用户名: 密码: 验证码:
无机类富勒烯硫化物(IF-MS_2,M=W、Mo)及其纳米复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Synthesis and Investigation of Inorganic Fullerene-like Sulphide (IF-MS_2, M=W、Mo) Nnanomaterials and Nanocomposites
  • 作者:常连霞
  • 论文级别:博士
  • 学科专业名称:凝聚态物理
  • 学位年度:2007
  • 导师:杨海滨
  • 学科代码:070205
  • 学位授予单位:吉林大学
  • 论文提交日期:2007-06-01
摘要
以金属丝电爆炸方法制备的金属钨、钼纳米球为前驱物,采用氢气氛中表面硫化方法在较低的温度范围(380~600oC)制备出了核壳结构的无机类富勒烯M/IF-MS_2(M=W,Mo)纳米球以及壳层由取向较为一致的2H-MoS_2微晶构成的Mo/2H-MoS_2纳米球,获得了制备规律。通过对M/MS_2成分、形貌的表征研究,澄清了这两类颗粒的壳层特征并提出由外向内逐步扩散和晶格匹配的生长机制。揭示了该类纳米复合颗粒的热稳定性特点和规律。
     研究了W/IF-WS_2作为润滑油(HD 80W-90)添加组分的润滑性能:IF复合油在较高载荷下表现出优于纯润滑油和以2H-WS_2、空心IF-WS_2为添加组分的复合油的润滑性能。在高载荷(5000N)下能迅速修复破损的转移膜,在较长时间内保持优异的稳定润滑状态。防磨损性能好,抗极压值高(>5500N)。另外还分析了W/IF-WS_2纳米球在0~20.5 GPa准静水压下的拉曼光谱特点,讨论了其结构变化规律。
     在液相采用氧化还原法合成了类球形MoS_2.5无定形纳米颗粒,粒径为30~50nm。真空中经400-1200oC热处理得到IF-MoS_2纳米球,纳米棒和网络状的Mo等系列产物。探讨了其随温度的演化过程和生长机理,并研究了IF颗粒的红外和紫外-可见光谱吸收特性。
     采用液相氧化还原方法在玻璃微球(GMB)上沉积硫化钼,经热处理得到GMB/MoS_2复合微球。通过调整前驱物浓度,可得到不同厚度的均匀连续涂层。GMB/MoS_2复合微球的紫外-可见光吸收性能明显增强。
Since the discovery of C60 molecule and carbon nanotubes, intense interests have been aroused to synthesize inorganic materials with fullerene-like (IF) structures and nanotubes. The investigations have opened a challenging new field in nanotechnology, catalyst, energy and functional composites with a wide range of possible applications. Here, We report a new synthetic route to prepare a series of inorganic fullerene-like metal sulphide IF-MS_2(M=W, Mo)nanomaterials and nanocomposites. Based on the investigations of microstructure, influences of various parameters, growth mechanism and properties, many significative results have been obtained.
     The M/IF-MS_2 (M=W, Mo) have been synthesized by the sulfidization of metal nanospheres under hydrogen atmosphere, in which the metal nanospheres are synthesize by wire electrical explosion (WEE) method.By adjusting various parameters (temperature, mol ratio of M/S, reaction time, hydrogen atmosphere), W/IF-WS_2 with core-shell structure have been synthesize at 380~500oC and the IF shell is about 10~20 nm. Core-shell Mo/MoS_2 nanospheres with inorganic fullerene-like and actinomorphic shell have been obtained at 400~600oC.The shell thinness is about 4~10 nm. Our preparation route evidently decreases the reaction temperature compared with the popular solid-gas method; XRD results indicate that d(002) in IF-WS_2 exhibit 3.3-1.6%expansion and d(002) in IF-MoS_2 exhibit 4.2-1% expansion along the c axis in accordance with the bulk.The core-shell nanospheres show higher thermal stability than 2H and hollow IF particles. The onset temperature of W/IF-WS_2 nanospheres is 414-424oC and Mo/IF-MoS_2 is about 386oC. In the chapter, we discussed the influences of various parameters (temperature, mol ratio of M/S, reaction time, hydrogen atmosphere) on the morphology in details; a growth mechanism of outside-in diffusion has been discussed: at the beginning, the exterior atoms of the metal nanoparticles reacted with liquid or gaseous sulfur, and then one or two closed MS_2 layer was formed. Subsequently, outer sulfur atoms diffused inwards through the defects of outer layer driven by temperature and concentration gradients, causing the similar reactions to take place continuously. During the process, hydrogen plays an important role of preventing particles from oxidization, activating the surface of the tungsten nanospheres and transmitting sulfur atoms in the form of hydrogen sulfide for easily forming smooth and closed MS_2 layer. The sulfur transmission may involve amorphous MS3. At the beginning, sulfur is superfluous and MS3 is formed. Driven by temperature and concentration gradients, MS3 lose sulfur atom to form MS_2. The lost sulfur react with inner mentl and similar reactions take place. The growth mechanism of actinomorphic Mo/2H-MoS_2 follows the principia of crystal lattice matching. (002) layers of MoS_2 are located in every three (110) layers of metal Mo and all grow paralleling to the (110) plane. When the actinomorphic MoS_2 layers are formed, the layers will become the channels for the sulfur to diffuse into. The actinomorphic morphology is a steady structure because the consistent lattice orientation can effectively eliminate strain in layers.
