用户名: 密码: 验证码:
电催化材料制备、表征及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电催化反应是电化学研究重要课题,当电极反应中存在催化剂时,反应活化能降低、反应速率提高。改善电极材料是实现电催化过程的重要手段。本文以寻找高活性电催化材料为目标,比较系统地就电催化析氢材料、甲醇电催化氧化及修饰碳糊电极进行了研究。
     基于复合电沉积技术将La_2O_3掺杂到钛基镍钴合金镀层中,采用扫描电子显微镜及X-射线衍射表征复合材料的形貌和微观结构。采用稳态极化曲线、Tafel曲线及电化学阻抗谱评价复合材料析氢性能。结果表明,掺杂La_2O_3能提高复合镀层电极表面粗糙度及表面积,当电流密度为15.0mA·cm–2时,相对于镍-钴合金涂层电极,镍-钴-La_2O_3复合电极析氢电位正移178mV。镍-钴-La_2O_3复合电极是一种具有较高电催化析氢活性的材料。
     考察制备条件对甲醇电氧化催化剂粒径的影响,进而考察对电催化活性影响。采用浸渍还原法制备纳米结构Pt/C电催化剂,采用X-射线衍射、循环伏安法、交流阻抗法、计时电流法考察常见有机溶剂(乙醇、丙酮、异丙醇、正丁醇)对酸性溶液体系中甲醇氧化催化性能的影响。基于添加辅助催化剂的思路,将多孔沸石掺杂到Pt/C催化剂中,采用电化学方法评价修饰催化剂对甲醇氧化电催化性能。结果表明,掺入多孔沸石可提高催化剂对甲醇电催化氧化活性。
     以新型细菌纤维素纳米碳纤维用作碳糊电极碳材料,制得细菌纤维素碳糊电极,采用扫描电子显微镜、循环伏安法、交流阻抗法等方法表征所得碳糊电极的性能。结果表明,与传统电极相比,细菌纤维素碳糊电极在Fe(CN)_6~(3-/4-)氧化还原体系中的氧化还原峰峰电流更大,峰电位差更小,电荷传递电阻更小。基于此,采用循环伏安扫描在细菌纤维素电极表面自组装磷钼酸,制得磷钼酸修饰细菌纤维素碳糊电极,研究修饰电极的电化学行为,发现电极在硫酸与硫酸钠混合溶液中具有较好的稳定性,同时,对亚硝酸盐具有很好的电催化还原作用。
Electrocatalytic reactions are important aspects of electrochemical investigation. When the electrode reactions occurred in the presence of electrocatalyts, the activation ergegy would be decreased and the reaction rate would be enhanced. In order to find materials with high electrocatalytic activity, the hydrogen evolution electrocatalytic materials, electrocatalytic oxidation to methanol and modified carbon paste electrode were studied.
     Firstly, La_2O_3 was successfully doped into nickel-cobalt alloy coating on Ti substrate by electrodeposition technology. The surface morphology and microstructure were examined by SEM and XRD, respectively, and the hydrogen evolution property was evaluated by steady-state polarization, Tafel plot and electrochemical impedance spectroscopy. It was found that the incorporated La_2O_3 particles resulted in the improvement of roughness and surface area of the composite coating electrode, and hydrogen evolution potential of nickel-cobalt-La_2O_3 composite coating electrode moved positively around 178 mV at 15.0 mA cm–2 compared with that of nickel-cobalt alloy deposited coating electrode. The proposed materials are promising hydrogen evolution electrocatalytic materials.
     Nanostructured Pt/C catalyst for methanol electrooxidation was prepared by impregnation method in different water-organic solvents (ethanol, acetone, isopropanol, n-butanol). It was found that the size of Pt particle was varied with water-organic solvents demonstrated by XRD. Its electrocatalytic activity to methanol was evaluated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. Due to that the electroactivity of catalyst could be enhanced by adding assistant electrocatalysts, the 4A-zeolite as assistant electrocatalyst was doped into Pt/C catalyst by simple mixing. The corresponding electrocatalytic activity for electrooxidation of methanol was evaluated in alkaline medium by several electrochemical techniques, including cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. It was shown that the electrocatalytic activity of the 4A-zeolite modified Pt/C catalyst was much better than that of the Pt/C catalyst. The increased electrocatalytic activity could be attributed to that the advanced properties of the micrometer 4A-zeolite with nano-porosity could significantly increase the effective electrode surface and facilitate the diffusion of analytes into the film of electrode surface.
     Carbonized bacterial cellulose based carbon paste electrode (BCPE) was fabricated with nano-dimension carbonized bacterial cellulose (BC) fiber and studied by SEM, cyclic voltammetry and electrochemical impedance spectroscopy. Compared with traditional carbon paste electrode (CPE), a faster electron-transfer kinetics process happened on BCPE in wide scan rate ranges. Moreover, PMo12 was successfully assembled on BCPE surface by cyclic voltametric scanning method. Good stability and catalytic activity to the reduction of nitrite were observed on PMo12/BCPE. This novel carbonaceous materials is prospected to be used in electrocatalysis and other fields due to its mentioned advantages.
引文
[1]杨辉,卢文庆.应用电化学[M].北京:科学出版社,2001,43-80.
    [2] Machado S. A. S., Avaca L. A.. The gydrogen evolution reaction on nickel surfaces stabilized by H-adsorption[J]. Electrochim. Acta, 1994, 39(10): 1385-1391.
    [3] Elam M., Conway B. E.. State of overpotential-deposited H species at electroplated platinum surface in comparison with bright platinum[J]. J. Appl. Electrochem., 1987, 17(5): 1002-1020.
    [4]查全性.电极过程动力学导论[M].北京:科学出版社,2002.
