用户名: 密码: 验证码:
多晶硅TFTs晶粒间界能态的OEMS分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多晶硅薄膜晶体管(Poly-Si TFT)由于具有高迁移率、更快的开关速度和更高的电流驱动能力,在有源矩阵液晶显示(AMLCD)等领域具有广阔的应用前景。但由于多晶硅薄膜材料存在晶粒间界,间界的带隙上产生大量的悬挂键和缺陷,形成可作为陷阱的连续型及离散型带隙能态,使多晶硅TFT呈现出十分复杂的电学特性。因此,对多晶硅薄膜晶体管晶粒间界微观陷阱能态信息有效获取技术的研究开发,及其定量分析理论的建构,便成为多晶硅薄膜材料及其器件研究和应用的基础,以及亟需解决的核心问题。
     本文将光电子调制谱(OEMS)技术应用于固相晶化(SPC)方法制备的Poly-Si TFTs,对多晶硅薄膜材料的晶界陷阱态和界面态分布进行研究。首先,以波长被调制的红外光波循环激发晶界带隙态和界面态上的电子,获取光电子跃迁形成的高分辨率OEMS响应谱,以及与光学调制信号之间OEMS相延谱。其次,在Swanson等人建立的OEMS唯象理论基础上,建立Poly-Si TFTs的OEMS分析理论:分析了多晶硅TFTs的器件模型,计算了直流偏置与光调制下的沟道电流,讨论了OEMS电流调制效应并给出了对不同带隙能态OEMS电流一阶响应的表达式。再次,通过定量分析光激发函数,确定了利用OEMS响应谱与相延谱分析陷阱态性质的方法。最后,将所建立的分析方法应用于实验获得的多晶硅薄膜OEMS谱,在0~1.2eV之间探测到了四个离散型晶界陷阱态与一个连续型界面态;同时,对于OEMS谱1.2~2.4eV之间中出现的带隙展宽现象,提出了晶间氢化非晶硅模型,分析并给出了四个离散型晶界陷阱态与一个连续型界面态。所提取的带隙能态与文献结果较好地吻合,进一步验证了OEMS技术的可靠性。
     因此,OEMS技术为深入研究多晶硅薄膜场效应器件晶粒间界的能态分布与能态性质,以及进一步揭示Poly-Si TFTs的物理机理,提供了一种既全面又直接的分析方法。
Polycrystalline silicon thin film transistor (Poly-Si TFT) has broad application prospect in AMLCD for its high mobility, faster swith vilosity and higher current driving ability. However, owing to grain boundary (GB) existing in poly-Si thin film which generates a large number of dangling bonds and defectes in the band gap, poly-Si TFT appears very complex electrical properties as continuous and discrete band gap states formed to be traps. Therefore, research and development on effective acquisition of GB microscopic trap states information in poly-Si TFT and construction of quantitative analysis theory has been the foundation of research and application in both poly-Si thin film material and device. It also becomes a key problem need to be solved as soon as possible.
     In this paper, Opto-electronic modulation spectroscopy (OEMS) technique is applied in poly-Si TFTs fabricated by SPC method to study the distribution of GB traps and interface states in poly-Si thin film material. Firstly, electrons in GB traps and interface states are excited circularly by infrared light with modulated wavelength to obtain high resolution OEMS response spectrum formed by photon transition and OEMS phase spectrum between optical modulated signals. Secondly, analytical theory of OEMS in poly-Si is built in the foundation of Swanson's theory. Device model of poly-Si TFTs is analyzed, channel current under bias and optical modulation is calculated, OEMS current modulation effect is discussed and expressions of OEMS current first order response to different band gap states are given. Once again, judgement of traps properties using OEMS response and phase spectrums is given through quantitative analysis in optical emission function. Finally, applying the established theory to analyse OEMS spectrum, four discrete GB trap states and one continuous interface state are obtained from 0 eV to 2.4 eV. Meanwhile, model of hydrogenated amorphous silicon between GB is proposed to explain phenomenon of band gap broadening in OEMS from 1.2 eV to 2.4 eV, and four discrete GB trap states and one continuous interface state are obtained. Extracted trap states are in good agreement with documents, and the reliability of OEMS technique is further verified.