     The tribological performance of the oil(HD 80W-90),the IF composite oil (oil+1wt.%IF) and the 2H composite oil(oil+1wt.%2H) were investigated by the high temperature terminal face friction and wear tester under 200-5000 N loads. The results show that the the IF composite oil exhibite lower tribological coefficient, better wear-resistant and higher extreme- pressure. Under higher loads IF composite oil show lower tribological coefficients than that of oil (>700N), 2H composite oil (>880N) and hollow IF composite oil (1200~2000N). Under 2000N load, the IF composite oil shows best lubricative behavior with minimal tribological coefficients of 0.019 and maintained a steady lubrication during a long time. Under high load of 5000N, core-shell IF nanospheres exhibit better fluidity and can move everywhere to automatically fill up the sunken surface to maintain balanced friction; The IF composite oil exhibits better wear-resistant than 2H composite oil, especially better than HD oil under different conditions; The IF composite oil show highest extreme- pressure(EP) among the three lubricants. The EP values of 2H composite oil and HD oil are about 4500N and 1700N, respectively, while the EP value of IF composite oil exceeds 5500N; Raman spectroscopy under hydrostatic pressure up to 20.5 GPa indicate that the structure of W/IF-WS_2 is changed at the pressure of 5.4GPa and 13.3 G Pa and the transformation is reversible. This indicates theW/ IF-WS_2 nanosphere has excellent behavior of resisting compression. The above excellent behaviors lie in: the nanospheres with closed shell are relatively steady and avoid bonding with metal atoms of contact pairs to form worn particles; enwrapping the tungsten into IF-WS_2 improves the structural rigidity and preserves the spherical shape unchanged even under higher loads.
     The amorphous MoS_2.5 nanoparticles have been synthesized by a simple oxidation-reduction reaction in an aqueous solution with the diameter of 30~50nm. A series of products with different morphologies, such as MoS_2 nanospheres, inorganic fullerene-like (IF) nanospheres, nanorods and Mo with netlike structure can be obtained by annealing the amorphous MoS_2.5 nanoparticles in vacuum under 400-1200oC. During the thermal treatment, the rich sulfur bonds broke first for recrystallization of MoS_2. Driven by thermal kinetics, the IF nanoparticles were obtained by eliminating the unsaturated bonds to form a closed structure under 500-700oC. The final IF product proves that the dot effects are necessary during the formation of closed IF structure from amorphous materials put forward by Tenne. With increasing temperature quickly, MoS_2 rod, Mo2S3 long plate and Mo with netlike structure can be obtained at 800-1200oC. The samples show stronger absorption in 300~470nm region and weaker absorption in 510~650nm. With different sample obtained at different annealing temperatures the absorption regions show little difference. The IF layer numbers have obvious effect on the optical properties.The IF-MoS_2 with more layers exhibit stronger optical absorbtion.
     Glass microballoon (GMB) coated with MoS_2 nanoparticles have been obtained via chemical deposition process (oxidation-reduction) in solution. The thinness of MoS_2 shell can be adjusted by adjusting the concentration of precursors. After annealed at 500oC in hydrogen, GMB/MoS_2 microspheres with different thinness (280~660nm) have been obtained. The GMB/MoS_2 microspheres show strong obsorption in 290-515 nm and 616-750nm region and weaker absorbtion in 530 -600nm region.
     All kinds of synthetic routes provided here are easy to control over all reaction processes and especially to realize large-scale preparation; The IF composite oil obtained by adding W/IF-WS_2 as additive shows excellent lubricant performance. It’s very important for the upgrade and replacement of the traditional lubricants; The Mo/2H-MoS_2 and GMB/MoS_2 microsphere are expected to have many advantages in applications as catalysts in chemical industry and photocatalysts.