    [5] Jaki M. M.. Electrocatalysis of hydrogen evolution in the light of the brewer-engel theory for bonding in metals and intermetallic phases[J]. Electrochim. Acta, 1984, 29(11): 1539-1550.
    [6]马强,巴俊洲,蒋亚雄,李军,吴文宏.镍合金用作碱性电解水析氢阴极的研究综述[J].舰船防化,2007,(2):6-14.
    [7]邹群,楼台芳,王银平,吴俊,黄清安.析氢催化电极的研究现状[J].材料保护,2002,35(3):11-14.
    [8] Brown D. E., Mahmood M. N., Man M. C. M., Turner A. K.. Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions[J]. Electrochim. Acta, 1984, 29(11): 1551-1556.
    [9] Alonso-Vante N., Schubert B., Tributsch H.. Transition metal cluster materials for multi-electron transfer catalysis[J]. Mater. Chem. Phys., 1989, 22(3-4): 281-307.
    [10] Lohrberg K., Kohl P.. Preparation and use of Raney-Ni activated cathodes for large scale hydrogen production[J]. Electrochim. Acta, 1984, 29(11): 1557-1561.
    [11] Ananth M. V., Parthasaradhy N. V.. Hydrogen evolution characteristics of electrodeposited Ni-Zn-Fe coatings in alkaline solutions[J]. Int. J. Hydrogen Energy, 1997, 22(8): 747-751.
    [12] Choquette Y., Brossard L., Lasia A., Ménard H.. Investigation ofhydrogen evolution on Raney-Nickel composite-coated electrodes[J]. Electrochim. Acta, 1990, 35(8): 1251-1256.
    [13] Choquette Y., Ménard H., Brossard L.. Hydrogen discharge on a Raney nickel composite-coated electrode[J]. Int. J. Hydrogen Energy, 1989, 14(9): 637-642.
    [14]韩庆,魏绪均.电沉积Ni-S合金析氢阴极的研究[J].东北大学学报(自然科学版),2000,21(5):539-542.
    [15] Gonzalez E. R., Avaca L. A., Tremiliosi-Filho G., Machado S. A. S., Ferreira. M.. Hydrogen evolution reaction on Ni-S electrodes in alkaline solutions[J]. Int. J. Hydrogen Energy, 1994, 19(1): 17-21.
    [16]杜敏,高荣杰,魏绪钧.电沉积Ni-S合金阴极析氢反应[J].电源技术,2001,25(3):223-224,234.
    [17]马强,巴俊洲,蒋亚雄,李军,吴文宏.电沉积Ni-S合金析氢阴极的初步摸索研究[J].舰船防化,2008,(1):1-6.
    [18] Shervedani K. R., Lasia A.. Studies of the hydrogen evolution reaction on Ni-P electrodes[J]. J. Electrochem. Soc., 1997, 144(2): 511-519.
    [19] He H. W., Liu H. J., Liu F., Zhou K. C.. Distribution of sulphur and electrochemical properties of nickel sulphur coatings electrodeposited on the nickel foam as hydrogen evolution reaction cathodes[J]. Mater. Lett., 2005, 59(29-30): 3968-3972.
    [20] Han Q., Liu K. R., Chen J. S., Wei X. J.. Hydrogen evolution reaction on amorphous Ni-S-Co alloy in alkaline medium[J]. Int. J. Hydrogen Energy, 2003, 28(12):1345-1352.
    [21] Lian K., Kirk D. W., Thorpe S. J.. Electrocatalytic behaviour of Ni-base amorphous alloys[J]. Electrochim. Acta, 1991, 36(3-4): 537-545.
    [22] Kirk D. W., Thorpe S. J., Suzuki H.. Ni-base amorphous alloys as electrocatalysts for alkaline water electrolysis[J]. Int. J. Hydrogen Energy, 1997, 22(5): 493-500.
    [23]李凝,高诚辉.非晶态合金催化析氢阴极材料的研究进展[J].材料保护,2008,41(2):47-52.
    [24]周科朝,袁铁锤,李瑞迪,何捍卫,黄冠.泡沫镍基Ni-S-Co涂层电极在碱性介质中的电催化析氢性能[J].中南大学学报(自然科学版),2007,38(2):186-189.
    [25]刘善淑,成旦红.电沉积Ni-S-Zr合金电极析氢电催化性能的研究[J].稀有金属,2004,28(4):670-673.
    [26]单忠强,刘彦杰,田建华,吴锋,周振芳,李军.非晶态Ni-S-Mn三元合金电极析氢行为[J].2006,应用化学,23(6):1166-1169.
    [27] Shan Z. Q., Liu Y. J., Chen Z., Warrender G., Tian J. H.. Amorphous Ni-S-Mn alloy as hydrogen evolution reaction cathode in alkaline medium[J]. Int. J. Hydrogen Energy, 2008, 33(1): 28-33.
    [28]刘松琴,郑秋容,张景尧,张革新.Ni-Co-Mo镀层的析氢性能研究[J].无锡轻工大学学报:食品与生物技术,1998,17(2):34-37.
    [29]邹勇进,肖作安,费锡明.电沉积Co-Ni-W合金电极在碱性溶液中的析氢电催化活性[J].稀有金属,2004,28(5):954-957.
    [30]王龙彪,黄清安,陈永言,屈松生.电沉积镍一钻一磷合金析氢反应电催化行为的研究[J].电镀与涂饰,1998,17(4):1-3,11.
    [31] Arul Raj I., Venkatesan V. K.. Characterization of nickel-molybdenum and nickel-molybdenum-iron alloy coatings as cathodes for alkaline water electrolysers[J]. Int. J. Hydrogen Energy, 1988, 13(4): 215-223.
    [32]胡伟康,张允什,宋德瑛,江筠.非晶态Ni-Mo-Fe合金作电解水析氢反应电极[J].功能材料,1995,26(5):456-458.