     Therefore, OEMS technique provides a comprehensive and direct analytical method for deep study GB states distribution and characteristics in poly-Si TFT device and further reveal physical mechanism of poly-Si TFTs.
引文
[1]Sehil H, Rahmani N M, Pichon L,et al. Characterization of the polysilicon thin film transistors elaborated in high and low temperature processes. Study of the density of traps, Synthetic Metals,1997,15(8):181-185.
    [2]Guan L, Sin J K O. Transient characterization of the planar DMOS with a Metal/Poly-Si replacement gate[C]. IEEE TRANSACTIONS ON ELECTRON DEVICES.2007,54(7):1789-1792.
    [3]熊家国.多晶硅薄膜材料与器件研究进展[J].国外建材科技,2006,27(3):8-10.
    [4]Kook Chul Moon, Jae-Hoon Lee, Min-Koo Han. Inversion-Mode MOSFET's in Polycrystalline Silicon Thin Films:Characterization and Modeling[C]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2005,52(4):1795-1780.
    [5]冯庆浩.多晶硅薄膜的ECR_PECVD低温沉积及特性[D].大连理工大学,2006.
    [6]Ji C, Kim J, Anderson W A. Study of photovoltaic properties and light absorption in poly-Si thin film solar cells grown by the metal-induced growth method. ORGANIC PHOTOVOLTAICS,2004 5520:184-191.
    [7]Lin C W, Peng D Z, Lee R,et al. Advanced poly-Si device and circuitry for AMOLED and high-integration AMLCD[C]. International Display Manufacturing Conference (IDMC 05),2005:21-24.
    [8]Park J W. Poly-Si TFT integrated gate-data line-crossover structure employing an air-gap for large-size AMLCD panel. IEEE ELECTRON DEVICE LETTERS,2001,22(12):606-606.
    [9]Kikuchi T, Moniya S, Nakatsuka Y,et al. A new vertically stacked poly-Si MOSFET for 533MHz high speed 64Mbit SRAM[C],50th IEEE International Electron Devices Meeting, DEC 13-15,2004 San Francisco CA. IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2004, TECHNICAL DIGEST,2004:923-926.
    [10]Fowler W B, Edwards A H. Theory of defects and defect processes in silicon dioxide[J]. Journal of non-crystalline solids,1997,222:33-41.
    [11]陈飞多,晶硅TFT后氢化处理的研究[D],电子科技大学,2006.
    [12]王阳元,赵宝瑛,卡明斯.多晶硅薄膜及其在集成电路中的应用[M].北京:科学出版社,2001.
    [13]Watakabe H, Tsunoda Y, Andoh N,et al. Characterization and control of defect states of polycrystalline silicon thin film transistor fabricated by laser crystallization[J]. Journal of Non-Crystalline Solids,2002, 1321-1325.
    [14]Jackson W B, Johnson N W I, Tsai C C,et al. Hydrogen diffusion in polycrystalline silicon thin films, Appl. Phys. Lett,1992,61 (14):1670-1673.
    [15]Nickel N H., Jackson W B, Walker J. Hydrogen-induced platelets in disordered silicon [J]. Journal of Non-Crystalline Solids,1998:227-230; 885-889.
    [16]Farmakis F V, Tsamados D M, Brini J,et al. Hydrogenation in laser annealed polysilicon thin-film transistors[J]. Thin Solid Films,2001,383,151-153.
    [17]Khamesra A, Lai R, Vasi J,et al. Device Degradation of n-channel Poly-Si TFT's due to High-Field[J]. Hot-Carrier and Radiation Stressing. Proceedings of 8th IPFA 2001, Singapore.2001 IEEE,258-262.
    [18]Li Y, Lee B S. Grain Boundary Effect in Sub-100 nm Surrounding-Gate Polysilicon Thin Film Transistors[C].2006 6th IEEE Conference on Nanotechnology, IEEE-NANO 2006,2006,2:504-507.
    [19]Bonfiglietti A, Valletta A, Gaucei P, et al. Electrical characterization of directionally solidified polycrystalline silicon[J]. Journal of applied physics 2005,98(3):1-9.
    [20]Hiroyuki I. Characterization of Switching Transient Behaviors in Polycrystalline-Silicon Thin-Film Transistors[J]. Japanese Journal of Applied Physics,2004,43(2):477-484.