引文
[1] 徐国财 张立德,纳米复合材料, 化学工业出版社, 2002,P2-10
    [2] 徐并社, 纳米材料及应用技术,化学工业出版社,2003,P3
    [3] 张立德,牟季美.纳米材料和纳米结构.科学出版社,2001, P23-67
    [4] 张志锟,崔作林.纳米技术与纳米材料,国防工业出版社 2000
    [5] Ball P and Garwin L., Science at the atomic scale, Nature, 1992. 355,761-766
    [6] Halperin W P., Quantum size affects in metal particles, Rev. of Modern Phys.,1986, 58(3), 533-607
    [7] Awschalom D D, DiVincenzo D P, and Smyth J F. Macroscopic quantum effects in nanometer-scale magnets, Science,1992, 258,414-421
    [8] Kent AD,Von MolnárS, Gider S, et al. Properties and measurement of scanning tunneling microscope fabricated ferromagnetic particle arrays, J. Appl. Phys., 1994. 76(10), 6656-6660
    [9] 周静芳,陶小军,张治军等,化学研究,表面修饰 Ag_2S 纳米微粒的合成及摩擦学行为研究,1999,10(4),1
    [10] 吴军,马仁志,魏秉庆等,硅酸盐通报,巴基管/纳米 SiC 陶瓷材料的研究,1999,18(4),33
    [11] 梁勇,马宗义等,中国第二届纳米材料和技术应用会议论文集,杭州:2001,5.C24
    [12] 信春民,高善民,崔得良等,物理化学学报,苯热条件下 GaP 纳米晶的稳定性 1999,15(2),105
    [13] 刘静宇,王军. 宇航材料工艺,2000,1,30
    [14] 加藤淳. 日本化学会志,1984,150(6),987
    [15] Kroto H W, Heath J R, O’Brien S C, et al. C60: Buckminstfullerene. Nature,1985, 318(6042), 162-163
    [16] Iijima S., Helical microtubules of graphitic carbon. Nature, 1991, 54,56
    [17] Tenne R, Margulis L, Genut M, et al. Polyhedral and cylindrical structures of tungsten disulphide. Nature, 1992. 360(6403), 444
    [18] Margulis L, Salitra G, Tenne R, et al. Nested fullerene-like structures, Nature, 1993, 365(6442), 113
    [19] Hershfinkel M, Gheber L A, Volterra V, et al. Nested polyhedra of MX_2 (M = W, Mo; X = S, Se) probed by High-Resolution Electron Microscopy and Scanning Tunneling Microscopy, J. Am. Chem. Soc., 1994, 116(5), 1914-1917
    [20] Tsirlina T, Feldman Y, Homyonfer M, et al. Synthesis of Inorganic Fullerene-like WSe_2, Fullerene Sci. Tech., 1998, 6(1), 157
    [21] Tenne R., Doped and heteroatom-containing fullerene-like structures and nanotubes, Adv. Mater., 1995, 7(12), 965-972, 989
    [22] Kato K, Kawada I and Takahashi T. Die Kristallstruktur von LaCrS_3, Acta. Crystallogr., 1997, B33, 3437
    [23] Guemas L, Rabu P, Meerschaut A, et al. Characterization of new "SnNbS_3, PbNbS_3, PbNb_2S5, SnTiS3 and SnTi2S5" compounds, Mater. Res. Bull., 1988, 23(7), 1061
    [24] Wiegers G A and Meerschaut A. Structures of misfit layer compounds (MS)nTS_2 (M=Sn, Pb, Bi, rare earth metals; T=Nb, Ta, Ti, V, Cr; 1.08    [25] Suzuki K, Enoki T, and Imaeda K. Synthesis, characterization and physical properties of incommensurate layered compounds/(RES)xTaS_2 (RE=Rare earth metal). Solid State Comm., 1991, 78(2), 73
    [26] Raybaud P, Hafner J, Kresse G, et al. Structural and electronic properties of the MoS_2 (1010) edge-surface, Surf. Sci., 1998. 407(1-3), 237
    [27] Benavente E, Santa Ana M A, Mendixabal F, et al. Intercalation chemistry of molybdenum disulfide. Coordin. Chem. Rev., 2002, 224(1-2), 87
    [28] Vollath D, Szabo D V. Synthesis of nanocrystalline MoS_2 and WS_2 in a microwave plasma, Mater. Lett., 1998, 35(1), 236
    [29] R. Tenne, M. Homyonfer, and Y. Feldman, Nanoparticles of Layered Compounds with Hollow Cage Structures (Inorganic Fullerene-Like Structures), Chem. Mater., 1998, 10 (11), 3225
    [30] Feldman Y, Frey G L, Homyonfer M, et al. Bulk Synthesis of Inorganic Fullerene-like MS_2 (M=Mo, W) from the Respective Trioxides and the Reaction Mechanism. J. Am. Chem. Soc., 1996, 118(23), 5362
    [31] Feldman Y, Lyakhovitskaya V, and Tenne R. Kinetics of nested inorganic fullerene-like nanoparticle formation. J. Am. Chem. Soc., 1998, 120(17), 4176