    [33]程鹏里,石秋芝,杨长春,武振国.析氢电催化剂Ni-Co-Pb合金的研究[J].河南化工,1996,(6):19-20.
    [34]李聪,许洪胤,杜朝军,郑盛会.电沉积Ni-Mo-P合金及其析氢电催化性能的研究[J].电镀与环保,2005,25(1):10-11.
    [35]李爱昌,姚素蔽,赵水林,郭鹤桐.电沉积Ni-W-P合金催化析氢特性研究[J].表面技术,1995,24(3):8-10.
    [36]王龙彪,吴俊,黄清安,陈永言.电沉积Ni-W-P合金上析氢行为的研究.材料保护,2000,33(2):1-2.
    [37]程鹏里,石秋芝,杨长春.镍-钼-铊电极的析氢性能[J].郑州大学学报(自然科学版),1996,28(4):65-68.
    [38]吴俊,黄清安,喻敬贤.电沉积Ni-La-P合金上析氢的研究[J].武汉水利电力大学学报,1999,32(5):92-95.
    [39]刘淑兰,覃奇贤,成旦红,郭鹤桐.电沉积Ni-La合金上的阴极析氢行为[J].应用化学,1995,12(5):115-156.
    [40]汪继红,费锡明,龙光斗,李伟.稀土铈对镍一钴合金电极的析氢催化性能的影响[J].材料保护,2003,36(6):12-13.
    [41]邵光杰,秦秀娟,于升学.稀土对电沉积Ni-P合金镀层显微组织的影响[J].中国有色金属学报,2000,10:239-241.
    [42]刘萍,唐致远,宋全生.铈对Ni-Mo合金电极析氢性能的影响[J].电镀与精饰,2007,29(3):10-12.
    [43]汪继红,费锡明,李伟.稀土铈对镍-钴-磷合金电极的析氢催化性能的影响[J].材料保护,2004,37(1):9-10.
    [44] Borodzi ski J. J., Lasia A.. Study of hydrogen evolution on selected PTFE-bonded porous electrodes[J]. Int. J. Hydrogen Energy, 1993, 18(12): 985-994.
    [45]姚素薇,李贺,张卫国,王宏智,贲宇恒.AC/Ni-Co复合电极材料的制备及其催化析氢性能[J].复合材料学报,2006,23(3):77-81.
    [46] Vázquez-Gómez L., Cattarin S., Guerriero P., Musiani M.. Preparation and electrochemical characterization of Ni + RuO2 composite cathodes of large effective area[J]. Electrochim. Acta, 2007, 52(28): 8055-8063.
    [47] Bocutti R., Saeki M. J., Florentino A. O., Oliveira C. L. F., gelo A. C. D.. The hydrogen evolution reaction on codeposited Ni–hydrogen storage intermetallic particles in alkaline medium [J]. Int. J. Hydrogen Energy, 2000, 25(11): 1051-1058.
    [48] Hall D., Shepard Jr V.. AB5-catalyzed hydrogen evolution cathodes[J]. Int. J. Hydrogen Energy, 1984, 9(12): 1005-1009.
    [49] Chiaki I., Masashi T., Hiroshi I.. Electrochemical properties of Ni/(Ni+RuO2) active cathodes for hydrogen evolution in chlor-alkali electrolysis[J]. Electrochim. Acta, 1995, 40(8): 977-982.
    [50]武刚,李宁,周德瑞.Ni-Co-LaNi5复合电极材料在碱性介质中的电催化析氢性能[J].无机化学学报,2003,19(7):739-743.
    [51]宋全生,唐致远,郭鹤桐.电沉积镍-储氢合金复合电极的析氢电催化性能[J].天津大学学报,2005,38(6):508-512.
    [52] Jukic A., Metiko-Hukovic M.. The hydrogen evolution reaction on pure and polypyrrole-coated GdNi4Al electrodes[J]. Electrochim. Acta, 2003. 48(25-26): 3929-3937.
    [53] Ione M. F., Oliveira D., Jean-Claude M., Vlachopoulos N.. Poly(pyrrole-2,2'-bipyridyl rhodium(III) complexes) modified electrodes:molecular materials for hydrogen evolution and electrocatalytic hydrogenation[J]. J. Electroanal. Chem., 1990, 291(1-2): 243-249.
    [54] Abrantes L. M., Correia J. P.. Polypyrrole incorporating electroless nicke[J]. Electrochim. Acta, 2000, 45(25-26): 4179-4185.
    [55] Damian A., Omanovic S.. Ni and NiMo hydrogen evolution electrocatalysts electrodeposited in a polyaniline matrix[J]. J. Power Sources, 2006, 158(1): 464-476.
    [56] Navarro-Flores E., Omanovic S.. Hydrogen evolution on nickel incorporated in three-dimensional conducting polymer layers[J]. J. Mol. Catal. A: Chem., 2005, 242(1-2): 182-194.
    [57] Niedba?a J., Budniok A., L?giewka E.. Hydrogen evolution on the polyethylene-modified Ni–Mo composite layers[J]. Thin Solid Films, 2008, 516(18): 6191-6196.
    [58] Jafarian M., Azizi O., Gobalb F., Mahjani M. G.. Kinetics and electrocatalytic behavior of nanocrystalline CoNiFe alloy in hydrogen evolution reaction[J]. Int. J. Hydrogen Energy, 2007, 32(12): 1686-1693.
    [59] She P. L., Hu X. G., Chen H. L.. Progress in portable direct methanol fuel cell[J]. Batt. Bimonthly, 2004, 34(30): 215-216.
    [60] Parson R., VanderNoot T.. The oxidation of small organic molecules: a survey of recent fuel cell related research[J]. J. Electroanal. Chem., 1988, 257(1-2): 9-45.