    [21]Uraoka Y, Yano H, Hatayama T,et al. Comprehensive Study on Reliability of Low-Temperature Poly-Si Thin-Film Transistors under Dynamic Complimentary Metal-Oxide Semiconductor Operations[J]. Jpn. J. Appl. Phys:Part 1,2002,41(4): 2414-2418.
    [22]Kook C M, Lee J H, Han M K. The Study of Hot-Carrier Stress on Poly-Si TFT Employing C-V easurement[C]. IEEE Transactions on Electron Devices,2005,52(4).512-517.
    [23]Shih P S, Chang CY, Chang T C,et al. A Novel Lightly Doped Drain Polysilicon Thin-Film Transistor with Oxide Sidewall Spacer Formed by One-Step Selective Liquid Phase Deposition. IEEE ELECTRON DEVICE LETTERS,1999,20(8):421-423.
    [24]Hsu C C H, Wen D S, Wordeman M R,et al. A Comparative of Hot-Carrier instability in P-and N-Type Poly Gate MOSFETs[C]. Technical Digest-International Electron Devices Meeting,1989,75-78.
    [25]Khamesra A, Lal R, Vasi J,et al. Device Degradation of n-channel Poly-Si TFT's due to High-Field[C], Hot-Carrier and Radiation Stressing, Proceedings of 8th IPFA 2001,Singapore,2001 IEEE
    [26]Schroder D K, Babcock J A.. Negative bias temperature instability:Road to cross in deep submicron silicon semiconductor manufacturing[J]. J. Appl. Phys.,2003,94:1-18.
    [27]Scarpa A, Ward D, Dubois J,et al. Negative-bias temperature instability cure by process optimization. IEEE Trans. Electron Devices,2006,53(6):1331-1339.
    [28]Young N D, Ayres J R. Negative Gate Bias Instability in Polycrystalline Silicon TFT's[J]. IEEE TRANSACTIONS ON ELECTRON DEVICES,1995,42(9):1623-1627.
    [29]Kanda E, Eguchi T, Hiyoshi Y, et al. Active-matrix sensor in AMLCD detecting liquid-crystal capacitance with LTPS-TFT technology. Journal of the Society for Information Display,2009,17(2):79-85, February 2009.
    [30]张繁.多晶硅薄膜晶体管有机发光显示模块的研制[D].华中科技大学,2006.
    [31]刘传珍.低温多晶硅材料及其器件的研究[D].中国科学院长春光学精密机械与物理研究所,2000.
    [32]Takkaura H. Out door performance of a-Si and p-Si modules[D], International solar Energy Society 1997 Solar World conferenee, Highlands Ranch,1997.
    [33]刘刚,余岳辉,史济群等.半导体器件 电力、敏感、光子微波器件[M].北京:电子工业出版社,2000
    [34]Ishikawa Y, Yamamoto Y, Hatayama T,et al. Crystallographic analysis of high quality poly-Si thin films deposited by atmospheric pressure chemical vapor deposition [J]. Solar Energy Materials& Solar Cells,2002, 74:255-260.
    [35]Park J H, Kim D Y, Ko J K,et al. High temperature crystal-lized poly-Si onMo substrates for TFT application[J]. Thin Solid Films,2003,427:303-308.
    [36]Kylie R C, Michelle J C, Klaus J,et al.A review of thin-film crystal-line silicon for solar cell applications[J]. SolarEnergyMaterials& Solar Cells:Foreign substrates,2001,68:173-215.
    [37]Tala-Ighil B, Toutah H, Rahal A.,et al. Gate bias stress in hydrogenated and unhydrogenated polysilicon thin film transistors[J]. Microelectronics Reliability 1998,38:1149-1153.
    [38]Chae J H, Lee J Y, Kang S W. Measurement of thermal expansion coefficient of poly-Si using microgauge sensors[J].Sensors and Actuators A:Physical,1999,75:222-229
    [39]Cicala Q Capezzuto P, Bruno. Plasma enhanced chemical vapor deposition of nanocrystalline silicon films from SiF4-H2-He at low temperature[J]. Thin Solid Film,1999,337 (1):59-62.
    [40]Singh R,Fakhruddin M, Poole K F, et al. Rapid photothermal processing as a semiconductor manufacturing technology for the 21st century[J]. Applied Surface Science,2000,168:198-203.