    [32] A. Margolin, R. Rosentsveig, A. Albu-Yaron, R. Popovitz-Biro and R. Tenne, Study of the growth mechanism of WS_2 nanotubes produced by a fluidized bed reactor, J .Mater. Chem., 2004, 14,617
    [33] A. Zak, Y. Feldman, V. Alperovich, R. Rosentsveig, and R. Tenne,Growth Mechanism of MoS_2 Fullerene-like Nanoparticles by Gas-Phase Synthesis, J. Am. Chem. Soc. 2000, 122, 11108
    [34] Rothschild A, Sloan J, Tenne R. Growth of WS_2 nanotubes phases, J. Am. Chem. Soc., 2000, 122(21), 5169
    [35] Nath M and Rao C N R., New metal disulfide nanotubes, J. Am. Chem. Soc.,2001, 123(20), 4841
    [36] Therese H A, Li J X, Kolb U, et al. Facile large scale synthesis of WS_2 nanotubes from WO3 nanorods prepared by a hydrothermal route, Solid State Sci., 2005, 7(1), 67
    [37] Whitby R L D, Hsu W K, Fearon P K, et al. Multiwalled carbon nanotubes coated with tungsten disulfide, Chem. Mater., 2002, 14(5), 2209
    [38] Chen J, Li S L, Gao F, et al. Synthesis and characterization of WS_2 nanotubes. Chem. Mater., 2003, 15(4), 1012
    [39] Li Y D, Li X L, He R R, et al. Artificial lamellar mesostructures to WS_2 nanotubes, J. Am. Chem. Soc., 2002, 124(7), 1411
    [40] Li X L and Li Y D. Formation of MoS_2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. Chem. Eur. J., 2003, 9(12), 2726
    [41]郑遗凡,宋旭春,刘波,等.嵌套球形层状封闭结构纳米二硫化钨的合成与机理探讨.无机材料学报,2004,19(3),653
    [42]宋旭春,徐铸德,陈卫祥,等.无机类富勒烯 MoS_2 纳米材料的制备与表征, 化学物理学报,2004,17(5),629
    [43] Feldman Y, Wasserman E, Srolovitz D J, et al. High-rate,gas-phase growth of MoS_2 nested inorganic fullerenes and nanotubes,Science, 1995, 267(5195), 222
    [44] Zak A , Feldman Y, Alperovich V, et al. Growth mechanism of MoS_2 fullerene-like nanoparticles by gas-phase synthesis. J. Am. Chem. Soc., 2000. 122(45), 11108
    [45] Feldman Y, Zak A, and Tenne R. New reactor for production of tungsten disulfide hollow onion-like (inorganicfullerence-like) nanopartieles, SolidState Sci., 2000, 2(2), 663
    [46] Hsu W K,Zhu Y Q,Boothroyd C B,et al. Mixed-phase WxMoyCzS_2 nanotubes. Chem Mater, 2000, 12(12), 3541
    [47] Schuffenhauer C, Popovitz-Biro R and Tenne R. Synthesis of NbS_2 nanoparticles with (nested) fullerene-like structure (IF). J. Mater. Chem., 2002, 12(5), 1587
    [48] Chen J, Tao Z L, Li S L, et al. Synthesis of TiSe_2 nanotubes/nanowires. Adv. Mater., 2003, 15(16), 1379
    [49] Xiao-Lin Li, Jian-Ping Ge, and Ya-Dong Li,Atmospheric Pressure Chemical Vapor Deposition: An Alternative Route to Large-Scale MoS_2 and WS_2 Inorganic Fullerene-like Nanostructures and Nanoflowers, Chem. Eur. J. 2004, 10, 6163
    [50] Kian Ping Loh, Heng Zhang, Wei Zhe Chen, and Wei Ji,Templated Deposition of MoS_2 Nanotubules Using Single Source Precursor and Studies of Their Optical Limiting Properties,J. Phys. Chem. B, 2006, 110, 1235
    [51] Catherine M. Zelenski and Peter K. Dorhou, Template Synthesis of Near-Monodisperse1 Microscale Nanofibers and Nanotubules of MoS_2, J. Am. Chem. Soc., 1998, 120, 734
    [52] Brumlik, C. J.; Martin, C. R. J. Am. Chem. Soc. 1991, 113, 3174
    [53] Tian Y, He Y and Zhu Y F. Low temperature synthesis and characterization of molybdenum disulfide nanotubes and nanorods, Mater. Chem. Phys., 2004, 87(1), 87
    [54] Wen-Jun Li, Er-Wei Shi, Jung-Min Ko, et al.,Hydrothermal synthesis of MoS_2 nanowires, J. Cryst. Growth, 2003, 250, 418
    [55] N. Arul Dhas and Kenneth S. Suslick, Sonochemical Preparation of Hollow Nanospheres and Hollow Nanocrystals, J. Am. Chem. Soc. 2005, 127, 2368
    [56] Sara E. Skrabalak and Kenneth S. Suslick, Porous MoS_2 Synthesized by Ultrasonic Spray Pyrolysis, J. Am. Chem. Soc. 2005, 127, 9990