    [61] Iwasita T, Nart F. C.. Identification of methanol adsorbates on platinum on In-situ FT-IR investigation[J]. J. Electroanal. Chem., 1991, 317(1-2): 291-299.
    [62] Ishikawa Y., Liao M. S., Cabrera R. C.. Oxidation of methanol on platinum, ruthenium and mixed Pt-M metals(M=Ru,Sn):a theoretical study [J]. Surf. Sci., 2000, 463(1): 66-80.
    [63] Shukla A. K., Ravikumar M. K., Arico A. S.. Methanol electrooxidation on carbon supported Pt-WO3-x electrodes in sulphric acid electrolyte[J]. J. Appl. Electrochem., 1995, 25(6): 528-532
    [64] Wang Y., Fachini E. R., Cruz G.. Effect of surface composition of electrochemically codeposited platinum/molybdenum oxide on methanol oxidation[J]. J. Electrochem. Soc., 2001, 148(3): 222-226.
    [65] Janssen M. M. P., Moolhuysen J.. Binary systems of platinum and a second metal as oxidation catalysts for methanol fuel cells[J]. Electrochim. Acta, 1976, 21(11): 869-878.
    [66] Watanabe M.,Vchida M., Motoo S.. Preparation of highly dispersed Pt-Ru alloy clusters and the activity for the electrooxidation of methanol[J]. J. Electroanal. Chem., 1987, 229(1-2): 395-406.
    [67] Mihut C., Descorme C., Duprez D., Amiridis M. D.. Kinetic and spectroscopic characterization of cluster-derived supported Pt-Au catalysts[J]. J. Catal., 2002, 212(2): 125-135.
    [68] Singh R. N., Singh A., Anindita. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part II: methanol electrooxidation in 1 M KOH[J]. Int. J. Hydrogen Energy, 2009, 34(4): 2052-2057.
    [69] Singh R. N., Singh A., Anindita. Electrocatalytic activities of binary and ternary composite electrodes of Pd, nanocarbon and Ni for electro-oxidation of methanol in alkaline medium[J]. J Solid State Electrochem., 2009, 13(8): 1259-1265.
    [70] Arbizzani C., Beninati S., Soavi F., Varzi A., Mastragostino M.. Supported PtRu on mesoporous carbons for direct methanol fuel cells[J]. J. Power Sources, 2008, 185(2): 615–620.
    [71] Frelink T., Visscher W., Van Veen J. A. R.. The effect of Sn on Pt/C catalyst for the methanol electro-oxidation[J]. Electrochim. Acta, 1994, 39(11-12): 1871-1875.
    [72] Jeon M. K., Cooper J. S., McGinn P. J.. Investigation of PtCoCr/C catalysts for methanol electro-oxidation identified by a thin film combinatorial method[J]. J. Power Sources, 2009, 192(2): 391-395.
    [73] Lee K. R., Jeon M. K., Woo S. I.. Composition optimization of PtRuM/C (M = Fe and Mo) catalysts for methanol electro-oxidation via combinatorial method[J]. Appl. Catal. B: Environ., 2009, 91(1-2): 428-433.
    [74] Guterman V. E., Belenov S. V., Dymnikova O. V., Lastovina T. A., Konstantinova Ya. B., Prutsakova N. V.. Influence of water-organic solvent composition on composition and structure of Pt/C and PtxNi/Celectrocatalysts in borohydride synthesis[J]. Inorg. Mater., 2009, 45(5): 498-505.
    [75] Wang Z. B., Zuo P. J., Yin G. P.. Effect of W on activity of Pt-Ru/C catalyst for methanol electrooxidation in acidic medium[J]. J. Alloys Compd., 2009, 479(1-2): 395-400.
    [76] Neto A. O., Watanabe A. Y., Brandalise M., Tusi M. M., Rodrigues R. M. de S., Linardi M., SpinacéE. V., C. Forbicini A. L. G. O.. Preparation and characterization of Pt–Rare Earth/C electrocatalysts using analcohol reduction process for methanol electro-oxidation[J]. J. Alloys Compd., 2009, 476(1-2): 288-291.
    [77] Lima A., Coutanceau C., Leger J. M., Lamy C.. Investigation of ternary catalysts for methanol electrooxidation[J]. J. Appl. Electrochem., 2001, 31(4): 379-386.
    [78] Chu D., Jiang R. Z.. Novel electrocatalysts for direct methanol fuel cells[J]. Soild State Ionics, 2002, 148(3-4): 591-599.
    [79] Han D. M., Guo Z. P., Zhao Z. W., Zeng R., Meng Y. Z., Shu D., Liu H. K.. Polyoxometallate-stabilized Pt-Ru catalysts on multiwalled carbon nanotubes: influence of preparation conditions on the performance of direct methanol fuel cells[J]. J. Power Sources, 2008, 184(2): 361-369.
    [80] Tsiouvaras N., Martínez-Huerta M. V., Moliner R., Lázaro M. J., Rodríguez J. L., Pastor E., Pena M. A., Fierro J. L. G.. CO tolerant PtRu–MoOx nanoparticles supported on carbon nanofibers for direct methanol fuel cells[J]. J. Power Sources, 2009, 186(2): 299-304.
    [81] Jusys Z., Schmidt T. J., Dubau L., Lasch K., Jrissen L., Garche J., Behm R. J.. Activity of PtRuMeOx(Me=W, Mo or V)catalysts towards methanol oxidation and their characterization[J]. J. Power Sources, 2002, 105(2):297-304.
    [82] Zhou Y., Gao Y. F., Liu Y. C., Liu J. R.. High efficiency Pt-CeO2/carbon nanotubes hybrid composite as an a node electrocatalyst for direct methanol fuel cells[J]. J. Power Sources, 2010, 195(6): 1605-1609.