    [41]薛清,郁伟中,黄远明.利用快速退火法从非晶硅薄膜中生长纳米硅晶粒[J].物理实验,2002,22(8):17-20.
    [42]Noguchi T. Appearance of single-crystalline properties in fine-patterned Si thin film transistors (TFTs) by solid phase crystallization (SPC)[J]. Jpn JAppl Phys,1993,32(11):1584-1587.
    [43]Giust G K, Sigmon T W. Laser-processed thin-film transistors fabricated from sputtered amorphous silicon films[C]. IEEE Trans Electron Devices,2000,47(1):207-213.
    [44]Wang Y C, Shieh J M, Zan H W,et al. Near-infrared femtosecond laser crystallized poly-Si thin film transistors. OPTICS EXPRESS,2007,15(11):6982-6987.
    [45]Kawazu Y, Kudo H, Onari S. Initial Stage of the Interfacial Reaction between Nickel and Hydrogenated Amorphous Silicon[J]. Appl Phys:Part 1,1990,29:729-738.
    [46]Jin Z, Gabhat, Yeung M,et al. Nickel induced crystallization of amorphous silicon thin films[J]. Appl Phys, 1998,84(1):194-200.
    [47]Angelis C T, Dimitriadis C A, Miyasak M,et al. Effect of excimer laser annealing on the structural and electrical properties of polycrystalline silicon thin-film transistors[J]. Appl Phys,1999,86(8):4600.
    [48]Navneet G. Navneet gupta effect of trap states at the oxide-siliconinterface in polycrystalline silicon thin-film transistors[J]. International Journal of Modern Physics B.2008,22(30):5357-5364.
    [49]Jeon J H, Lee M C, Park K C,et al. A new polycrystalline silicon TFT with a single grain boundary in the channel[J]. IEEE Electron Devices Lett.2001,22(9):429-431.
    [50]Oh C H, Matsumura M. A proposed single grain-boundary thin-film transistor[J]. IEEE Electron Devices Lett,2001,22(1):20-22.
    [51]Seto J Y W. The electrical properties of polycrystalline silicon films[J]. J. Appl. Phys.,1975,46(12): 5247-5254.
    [52]Baccarani G, Ricco B, Spadin i G. Transport properties of polycrystalline silicon films[J]. Journal of applied physics,1978,49(11):5565-5570.
    [53]]Hirae S, Hirose M, Osaka Y. Energy distribution of trapping states in polycrystalline silicon[J]. J. Appl. Phys.,1980,51(2):1043-1047.
    [54]Fortunato G, Migliorato P. Determination of gap state density in polycrystalline silicon by field-effect conductance[J]. Appl. Phys. Lett.,1986,49(16):1025-1027.
    [55]Kimura M, Inoue S, Shimoda T,et al. Extraction of trap states in laser-crystallized polycrystalline-silicon thin-film transistors and analysis of degradation by self-heating[J]. J. Appl. Phys.,2002,91(6):3855-3858.
    [56]Jackson W B, Johnson N M, Biegelsen D K. Density of gap states of silicon grain boundaries determined by optical absorption[J]. Appl. Phys. Lett.,1983,43(2):195-197.
    [57]Jackson W B, Johnson N M, Tsai C C,et al. Hydrogen diffusion in polycrystalline silicon thin films[J]. Appl Phys Lett,1992,61(14):1670-1672.
    [58]Lee M H, Chang K H. Effective density-of-states distribution of polycrystalline silicon thin-film transistors under hot-carrier degradation[J]. Journal of Applied Physics,2007,102(5):054508.
    [59]Werner J, Peisl M. Exponential band tails in polycrystalline semiconductor films. Physical Review B, 1985,31(10):6881-6883.
    [60]Ayres J R. Characterization of trapping states in polycrystalline-silicon thin films transistors by deep level transient spectroscopy[J]. J. Appl. Phys.,1993,74(3):1787-1792.
    [61]Kimura M, Inoue S, Shimoda T,et al. Extraction of trap states in laser-crystallized polycrystalline-silicon thin-film transistors and analysis of degradation[J], Journal of Applied Physics,2002,91(6):3855.