    [57] Izaskun Uzcanga Igor Bezverkhyy, Pavel Afanasiev,Carlos Scott, and Michel Vrinat, Sonochemical Preparation of MoS_2 in Aqueous Solution: Replication of the Cavitation Bubbles in an Inorganic Material Morphology, Chem. Mater., 17 (14), 2005, 3575
    [58] Q. Li, J. T. Newberg, E. C. Walter, J. C. Hemminger, and R. M. Penner, Polycrystalline Molybdenum Disulfide (2H-MoS_2) Nano- and Microribbons by Electrochemical/Chemical Synthesis, Nano Lett., 4(2), 2004, 277
    [59] Christopher L. Stender, Eric C. Greyson,Yelizaveta Babayan, and Teri W. Odom Patterned MoS_2 Nanostructures Over Centimeter-Square Areas, Adv. Mater. 2005, 17, 2837–2841
    [60] Sen R, Govindaraj A , Suennaga K, et al. Encapsulated and hollow closed-cage structures of WS_2 and MoS_2 prepared by laser ablation at 450-1050℃, Chem. Phy. Lett., 2001, 340(3-4), 242
    [61] Chhowalla M, Amaratunga A J. Thin film of fullerene-like MoS_2 nanoparticles with ultra-low friction and wear, Nature, 2000, 407(6801), 164
    [62] Parilla P A, Dillon A C, Jones K M, et al. The first true inorganic fullerenes. Nature, 1999, 397(6715), 114
    [63] Hu J J, Bultman J E, and Zabinski J S. Inorganic fullerene-like nanoparticles produced by arc discharge in water with potential lubricating ability. Tribol. Lett., 2004, 17(3), 543
    [64] Nath M,Govindaraj A, Rao C N R. Simple synthesis of MoS_2 and WS_2 nanotubes. Adv. Mater., 2001, 13(4), 283
    [65] 郑遗凡,宋旭春,刘波,等.嵌套球形层状封闭结构纳米二硫化钨的合成与机理探讨,无机材料学报, 2004,19(3),653
    [66] 宋旭春,徐铸德,陈卫祥,等.无机类富勒烯 MoS_2 纳米材料的制备与表征.化学物理学报,2004,17(5),629
    [67]Riki Harpeness, Aharon Gedanken, A. M. Weiss and M. A. Slifkin, Microwave assisted synthesis of nanosized MoSe2, J. Mater. Chem. 2003, 13, 2603
    [68] Rapoport L, Billk Y, Feldman Y, et al. Hollow nanoparticles of WS_2 as potential solid-state lubricants, Nature, 1997, 387(6635), 791
    [69] Rapoport L, Nepomnyashchy O, Lapsker I, et al. Behavior of fullerene-like WS_2 nanoparticles under severe contact conditions, Wear, 2005,259 (1-6), 703
    [70] Joly-Pottuz L,Dassenoy F, Belin M, et al.Ultralow-friction and wear properties of IF-WS_2 under boundary lubrication, Tribol. Lett. 2005, 18(4), 477
    [71] Rapoport L, Fleischer N, and Tenne R. Fullerene-like WS_2 Nanoparticles Superior Lubricants for Harsh Conditions. Adv. Mater., 2003,15(7-8), 651
    [72] Rapoport L, Leshchinsky V, Lapsker I, et al. Tribological properties of WS_2 nanoparticles under mixed lubrication. Wear, 2003. 255(7-12), 785
    [73] Rapoport L, Leshchinsky V, Lvovsky M, et al. Load bearing capacity of bronze, iron and iron–nickel powder composites containing fullerene-like WS_2 nanoparticles, Tribol. Int., 2002, 35(1), 47
    [74] Rapoport L, Leshchinsky V, Lvovsky M, et al. Superior tribological properties of powder materials with solid lubricant nanoparticles, Wear, 2003, 255, 794
    [75] Rapoport L, Lvovsky M, Lapsker I, et al. Slow release of fullerene-like WS_2nanoparticles as a superior solid lubrication mechanism in composite matrices, Adv. Eng.Mater., 2001, 3(1-2), 71
    [76] Rapoport L, Lvovsky M, Lapsker I, et al. Slow Release of Fullerene-like WS_2 Nanoparticles from Fe-Ni Graphite Matrix:A Self-Lubricating Nanocomposite, Nano Lett., 2001, 1(3), 137
    [77] Rapoport L, Nepomnyashchy O, Verdyan A,et al. Polymer nanocomposites with fullerene-like solid lubricant, Avd. Eng. Mater., 2004, 6(1-2), 44
    [78] Rapoport L, Leshchinsky V, Lvovsky M, et al. Friction and wear of powdered composites impregnated with WS_2 inorganic fullerene-like nanoparticles. Wear, 2002, 252(5-6), 518
    [79] Watanabe S, Noshiro J, Miyake S. Tribological characteristics of WS_2/MoS_2 solid lubricating multilayer films, Surf. Coat. Tech., 2004, 183(2-3), 347