    [83] Pang H. L., Lu J. P., Chen J. H., Huang C. T., Liu B., Zhang X. H.. Preparation of SnO2-CNTs supported Pt catalysts and their electrocatalytic properties for ethanol oxidation[J]. Electrochim. Acta, 2009, 54(9): 2610-2615.
    [84] Justin P., Ranga R. G.. Enhanced activity of methanol electro-oxidation on Pt–V_2O_5/C catalysts[J]. Catal. Today, 2009, 141(1-2):138-143.
    [85] Maiyalagan T., Khan F. N.. Electrochemical oxidation of methanol on Pt/V2O5–C composite catalysts[J]. Catal. Commun., 2009, 10(5): 433-436.
    [86] Wang Z. Y., Chen G., Xia D. G., Zhang L. J.. Studies on the electrocatalytic properties of PtRu/C-TiO2 toward the oxidation of methanol[J]. J. Alloys Compd. 2008, 450(1-2): 148-151.
    [87] Guo X., Guo D. J., Qiu X. P., Chen L. Q., Zhu W. T.. Excellent dispersion and electrocatalytic properties of Pt nanoparticles supported on novel porous anatase TiO2 nanorods[J]. J. Power Sources, 2009, 194(1): 281-285.
    [88] Ye J. L., Liu J. G., Zou Z. G., Gu J., Yu T.. Preparation of Pt supported on WO3-C with enhanced catalytic activity by microwave-pyrolysis method[J]. J. Power Sources, 2009, 195(9): 2633-2637.
    [89] Balasubramanian A., Karthikeyan N., Giridhar V. V.. Synthesis and characterization of LaNiO3-based platinum catalyst for methanol oxidation[J]. J. Power Sources, 2008, 185(2): 670–675.
    [90] Song H. Q., Qiu X. P., Li F. S.. Promotion of carbon nanotube-supported Pt catalyst for methanol and ethanol electro-oxidation by ZrO2 in acidic media[J]. Appl. Catal. A: Gen., 2009, 364(1-2): 1-7.
    [91] Guo D. J., Qiu X. P., Zhu W. T., Chen L. Q.. Synthesis of sulfated ZrO2/MWCNT composites as new supports of Pt catalysts for direct methanol fuel cell application[J]. Appl. Catal. B: Environ., 2009, 89(3-4): 597-601.
    [92] Arico A. S., Poltarzewski Z., Kim H. Morana A., Giordano N., Antonucci V.. Investigation of a carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells[J]. J. Power Sourses, 1995, 55(2): 159-166.
    [93] Calvillo L. , Gangeri M., Perathoner S., Centi G., Moliner R., Lázaro M. J.. Effect of the support properties on the preparation and performance of platinum catalysts supported on carbon nanofibers[J]. J. Power Sources, 2009, 192(1): 144-150.
    [94] Yoo E., Okada T., Kizuka T., Nakamura J.. Effect of carbon substratematerials as a Pt–Ru catalyst support on the performance of direct methanol fuel cells[J]. J. Power Sources, 2008, 180(1): 221-226.
    [95] Dicks A. L.. The role of carbon in fuel cells[J]. J. Power Sources, 2006, 156(2): 128-141.
    [96] Hsieh C. T., Lin J. Y., Yang S. Y.. Carbon nanotubes embedded with PtRu nanoparticles as methanol fuel cell electrocatalysts[J]. Phys. E: Low-dimens. Syst. Nanostruct., 2009, 41(3):373-378.
    [97] Huang L. M., Wen T. C.. Platinum–ruthenium nanoparticles in poly(2,5-dimethoxyaniline)-poly (styrene sulfonic acid) via one-step synthesis route for methanol oxidation[J]. J. Power Sources, 2008, 182(1): 32-38.
    [98] Joo S. H., Lee H. I., You D. J., Kwon K., Kim J. H., Choi Y. S., Kang M., Kim J. M., Pak C., Chang H., Seung D.. Ordered mesoporous carbons with controlled particle sizes as catalyst supports for direct methanol fuel cell cathodes[J]. Carbon, 2008, 46(15): 2034-2045.
    [99] Nam K., Jung D., Kim S. K., Peck D., Ryu S.. Operating characteristics of direct methanol fuel cell using a platinum–ruthenium catalyst supported on porous carbon prepared from mesophase pitch[J]. J. Power Sources, 2007, 173(1): 149-155.
    [100] Yasumoto E., Hatoh K., Gamou T.. Fuel cell device equipped with catalyst material for removing carbon monoxide and method for removing carbon monoxide. U.S., Patent No. 5702838, December 30, 1997.
    [101] Coker E. N., Steen W. A., Miller J. T., Jeremy Kropf A., Miller J. E.. The preparation and characterization of novel Pt/C electrocatalysts with controlled porosity and cluster size[J]. J. Mater. Chem., 2007, 17, 3330–3340.
    [102] Samant P. V., Fernandes J. B.. Enhanced activity of Pt(HY) and Pt–Ru(HY) zeolite catalysts for electrooxidation of methanol in fuel cells[J]. J. Power Sources, 2004, 125(2): 172-177.
    [103] Surampudi S., Frank A., Narayanan R., Chun W., Jeffries-Nakamura B., Kindler A., Halpert G.. Direct methanol feed fuel cell and system. U.S., Patent No. 20010050230, December 13, 2001.
    [104] Pang H. L., Chen J. H., Yang L., Liu B., Zhong X. X., Wei X. G.. Ethanol electrooxidation on Pt/ZSM-5 zeolite-C catalyst[J]. J. Solid State Electrochem., 2008, 12(3): 237-243.
    [105] Jeon M. K., Lee K. R., Jeon H. J., Woo S. I. Effect of heat treatment on PtRu/C catalyst for methanol electro-oxidation[J]. J. Appl. Electrochem., 2009, 39(9): 1503-1508.