    [62]Kobayashi H, Liu Y L, Yamashita Y,et al. Methods of observation and elimination of semiconductor defect states[J], Solar Energy,2006,80(6):645-652.
    [63]杨晓东,田立林,陈文松.一种基于电荷泵技术的界面态横向分布测量方法[J].半导体学报,1998,19(11):834-840.
    [64]Chen C Y, Ma M W, Chen W C,et al. Analysis of Negative Bias Temperature Instability in Body-Tied Low-Temperature Polycrystalline Silicon Thin-Film Transistors. IEEE Electron Device Letters,2008, 29(2):165-167.
    [65]Kim K J, Park W K, Kim S G, et al. A new charge pumping model considering bulk trap states in polysilicon thin film transistor. Solid-State Electronics,1998,42(11):1897-1903.
    [66]Feng Y, Migliorato P. Investigation of trap processes in polycrystalline silicon thin film transistors, Appl. Phys. Lett,2003,82(13):2062-2064.
    [67]Kouvatsos D N. On-state and off-state stress-induced degradation in unhydrogenated solid phase crystallized polysilicon thin-film transistors. Microelectron. Reliability,2002,42(12):1875-1882.
    [68]di Marco M, Wang Q H, Swanson J G, Optoelectronic modulation spectroscopy (OEMS)-a new tool for device investigations. Solid-state materials for advanced technology,1993, B20(1):225-231.
    [69]Wang Q H, Swanson J G. Optoelectronic Modulation Spectroscopy Applied to the Characterization of Field Effect Transistors[J]. J.Appl.Phys.1993,74(11):7011-7013.
    [70]Dimaco M,.Swanson J G. Temperature Effects in GaAs OEMS Spectra.J.of Electronic Materials,1992, 21(6):619-628.
    [71]Wang Q H, Swanson J G, Depletion mode optoelectronic modulation spectroscopy[J], J. Appl. Phys.,1996, 10(12):6943-6953.
    [72]Dimarco M, Swanson J G. A Direct Observation of the DX Center in GaAs Using Optoelectronic Modulation Spectroscopy Above the Bandedge[J]. J.Electrochem.Soc.,1992,139(1):262-267
    [73]张坤.多晶硅薄膜场效应结构的晶粒间界能态分布[D].暨南大学,2003.
    [74]Joshi D P, Bhatt D P. Theory of grain boundary recombination and carrier transport in polycrystalline silicon under optical illumination. IEEE Transactions on Electron Devices,1990,37(1):237-249.
    [75]Joshi D P, Bhatt D P. Grain boundary barrier heights and recombination velocities in polysilicon under optical illumination Solar Energy Materials,1991,22(2):137-159.
    [76]Bhatt D P, Joshi D P. Electrical properties of polycrystalline silicon under optical illumination.[J] Jpn. J. Appl. Phys,1990,68(5).
    [77]Fanying M, Tietun S, Rongqiang C. Recombination properties of grain boundaries in polycrystalline silicon under illumination[J]. Semiconductor Science and Technology,2000,15(9):926-930.
    [78]Dimitriadis C A, Kimura M, Miyasaka M,et al. Effect of grain boundaries on hot-carrier induced degradation in large grain polysilicon thin-film transistors. Solid-State Electronics,2000,44:2045-2051.
    [79]赵杰,孙勤生.多晶硅晶粒间界的线性陷阱模型,固体电子学研究与进展,1996,16(4):336-343.
    [80]孟凡英,崔容强,孙铁固.利用高斯分布模型研究多晶硅界电学特性[J].上海交通大学学报,2001,6:813-816.
    [81]Kee J K, Park W KY, Kim S G, et al. A New Charge Pumping Model Considering Bulk Trap States in Polysilicon Thin Film Transistor[J]. Solid-State Electronics,1998,42, (11):1897-1903.
    [82]Ikeda H. Evaluation of grain boundary trap states in polycrystalline-silicon thin-film transistors by mobility and capacitance measurements[J]. Journal of Applied Physics,2002,91(7):4637.
    [83]Mutsumi K, Ryoichi N, Satoshi I,et al. Extraction of Trap States at the Oxide-Silicon Interface and Grain Boundary for Polycrystalline Silicon Thin-Film Transistors[J], Jpn. J. Appl. Phys,2001,40(1):5227-5236.