    [80] Wingkei Ho, Jimmy C. Yu, Jun Lin, Jiaguo Yu, and Puishan Li,,Preparation and Photocatalytic Behavior of MoS_2 and WS_2 Nanocluster Sensitized TiO2, Langmuir 2004, 20, 5865
    [81] Chen J, Li S L, Xu Q, et al. Synthesis of open-ended MoS_2 nanotubes and the application as the catalyst of methanation, Chem. Commun., 2002, 2(16), 1722
    [82] Zuttel A. Hydrogen storage methods, Naturwissenschaften, 2004, 91,157
    [83] Chen J, Kuriyama N, Yuan H, et al. Electrochemical Hydrogen Storage in MoS_2 Nanotubes, J.Am.Chem.Soc., 2001, 123 (47), 11813
    [84] Chen J, Li S L, Tao Z L. Novel hydrogen storage properties of MoS_2 nanotubes, J. Alloy Compd., 2003, 356-357, 413
    [85] Chen J, Tao Z L, Li S L. Lithium intercalation in open-ended TiS_2 nanotubes, Angew. Chem., Int. Ed., 2003, 42(19), 2147
    [86] Rothschild A, Cohen S R, and Tenne R. WS_2 nanotubes as tips in scanning probe microscopy. Appl. Phys. Lett., 1999, 75(25), 4025
    [87] Homyonfer M, Alperson B, Rosenberg Y, et al. Intercalation of inorganic fullerene-like structures yields photosensitive films and new tips for scanning probe microscopy. J. Am. Chem. Soc., 1997, 119 (11), 2693
    [88] E. Benavente, M. A. Santa Ana, G. González, Electrical conductivity of MoS_2 based organic–inorganic nanocomposites, phys. stat. sol. 2004,241(10), 2444
    [89] Gotthard Seifert, Humberto Terrones, Mauricio Terrones et al. On the electronic structure of WS_2 nanotubes, Solid State Comm. 2000,114, 245 [90 ]Seifert G,Terrones H,Terrones M,et al. Novel NbS_2 metallic nanotubes, Solid State Comm., 2000, 115(2), 635
    [91] Zak A, Feldman Y, Lakhovitskaya V, et al. Alkali metal intercalated fullerene-like MS_2 (M=W , Mo) nanoparticles and their properties. J .Am .Chem .Soc., 2002, 124(17), 4747
    [92] Nath M, Kar S, Raychaudhuri A K, et al. Superconducting NbSe_2 nanostructures. Chem. Phys. Lett., 2003, 368(5-6), 690
    [93] Hong S Y, Popovitz-Biro R, Prior Y, et al. Synthesis of SnS_2/SnS Fullerene-like Nanoparticles: A Superlattice with Polyhedral Shape, J. Am. Chem. Soc., 2003, 125(34), 10470
    [94] Nath M and Rao C N R. Nanotubes of Group 4 Metal Disulfides. Angew. Chem., Int. Ed., 2002, 41(18), 3451
    [95] Brorson M, Hansen T W and Jacobsen C J H. Rhenium (IV) Sulfide Nanotubes, J. Am. Chem. Soc., 2002, 124(39), 11582
    [96] Coleman K S, Sloan J, Hanson N A, et al. The Formation of ReS_2 InorganicFullerene-like Structures Containing Re4 Parallelogram Units and Metal-Metal Bonds, J. Am. Chem. Soc., 2002, 124(39), 11580
    [97] Margolin A, Popovitz-Biro R, Albu-Yaron A, et al. Fullerene-like nanoparticles of titanium disulfide. Curr. Nanosci., 2005, 1 (3), 253
    [98] Chen J, Li S L, Tao Z L, et al. Low-temperature synthesis of titanium disulfide nanotubes, Chem. Commun., 2003, 3(8), 980
    [99] Schuffenhauer C, Parkinson B A, Jin-Phillipp N Y, et al. Synthesis of fullerene-like tantalum disulfide nanoparticles by a gas-phase reaction and laser ablation, Small, 2005, 1 (11), 1100
    [100] Brooks D J, Douthwaite1 R E, Brydson R, et al. Synthesis of inorganic fullerene (MS_2, M = Zr, Hf and W) phases using H2S and N2/H2 microwave-induced plasmas, Nano., 2006, 17(5),1245
    [101] Kasuga T, Hiramatsu M, Hoson A, et al. Formation of titanium oxide nanotube, Langmuir, 1998, 14(12), 3160
    [102] Niederberger M, Muhr H J, Krumeich F, et al. Low-cost synthesis of vanadium oxide nanotubes via two novel non-alkoxide routes, Chem. Mater., 2000, 12(7), 1995