    [106] Liang Y., Li J., Xu Q. C., Hu R. Z., Lin J. D., Liao D. W.. Characterization of composite carbon supported PtRu catalyst and its catalytic performance for methanol oxidation[J]. J. Alloys Compd., 2008, 465(1-2): 296-304.
    [107] Du H. Y., Wang C. H., Hsu H. C, Chang S. T., Chen U. S., Yen S. C., Chen L. C., Shih H. C, Chen K. H.. Controlled platinum nanoparticles uniformly dispersed on nitrogen-doped carbon nanotubes for methanol oxidation[J]. Diamond Relat. Mater., 2008, 17(4-5): 535-541.
    [108] Nossol E., Zarbin A. J. G.. Carbon paste electrodes made from novel carbonaceous materials: Preparation and electrochemical characterization[J]. Electrochim. Acta, 2008, 54(2): 582-589.
    [109]李陟,徐景梅,许宏鼎,吕男,齐菊锐.稻壳基活性炭修饰碳糊电极对多巴胺的测定[J].吉林大学学报(理学版), 2007, l45( 1): 98-102.
    [110] Daneshgar P., Norouzi P., Ganjali M. R., Ordikhani-Seyedlar A., Eshraghi H.. A dysprosium nanowire modified carbon paste electrode for determination of levodopa using fast Fourier transformation square-wave voltammetry method [J]. Colloid. Surf. B: Biointerfaces, 2009, 68(1): 27-32.
    [111] Shahrokhia S., Fotouhi L.. Carbon paste electrode incorporating multi-walled carbon nanotube/cobalt salophen for sensitive voltammetric determination of tryptophan[J]. Sens. Actuators B: Chem., 2007, 123(2): 942-949.
    [112] Sun W., Li Y. Z., Yang M. X., Li J., Jiao K.. Application of carbon ionic liquid electrode for the electrooxidative determination of catechol[J]. Sens. Actuators B: Chem., 2008, 133(2): 387-392.
    [113]张亚,广军,张宏芳,郑建斌.离子液体修饰碳糊电极对黄芩苷的电催化作用及其分析应用[J].应用化学, 2008, 25( 8): 889-893.
    [114]董绍俊,车广礼,谢远武,化学修饰电极[M],修订版.北京:科学出版社,2003.
    [115]杨涛,焦奎,杨婕,赵常志,曲文营.聚邻氨基酚/Ni~(2+)修饰碳糊电极的制备及其对葡萄糖的电催化氧化[J].分析化学研究简报,2006,34(10):1415-1418.
    [116] Solmaz R., Doner A., Kardas G.. Electrochemical deposition and characterization of NiCu coatings as cathode materials for hydrogen evolution reaction[J]. Electrochem. Commun., 2008, 10(12): 1909-1911.
    [117] Krstajic N. V., Jovic V. D., Gajic-Krstajic L. j., Jovic B. M., Antozzi A. L., Martelli G. N.. Electrodeposition of Ni-Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution[J]. Int. J. Hydrogen Energy, 2008, 33(14): 3676-3687.
    [118] Navarro-Flores E., Chong Z. W., Omanovic S.. Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium[J]. J. Mol. Catal. A: Chem., 2005, 226(2): 179-197.
    [119] Lupi C., Dell’Era A., Pasquali M.. Nickel-cobalt electrodeposited alloys for hydrogen evolution in alkaline media[J]. Int. J. Hydrogen Energy, 2009, 34(5): 2101-2106.
    [120] Kubisztal J., Budniok A., Lasia A.. Study of the hydrogen evolution reaction on nickel-based composite coatings containing molybdenum powder[J]. Int. J. Hydrogen Energy, 2007, 32(9): 1211-1218.
    [121] Rashkov R., Arnaudova M., Avdeev G., Zielonkab A., Jannakoudakis P., Jannakoudakis A., Theodoridou E.. NiW/TiOx composite layers as cathode material for hydrogen evolution reaction[J]. Int. J. Hydrogen Energy, 2009, 34(5): 2095-2100.
    [122] Vazquez-Gomez L., Cattarin S., Guerriero P., Musiani M.. Preparation and electrochemical characterization of Ni + RuO2 composite cathodes of large effective area[J]. Electrochim. Acta, 2007, 52 (28): 8055-8063.
    [123] Shibli S. M. A., Dilimon V. S.. Development of TiO2-supported nano-RuO2-incorporated catalytic nickel coating for hydrogen evolution reaction[J]. Int. J. Hydrogen Energy, 2008, 33(4): 1104-1111.
    [124] Han Q., Chen J. S., Liu K. R., Wei X. J.. A study on the compositeLaNi5/Ni–S alloy film used as HER cathode in alkaline medium[J]. J. Alloys Compd., 2009, 468(1-2): 333-337.
    [125] Wu G., Li N., Dai C. S., Zhou D. R.. Electrochemical preparation and characteristics of Ni–Co–LaNi5 composite coatings as electrode materials for hydrogen evolution[J]. Mater. Chem. Phys., 2004, 83(2-3): 307-314.
    [126] Shibli S. M. A., Dilimon V. S.. Development of nano IrO2 composite-reinforced nickel–phosphorous electrodes for hydrogen evolution reaction[J]. J. Solid State Electrochem., 2007, 11(8): 1119-1126.
    [127] Yuan T. C., Zhou K. C., Li R. D.. Effect of Pr2O3 on the microstructure and hydrogen evolution property of nickel sulphur coatings electrodeposited on the nickel foam substrate[J]. Mater. Lett., 2008, 62(19): 3462-3464.
    [128] Kim Y., Miyauchi K., Ohmi S., Tsutsui K., Iwai H.. Electrical properties of vacuum annealed La2O3 thin films grown by E-beam evaporation[J]. Microelectron. J., 2005, 36(1): 41-49.