    [84]Bonfiglietti A., Valletta A., Gaucci P,et al. Electrical characterization of directionally solidified polycrystalline silicon[J]. Journal of Applied Physics 98,2005,033702.
    [85]Hatzopoulos A T, Tassis D H, Dimitriadis C A. Analytical on-state current model of polycrystalline silicon thin-film transistors including the kink effect. Applied Physics Letters 87,2005,063501.
    [86]Valletta A, Mariucci L, Bonfiglietti A,et al. Brotherton. Channel doping effects in poly-Si thin film transistors Thin Solid Films,2005,487:242-246.
    [87]王恒和.利用自对准工艺制备多晶硅TFT的研究[D].电子科技大学,2006.
    [88]Zhao C Z, Zhang J F, Guido G,et al. Hole-Traps in Silicon Dioxides-Part II:Generation Mechanism. IEEE Transactions on Electron Devices,2004,51(8):1274-1280.
    [89]王丽娟.a-Si:H TFT SPICE模型的研究[D].长春理工大学,2003.
    [90]Harbord E, Spencer P, Clarke E,et al. The influence of size distribution on the luminescence decay from excited states of InAs/GaAs self-assembled quantum dots[J]. Journal of Applied Physics 105,2009,033507.
    [91]Burgos M E. Transitions to the Continuum:Three Different Approaches[J]. Found Phys,2008,38: 883-907.
    [92]Seishiro H, Masahiro Y, Toshifumi S,et al. Hot-Carrier Degradation in Low-Temperature Polycrystalline Silicon n-Channel Lightly Doped Drain Thin-Film Transistors[J]. Japanese Journal of Applied Physics,2009, 48:011207.
    [93]Armstrong G A, Uppal S, Brotherton S D,et al. Modeling of Laser-Annealed Polysilicon TFT Characteristics. IEEE Electron Device Letters,1997,18(7):315-318.
    [94]欧秀平,姚若河,吴为敬.多晶硅薄膜晶体管中的晶粒间界电荷分享效应.微电子学,2008,39(6):796-799.
    [95]Sehil H, Rahmani N M, Pichon L,et al. Characterization of the polysilicon thin film transistors elaborated in high and low temperature processes. Study of the density of traps. Synthetic Metals,1997,90(3):181-185.
    [96]Armstrong G A, Ayres J R, Brotherton S D. Numerical Simulation of Transient Emission From Deep Level Traps in Polysilicon Thin Film Ransistors. Solid-State Electronics,1997,41(6):835-844.
    [97]Ayres J R.Characterization of trapping states in polycrystalline-silicon thin film transistors by deep level transient spectroscopy[J]. J. Appl. Phys.1993,74 (3):1787.
    [98]Ai B, Shen H, Liang Z C. Electrical properties of B-doped polycrystalline silicon thin films prepared by rapid thermal chemical vapour deposition. Thin Solid Films,2006,497(1-2):157-162.
    [99]Jeong Y, Nagashima D, Kuwano H, et al. Effects of Various Hydrogenation Processes on Bias-Stress-Induced Degradation in p-Channel Polysilicon Thin Film Transistors[J]. Jpn. J. Appl. Phys.2002, 41(8):5048-5054.
    [100]Steo G, Ricco B, Spadini G.Transport properties of polycrystalline silicon films. Journal of applied physics[J], Journal of Applied Physics Browse Journal,1978,49 (11):5565-5570.
    [101]Chen C Y, Ma M W, Chen W C, et al. Analysis of Negative Bias Temperature Instability in Body-Tied Low-Temperature Polycrystalline. IEEE Electron Device Letters,2008,29(2):165-167.
    [102]Mourgues K, Rahal A, Brahim T M, Sarret M,et al. Density of states in the channel material of low temperature polycrystalline silicon thin film transistors[J]. Journal of Non-Crystalline Solids,2000,266-269: 1279-1283.
    [103]Tomihiko E, Hiromasa T, Masashi N,et al. Electrical characterization of single grain and single grain boundary of pentacene thin film by nano-scale electrode array[J]. Current Applied Physics,2006,6(1): 109-113.
    [104]Johnson K H, Kolari H J, de Neufville J P, etal. Theoretical models for the electronic structures of hydrogenated amorphous silicon. Phys.Rev.1980, B21:643-647.