    [103] Albu-Yaron A, Arad T, Popovitz-Biro R, et al. Preparation and structural characterization of stable Cs2O closed-cage structures, Angew. Chem. Int. Ed., 2005, 44(27), 4169
    [104] Avivi S, Mastai Y and Gedanken A. A New Fullerene-like Inorganic Compound Fabricated by the Sonolysis of an Aqueous Solution of TlCl3. J. Am. Chem. Soc., 2000, 122(18), 4331
    [105] Hacohen Y R, Grunbaum E, Tenne R. Cage structures and nanotubes ofNiCl2, Nature, 1998, 395(6700), 336
    [106] Popovitz-Biro R, Sallacan N, and Tenne R. CdI2 nanoparticles with closed-cage (fullerene-like) structures, J. Mater. Chem., 2003, 13(7), 1631
    [107] Yang B, Li C, Hu H, et al. A room-temperature route to bismuth nanotube arrays, Eur. J. Inorg. Chem., 2003, 2003(20), 3699
    [108] Mayers B, Xia Y. Formation of tellurium nanotubes through concentration depletion at the surfaces of seeds, Adv. Mater., 2002, 14(4), 279
    [109] Chopra N G, Luyken R J, Cherry K, et al. Boron nitride nanotubes, Science, 1995, 269(5226), 966
    [110] Zhang M, Bando Y, Wada K. Silicon dioxide nanotubes prepared by anodic alumina as templates, J. Mater. Res., 2000, 15(1), 387
    [111] Zhang Y J, Liu J, He R R, et al. Synthesis of alumina nanotubes using carbon nanotubes as templates, Chem. Phys. Lett., 2002, 360(5-6), 579
    [112] Chen Q, Zhou W, Du G H, et al. Trititanate Nanotubes Made via a Single Alkali Treatment. Adv. Mater., 2002, 14 (17),1208
    [113] Saupe G B, Waraksa C C, Kim H N, et al. Nanoscale Tubules Formed by Exfoliation of Potassium Hexaniobate, Chem. Mater., 2000,12 (6), 1556
    [114] Christop Schuffenhauer, Gerhard Wildermuth, Ju¨rgen Felsche and Reshef Tenne,How stable are inorganic fullerene-like particles: Thermal analysis (STA) of inorganic fullerene-like NbS_2, MoS_2, and WS_2 in oxidizing and inert atmospheres in comparison with the bulk materialw,Phys .Chem. Chem. Phys . 2004, 6, 3991
    [115] L. Rapoport, V. Leshchinsky, Yu.Volovik , M. Lvovsky , et al. Modification of contact surfaces by fullerene-like solid lubricant nanoparticles,Surf. Coat.Tech. 2003, 163/164, 405.
    [116] Haibin Yang, Shikai Liu, Jixue Li, et al.Synthesis of inorganic fullerene likeWS_2 nanoparticles and their lubricating performance, NaNo. 2006, 17, 1512.
    [117] Joly-Pottuz L., Martin J.M., Dassenoy F., et al. Pressure-induced exfoliation of inorganic fullerene-like WS_2 particles in a Hertzian contact, J. Appl. Phys., 2006, 99, 023524
    [118] Rafailov P.M., Thomsen C., Gartsman K., et al. Orientation dependence of the polarizability of an individual WS_2 nanotube by resonant Raman spectroscopy, Phys. Rev. B, 2005, 72, 205436
    [119] Selvi E., Ma Y., Aksoy R., et al. High pressure X-ray diffraction study of tungsten disulfide, J. Phys. Chem. S., 2006, 67, 2183
    [120] Sekine T., Nakashizu T., Toyoda K., et al.,Raman scattering in layered compound 2H-WS_2, Solid State Commun., 1980, 35, 371
    [121] Sourisseau C., Cruege F., ,Fouassier M., Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS_2 , Chem. Phys., 1991, 150, 281
    [122] Chung J-W., Dai Z.R., Adib K., Raman scattering and high resolution electron microscopy studies of metal-organic chemical vapor deposition tungsten disulfide thin films, Thin Solid Film, 1998, 335, 106.
    [123] T. J. Wieting and J.L. Verble, Infrared and Raman Studies of Long-Wavelength Optical Phonons in Hexagonal MoS_2,Phys. Rev. B, 1971, 3, 4286.
    [124] Th.Weber, J.C. Masers, and J. W. Niemantsverdriet, Structure of Amorphous MoS3, J. Phys. Chem. 1995, 99, 9194.
    [125] F. Maugé, J. Lamotte, N.S. Nesterenko, et al. FT-IR study of surface properties of unsupported MoS_2, Catalysis Today, 2001,70, 271.