    [129] Hieu N. V., Kim H. R., Ju B. K., Lee J. H.. Enhanced performance of SnO2 nanowires ethanol sensor by functionalizing with La2O3[J]. Sens. Actuators B: Chem., 2008, 133(1): 228-234.
    [130] Fey G. T. K., Muralidharan P., Lu C. Z., Cho Y. D.. Surface modification of LiNi0.8Co0.2O2 with La2O3 for lithium-ion batteries[J]. Solid State Ionics, 2005, 176(37-38): 2759-2767.
    [131] Fey G. T. K., Muralidharan P., Lu C. Z., Cho Y. D.. Enhanced electrochemical performance and thermal stability of La2O3-coated LiCoO2[J]. Electrochim. Acta, 2006, 51(23): 4850-4858.
    [132] Yang C., Fan H. Q., Xi Y. X., Qiu S. J., Fu Y. F.. Anomalous phase formation during annealing of La2O3 thin films deposited by ion beam assisted electron beam evaporation[J]. Thin Solid Films, 2009, 517(5): 1677-1680.
    [133] Wang K. L., Zhang Q. B., Sun M. L., Wei X. G., Zhu Y. M.. Rare earth elements modification of laser clad nickel based alloy coatings[J]. Appl. Surf. Sci., 2001, 174(3-4): 191-200.
    [134] Li A. M., Xu B. F., Pan Y. J.. Effect of La_2O_3 on microstructure and property of TiC/Ni-based composite coating[J]. J. Iron Steel Res., 2003, 15(1): 57-61.
    [135] Sharma S. P., Dwivedi D. K., Jain P. K.. Effect of La_2O_3 addition on the microstructure, hardness and abrasive wear behavior of flame sprayed Ni based coatings[J]. Wear, 2009, 267(5-8): 853-859.
    [136] He H. W., Liu H. J., Liu F., Zhou K. C.. Structures and electrochemical properties of amorphous nickel sulphur coatings electrodeposited on the nickel foam substrate as hydrogen evolution reaction cathodes[J]. Surf. Coat. Technol., 2006, 201(3-4): 958-964.
    [137] Han Q., Li X., Chen J. S., Liu K. R., Dong X. H., Wei X. J.. Study of amorphous Ni-S(La) alloy used as HER cathode in alkaline medium[J]. J. Alloys Compd., 2005, 400(1-2): 265-269.
    [138] Azizi O., Jafarian M., Gobal F., Heli H., Mahjani M. G.. The investigation of the kinetics and mechanism of hydrogen evolution reaction on tin[J]. Int. J. Hydrogen Energy, 2007, 32(12): 1755-1761.
    [139] Pierozynski B., Smoczynski L.. Kinetics of hydrogen evolution reaction at nickel-coated carbon fiber materials in 0.5 M H2SO4 and 0.1 M NaOH solutions[J]. J. Electrochem. Soc., 2009, 156(9): B1045-B1050.
    [140] Chi C. F, Yang M. C., Weng H. S.. A proper amount of carbon nanotubes for improving the performance of Pt–Ru/C catalysts for methanol electro-oxidation[J]. J. Power Sources, 2009, 193(2): 462-469.
    [141] Chen S. Z., Ye F., Lin W. M.. Carbon nanotubes-Nafion composites as Pt-Ru catalyst support for methanol electro-oxidation in acid media[J]. J. Nat. Gas Chem., 2009, 18(2): 199-204.
    [142] Huang Y. J., Liao J. H., Liu C. P., Lu T. H., Xing W.. The size-controlled synthesis of Pd/C catalysts by different solvents for formic acid electrooxidation[J]. Nanotechnology, 2009, 20(10): 105604.
    [143] Zeng J. H., Chen J. J., Lee J. Y.. Enhanced Pt utilization in electrocatalysts by covering of colloidal silica nanoparticles[J]. J. Power Sources, 2008, 184(2): 344–347.
    [144] Ma H. C., Xue X. Z., Liao J. H., Liu C. P., Xing W.. Effect of borohydride as reducing agent on the structures and electrochemicalproperties of Pt/C catalyst[J]. Appl. Surf. Sci., 2006, 252(24): 8593-8597.
    [145] Elezovic N. R., Babic B. M., Radmilovic V. R., Gojkovic S. Lj., Krstajic N. V., Vracar Lj. M.. Pt/C doped by MoOx as the electrocatalyst for oxygen reduction and methanol oxidation[J]. J. Power Sources, 2008, 175(1): 250-255.
    [146] Rolison D. R.. Electrocatalysis and charge-transfer reactions at redox-modified zeolites[J]. Acc. Chem. Res., 2000, 33(11): 737-744.
    [147]赵永杰,李俊. 4A沸石的合成及应用研究进展日用化学工业[J]. 2009,39( 6) : 417-422.
    [148] Klug H. P., Alexander L. E.. X-ray Diffraction procedures from polycrystalline and amorphous materials. John Wiley, New York, 1974. 275.
    [149]韩淑芸,高金锋,纪雷,孙继润,巫拱生. 4A沸石分子筛的合成、结构与性能研究[J].青岛大学学报, 1997, 10( 3) : 31-36.
    [150] Krystynowicz A., Bielecki S., Czaja W., Rzyska M.. Application of bacterial cellulose for clarification of fruit juices[J]. Food biotechnol., 2000, (17): 323-327.
    [151] Wang Y., Luo Q. P., Peng B. H., Pei C. H.. A novel thermotropic liquid crystalline-Benzoylated bacterial cellulose[J]. Carbohyd. Polym., 2008, 74(4): 875-879.
    [152] Chen S. W., Ma X., Wang R. M.. Application of bacterial cellulose as the wound dressing in rats[J]. J. Biotechnol., 2008, 136(1): S419.
    [153] Keshk S.. Physical properties of bacterial cellulose sheets produced in presence of lignosulfonate[J]. Enzyme Microb. Technol., 2006, 40(1): 9-12.