    [105]Shi P, Chang C. Novel lightly doped drain polysilicon thin-film transistor with oxide sidewall spacer formed by one-step selective liquid phase deposition. IEEE Electron Device Letters.2000,20(8):1757-1765.
    [106]Fukutani K, Kanbe M, Futako W,et al. Shimizu Bandgap tuning of a-Si:H from 1.55 eV to 2.10 eV by intentionally promoting structural relaxation[J]. Journal of Non-Crystalline Solids,1998,63-67:227-230
    [107]吕博嘉.热丝化学气相沉积制备微晶硅薄膜的研究[D].大连理工大学.2008.
    [108]Yoshino K, Futako W, Wasai Y,et al. Wide-gap a-Si:H fabricated by controlling voids. Materials Research Society Symposium-Proceedings, Amorphous Silicon Technology,1996,420:335-340.
    [109]Pelant I, Luterova K, Fojtik P, et al. Silicon-based light-emitting materials:Implanted SiO2 films and wide bandgap a-Si:H. Proceedings of SPIE-The International Society for Optical Engineering,2001,4415: 66-76.
    [110]Dian J, Valenta J, Poruba A, et al. Silicon-based materials for optoelectronics:Visible photoluminescence and electroluminescence from amorphous silicon. Proceedings of SPIE-The International Society for Optical Engineering,2000,40(16):472-477.
    [111]Kuznetsov V A, Haneman D. Electroluminescence from amorphous-silicon-based switching devices. Journal of Materials Research,1997,12(1):17-20.
    [112]Cody G D, Tiedje T, Abeles B,et al. Disorder and the Optical-Absorption Edge of Hydrogenated Amorphous Silicon. Phys. Rev. Lett.1981,47:1480-1483.
    [113]Tauc J, Menth A, Wood D L. Optical and Magnetic Investigations of the Localized States in Semiconducting Glasses. Phys. Rev. Lett.,1970,25(11):749-752.
    [114]Cody G D, Tiedje T, Abeles B. Disorder and the Optical-Absorption Edge of Hydrogenated Amorphous Silicon. Phys. Rev. Lett.1981,47(20):1480-1483.
    [115]T. Skettrup. Urbach's rule derived from thermal fluctuations in the band-gap energy. Phys. Rev. B, 1978,18(6):2622-2631.
    [116]Jackson W B. The correlation energy of the dangling silicon bond in a-Si:H. Solid State Communications,1982,44(4):477-480.
    [117]曹燕.微晶硅薄膜的结构和电学性质的研究[D].中国科技大学研究生院,1999.
    [118]Triska A, Vanecek M, Stika O,et al. Comparison of the Density of Gap States in'n' and'p'-type a-Si:H. Commission of the European Communities, (Report) EUR,1984,151-155.
    [119]Pearce J M, Deng J, Vlahos V, et al. Evolution of D0 and non-D0 light induced defect states in a-Si:H materials and their respective contribution to carrier recombination.Materials Research Society Symposium Proceedings, Amorphous and Nanocrystalline Silicon Science and Technology,2004,808:153-158.
    [120]Okushi, Hideyo, Tanaka,et al. Energy Levels of Dangling-bond Centres in a-Si:H Studied by Photocapacitance Transient Spectroscopy. Phil Mag Lett,1987,55(3):135-141.
    [121]Viresh D, Murthy R V R. An Approach to Study Band-gap and Interface States in a-Si:H p-i-n Solar Cells[J]. Jpn.J.Appl.Phys.1997,36(11):6687-6693.
    [122]Murthy R V R, Dutta V. Investigation of interface and band gap states in amorphous silicon p-i-n solar cells using current deep level transient[J]. Journal of Non-Crystalline Solids,1996,197(2-3): 250-253.
    [123]Globus T, P. Roca i Cabarrocas, B. Gelmont. Defect-related absorption in hydrogenated silicon films[J]. Journal of Non-Crystalline Solids,2002,299-302:299-620.
    [124]Frank S, Helmut S. Stable and metastable defect distributions in undoped and doped a-Si:H obtained from analysis of the constant photocurrent method[J]. Journal of Non-Crystalline Solids,1996,198-200(1): p351-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700