxide using a monomolecular layer of horseradish peroxidase immobilized on a glass surface. Biosens Bioelectron 2007, 22: 2694
    [12] Mizutani F, Sawaguchi T, Sato Y, et al. Amperometric determination of acetic acid with a trienzyme/poly(dimethylsiloxane)-bilayer-based sensor. Anal Chem 2001, 73: 5738
    [13] Tsiafoulis C, Prodromidis M, Karayannis M. Development of a flow amperometric enzymatic method for the determination of total glucosinolates in real samples. Anal Chem 2003, 75: 927
    [14] Luo XL, Xu JJ, Zhang Q, et al. Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Biosens Bioelectron 2005, 21: 190
    [15] Razola SS, Ruiz BL, Diez NM, et al. Hydrogen peroxide sensitive amperometric biosensor based on horseradish peroxidase entrapped in a polypyrrole electrode. Biosens Bioelectron 2002, 17: 921
    [16] Kong YT, Boopathi M, Shim YB. Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode. Biosens Bioelectron 2003, 19: 227
    [17] Xu Y, Peng W L, Liu X J, et al. A new film for the fabrication of an unmediated H_2O_2 biosensor. Biosens Bioelectron 2004, 20: 533
    [18] Santos A, Duran N, Kubota L. Biosensor for H_2O_2 response based on horseradish peroxidase: effect of different mediators adsorbed on silica gel modified with niobium oxide. Electroanalysis 2005, 17: 1103
    [19] Manso J, Mena M, Yanez-Sedeno P, et al. Electrochemical biosensors based on colloidal gold-carbon nanotubes composite electrodes. J Electrochem Chem 2007, 603: 1
    [20] Wang G, Zhang Y, Cui Y, et al. Study on the behavior of hyper-rayleigh scattering for Silver nanoparticles with aggregation effects. J Phys Chem B 2005, 109: 1067
    [21] Kafi A, Lee D, Park S, et al. Amperometric biosensor based on direct electrochemistry of hemoglobin in poly-allylamine (PAA) film. Thin Solid Films 2007, 515: 5179
    [22] Kim K, Lee HS. Effect of Ag and Au nanoparticles on the SERS of 4-aminobenzenethiol assembled on powdered copper. J Phys Chem B 2005, 109: 18929
    [23] Tangkuaram T, Ponchio C, Kangkasomboon T, et al. Design and development of a highly stable hydrogen peroxide biosensor on screen printed carbon electrode based on horseradish peroxidase bound with gold nanoparticles in the matrix of chitosan. Biosens Bioelectron 2007, 22: 2071-2078
    [24] Lee J, Youn C, Kim B, et al. An oxidative stress-specific bacterial cell array chip for toxicity analysis. Biosens Bioelectron 2007, 22: 2223
    [25] Gao F, Yuan R, Chai Y, et al. Amperometric hydrogen peroxide biosensor based on the immobilization of HRP on nano-Au/Thi/poly (p-aminobenzene sulfonic acid)-modified glassy carbon electrode. J Biochem Biophys Methods 2007, 70: 407
    [26] Lee W, Nieman T. Evaluation of use of tris(2, 2'-bipyridyl)ruthenium(Ⅲ) as a chemiluminescent reagent for quantitation in flowing streams. Anal Chem 1995, 67: 1789
    [27] Murray R W, 1984 In, Bard AJ (Ed), Elcctroanalytical Chemistry, vol 13 Marcel Dekker, New York, pp 191-368
    [28] Guo Z, Shen Y, Wang M, et al. Electrochemistry and electrogenerated chemiluminescence of SiO_2 nanoparticles/tris(2, 2'-bipyridyl)ruthenium(Ⅱ) multilayer films on indium tin oxide electrodes. Anal Chem 2004, 76: 184
    [29] Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 1997, 277: 1232
    [30] Ren X, Meng X, Chert D, et al. High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens. Biosens Bioelectron 2005, 20: 433
    [31] Ebato H, Gentry C A, Herron JN, et al. Investigation of specific binding of antifluorescyl antibody and Fab to fluorescein lipids in langmuir-blodgett deposited films using quartz crystal microbalance methodology. Anal Chem 1994, 66: 1683
    [32] Okahata Y, Kawase M, Niikura K, et al. Kinetic measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance. Anal Chem 1998, 70: 1288
    [33] Enustun B, Turkevich J. Coagulation of colloidal gold. J Am Chem Soc 1963, 85, 3317
    [34] Wang G, Xu JJ, Chen HY, et al. Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix. Biosens Bioelectron 2003, 18: 335
    [35] Kamin R, Wilson G. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem 1980, 52: 1198
    [36] Xu Y, Peng WL, Liu XJ, et al. A new film for the fabrication of an unmediated H_2O_2 biosensor. Biosens Bioelectron 2004, 20: 533
    [37] Salinas E, Rivero V, Torriero A, et al. Multienzymatic-rotating biosensor for total cholesterol determination in a FIA system. Anal Chim Acta 2006, 578: 137

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700