    [154] Sokolnicki A. M., Fisher R. J., Harrah T. P., Kaplan D. L.. Permeability of bacterial cellulose membranes[J]. J. Membrane Sci., 2006, 272(1-2): 15-27.
    [155] Patel U. D., Suresh S.. Complete dechlorination of pentachlorophenol using palladized bacterial cellulose in a rotating catalyst contact reactor[J]. J. Colloid Interface Sci., 2008, 319(2): 462-469.
    [156] Wu S. C., Lia Y. K.. Application of bacterial cellulose pellets in enzymeimmobilization[J]. J. Mol. Catal. B: Enzym., 2008, 54(3-4): 103-108.
    [157] Hong F.. Characterization of bacterial cellulose membrane by scanning electron microscope, Fourier transform infrared spectroscopy and thermo-gravimetric analysis[J]. J. Biotechnol., 2008, 136(1): S433.
    [158] Barud H. S., Barrios C., Regiani T., Marques R. F. C., Verelst M., Dexpert-Ghys J., Messaddeq Y., Ribeiro S. J. L.. Self-supported silver nanoparticles containing bacterial cellulose membranes[J]. Mater. Sci. Eng. C, 2008, 28(4): 515-518.
    [159] Gligor D., Balaj F., Maicaneanu A., Gropeanu R., Grosu I., Muresan L., Popescu I. C.. Carbon paste electrodes modified with a new phenothiazine derivative adsorbed on zeolite and on mineral clay for NADH oxidation[J]. Mater. Chem. Phys., 2009, 113(1): 283-289.
    [160] Babaei A., Zendehdel M., Khalilzadeh B., Taheri A.. Simultaneous determination of tryptophan, uric acid and ascorbic acid at iron(III) doped zeolite modified carbon paste electrode[J]. Colloid Surf. B., 2008, 66(2): 226-232.
    [161] Zuo S. H., Zhang L. F., Yuan H. H., Lan M. B., Lawrance G. A., Wei G.. Electrochemical detection of DNA hybridization by using a zirconia modified renewable carbon paste electrode[J]. Bioelectrochemistry, 2009, 74(2):223-226.
    [162] Safavi A., Maleki N., Momeni S., Tajabadi F.. Highly improved electrocatalytic behavior of sulfite at carbon ionic liquid electrode: Application to the analysis of some real samples[J]. Anal. Chim. Acta, 2008, 625(1): 8-12.
    [163] Mhammedi M. A. E., Achak M., Chtaini A.. Ca10(PO4)6(OH)2-modified carbon-paste electrode for the determination of trace lead(II) by square-wave voltammetry[J]. J. Hazard. Mater., 2009, 161(1): 55-61.
    [164] Shahrokhian S., Kamalzadeh Z., Bezaatpour A., Boghaei D. M.. Differential pulse voltammetric determination of N-acetylcysteine by the electrocatalytic oxidation at the surface of carbon nanotube-paste electrode modified with cobalt salophen complexes[J]. Sens. Actuators. B: Chem., 2008, 133(2): 599-606.
    [165] Xu L. J., He N. Y., Du J. J., Deng Y.. Determination of tannic acid byadsorptive anodic stripping voltammetry at porous pseudo-carbon paste electrode[J]. Electrochem. Commun., 2008, 10(11): 1657-1660.
    [166] Zhang Y., Zheng J. B.. Sensitive voltammetric determination of rutin at an ionic liquid modified carbon paste electrode[J]. Talanta, 2008, 77(1): 325-330.
    [167] Qu J. Y., Zou X. Q., Liu B. F., Dong S. J.. Assembly of polyoxxmetalates on carbon nanotubes paste electrode and its catalytic behaviors[J]. Anal. Chim. Acta, 2007, 599(1): 51-57.
    [168] Huang B. Q., Wang L., Shi K., Xie Z. X., Zheng L. S.. A new strategy for the fabrication of the phosphor polyoxomolybdate modified electrode from ionic liquid solutions and its electrocatalytic activities[J]. J. Electroanal. Chem., 2008, 615(1): 19-24.
    [169] Hamidi H., Shams E., Yadollahi B., Esfahani F. K.. Fabrication of bulk-modified carbon paste electrode containingα-PW12O403? polyanion supported on modified silica gel: Preparation, electrochemistry and electrocatalysis[J]. Talanta, 2008, 74(4): 909-914.
    [170] Li Y. C., W. F. Bu, Wu L. X., Sun C. Q.. A new amperometric sensor for the determination of bromate, iodate and hydrogen peroxide based on titania sol–gel matrix for immobilization of cobalt substituted Keggin-type cobalttungstate anion by vapor deposition method[J]. Sens. Actuators. B: Chem., 2005, 107(2): 921-928.
    [171] Barsoukov E., Macdonald J. R.. Impedance spectroscopy theory, experiment, and applications. John Wiley & Sons, Inc. 2005.
    [172] Zhai S. Y., Gong S. Y., Jiang J. G., Dong S. J., Li J. H.. Assembly of multilayer films containing iron(III)-substituted Dawson-type heteropolyanions and its electrocatalytic properties: cyclic voltammetry, electrochemical impedance spectroscopy and UV-Vis spectrometry[J]. Anal. Chim. Acta, 2003, 486(1): 85-92.
    [173] Zhou M., Guo L. P., Lin F. Y., Liu H. X.. Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified electrode[J]. Anal. Chim. Acta, 2007, 587(1): 124-131.
    [174] Wang X. L., Zhang H., Wang E. B., Han Z. B., Hu C. W.. Phosphomolybdate-polypyrrole composite bulk-modified carbon pasteelectrode for a hydrogen peroxide amperometric sensor[J]. Mater. Lett., 2004, 58(10): 1661-1664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700