    [126] A.A. Tsyganenko, F. Can, A. Travert, F. Maugé, FTIR study of unsupported molybdenum sulfide—in situ synthesis and surface properties characterization, Applied Catalysis, 2004, 268, 189.
    [127] Th.Weber, J.C.Muijsers, J.H.M.C. van Wolput, et al. Basic Reaction Steps i the Sulfidation of Crystalline MoO3 to MoS_2, As Studied by X-ray Photoelectron and Infrared Emission Spectronscopy, J. Phys. Chem. 1996,100,14144.
    [128] G. L. Frey, S. Elani, M. Homyonfer, Y. Feldman, and R. Tenne, Optical absorption spectra of inorganic fullerenelike MS_2 .(M=W,Mo)Phys. Rev. B, 1998, 57, 6666.
    [129] R. Coehoorn, C. Hass, and R. A. de Groot, Electronic structure of MoSe_2, MoS_2, and WSe2. II. The nature of the optical band gaps, Phys. Rev. B, 1987, 35, 6203.
    [130] A. R. Beal, H P Hughes, Kramers-Krǒnig analysis of the reflectivity spectra of 2H-MoS_2, 2H-MoSe2, and 2H-MoTe2, J. Phys., 1979, C12, 881.
    [131] J. V. Acrivos, W. Y. Liang, J. A. Wilson, Optical studies of metal semiconductor transmutations produced by intercalation J.Phys. 1971, C4, L18.
    [132] Calabrese, G. S.; Buchanan, R. M.; Wrighton, M. S. Electrochemical behavior of a surface-confined naphthoquinone derivative. Electrochemicaland photoelectrochemical reduction of oxygen to hydrogen peroxide at derivatized electrodes J. Am. Chem.Soc. 1982, 104, 5786.
    [133] Cabrera, C. R.; Abruna, H. D., Synthesis and Photoelectrochemistry of Polycrystalline Thin Films of p-WSe2, p-WS_2, and p-MoSe2, J. Electrochem. Soc. 1988, 135, 1436.
    [134] Simon, R. A.; Ricco, A. J.; Harrison, D. J.; Wrighton, M. S. , Improvement of the Photoelectrochemical Oxidation of Halides by Piatinization of Metal Dichaicogenlde Photoanodes J.Phys. Chem. 1983, 87, 4446.
    [135] Calabrese, G. S.; Buchanan, R. M.; Wrighton, M. S. Mediated electrochemical reduction of oxygen to hydrogen peroxide via a surface-confined naphthoquinone reagent and the mediated electrochemical reduction of a naphthoquinone redox reagent anchored to high surface area oxides J. Am. Chem.Soc. 1983, 105, 5594.
    [136] C. Ballif, M. Regula, F. Lévy, et al. Optical and electrical properties of semiconductingWS_2 thin flms: From macroscopic to local probe measurements, Solar Energy Materials & Solar Cells, 1999, 57, 189.
    [134] S. C. RAY, Structure and optical properties of molybdenum disulphide (MoS_2) thin film deposited by the dip technique, J. Mater. Sci. Letters, 2000, 19, 803.
    [137] Baglio, J. A.; Calabrese, G. S.; Kamieniecki, E.; et al. Characterization of n-Type Semiconducting Tungsten Disulfide Photoanodes in Aqueous and Nonaqueous Electrolyte Solutions, J. Electrochem. Soc. 1982, 129, 1461.
    [138] Baglio, J. A.; Calabrese, G. S.; Harrison, D. J.; Kamieniecki, E.;Ricco, A. J.; Wrighton, M. S.; Zoski, G. D. Electrochemical characterization of p-typesemiconducting tungsten disulfide photocathodes: efficient photoreduction processes at semiconductor/liquid electrolyte interfaces J. Am. Chem. Soc. 1983, 105,2246.
    [139] Wingkei Ho, Jimmy C. Yu, Jun Lin, et al. Preparation and Photocatalytic Behavior of MoS_2 and WS_2 Nanocluster Sensitized TiO2, Langmuir 2004, 20, 5865.
    [140] Markus Thomalla, Helmut Tributsch, Photosensitization of Nanostructured TiO2 with WS_2 Quantum Sheets, J. Phys. Chem. B, 2006, 110, 12167.
    [141] T. R. Thurston and J. P. Wilcoxon, Photooxidation of Organic Chemicals Catalyzed by Nanoscale MoS_2, J. Phys. Chem. B 1999, 103, 11.
    [142] S. Morandia, G. Ghiottia, A. Chiorinoa, E. Comini, FT-IR and UV-Vis-NIR characterisation of pure and mixed MoO3 and WO3 thin films, Thin Solid Films 2005,490, 74.
    [143] L. Rapoport, M. Homyonfer, J. Sloan, et al. Inorganic fullerene-like material as additives to lubricants: structure–function relationship, Wear, 1999, 975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700