用户名: 密码: 验证码:
调控胃癌BGC823细胞PTEN和Livin基因表达的生物学效应实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     胃癌的发病率在恶性肿瘤中位居第四位,仅次于肺癌、乳腺癌和肠癌,是严重威胁我国人民生命健康的主要疾病之一,其发病机制迄今为止仍不明确。胃癌在发病早期症状不典型,部分患者就诊时已进入进展期。尽管在手术、化疗、放疗等方而取得了长足进步,但是进展期胃癌患者术后5年生存率仍无明显提高。
     大量研究表明,胃癌在发生、发展过程中有多种因素的参与,包括抑癌基因失活、癌基因突变、DNA损伤修复功能的降低、信号转导通路和凋亡过程的异常等,提示胃癌的发生、发展是一个多因素、多阶段、多步骤的过程。
     第10号染色体缺失的磷酸酶和张力蛋白同源基因(phosphatase and tensin homology deleted on chromosome ten, PTEN)是具有双特异性磷酸酶活性的抑癌基因,可以负调节PI3K-Akt信号通路的信号转导,具有抑制细胞增殖和迁移以及促进凋亡的效应。PTEN基因的突变、缺失以及甲基化可以导致其抑癌功能丧失,引起肿瘤的发生。研究显示,胃癌组织中PTEN基因表达显著降低,并且PTEN蛋白表达水平与肿瘤大小、Borrmann分型、淋巴结转移和肿瘤分期呈负相关,表明PTEN基因失活可能是胃癌发生、发展的原因之一。
     Livin是凋亡抑制蛋白(inhibitor of apoptosis proteins, IAP)家族新成员之一,它可以和半胱氨酸天冬氨酸特异性蛋白酶(Caspase)直接结合而抑制细胞凋亡,进而起到促进肿瘤细胞生长的作用。研究发现Livin蛋白在包括胃癌在内的多种肿瘤组织中呈现高表达,沉默肿瘤细胞中Livin基因可以促进细胞凋亡、抑制肿瘤增殖。表明Livin的高表达与肿瘤的发生、发展及预后相关。
     本课题采用分子生物学技术,分别建立过表达PTEN基因、沉默Livin基因表达以及过表达PTEN同时沉默Livin基因表达的胃癌细胞株;通过在体和离体实验,观察调控PTEN和Livin基因表达对胃癌细胞生长、增殖、凋亡和迁移等方面的影响,为胃癌的治疗提供新的靶点和策略。课题共分三部分:第一部分,PTEN基因表达载体、Livin基因siRNA载体的构建和鉴定;第二部分,体外调控PTEN、Livin基因表达对胃癌BGC823细胞生物学行为的影响;第三部分,调控PTEN/Livin基因表达对裸鼠移植瘤生长的影响。
     第一部分PTEN基因表达载体、Livin基因siRNA载体的构建和鉴定
     方法
     设计带有EcoRI和SalI酶切位点的PTEN基因全编码区cDNA扩增引物;PCR扩增pCMV6-PTEN得到PTEN基因;扩增产物经EcoRI和SalI酶切后与表达载体pCL-neo重组;用EcoRI和salI双酶切鉴定转化重组子,并对重组子插入序列进行DNA序列分析,得到PTEN基因表达载体pCL-neo-PTEN。设计3个针对Livin基因的siRNA巴序列,合成发卡样DNA单链;退火成双链后与siRNA载体pRNAT-U6.1重组;用PCR扩增筛选转化重组于,DNA序列测定鉴定插入序列,得到3个针对Livin基因的siRNA载体。分别用脂质体LipofectamineTM2000包裹转染BGC823细胞,G418筛选得到对应的稳定转染细胞。采用荧光定量RT-PCR和Western-Blot分别检测转染的BGC823细胞Livin和PTEN mRNA和蛋白表达水平。
     结果
     1.PCR扩增得到1212bp的PTEN cDNA ORF区段目的基因;转化后得到多个重组子,经EcoRI/SalI双酶切和DNA测序鉴定证实获得的重组子pCL-neo-PTEN正确。
     2. RNAi Explorer和siDESIGN Center扫描人Livin cDNA编码序列(NM_139317),初步筛选得到50个侯选片段,经BLAST同源性分析,选择确定3个19个碱基的siRNA靶序列,分别为178-196位(GACCTAAAGACAG TGCCAA)、539-557位(GAGGTGCTTCTTCTGCTAT)、648-666(GGAAGAGACTTTGTCCACA)。
     3.双链发卡样DNA sil78、si539和si648与pRNAT-U6.1重组后,都得到多个重组子,PCR扩增筛选鉴定和DNA测序分析证实得到的阳性重组子pRNAT-U6.1-si178、pRNAT-U6.1-si539、pRNAT-U6.1-si648与设计完全一致。
     4.过表达PTEN组(转染pCL-neo-PTEN)、沉默Livin 1组(转染pRNAT-U6.1-sil78)、沉默Livin 2组(转染pRNAT-U6.1-si539)、沉默Livin3组(转染pRNAT-U6.1-si648)、空载体1组(转染pCL-neo)和空载体2组(转染pRNAT-U6.1)细胞经G418筛选3w,均得到稳定转染细胞株。
     5.与空白对照相比,空载体1组和空载体2组的Livin mRNA和蛋白表达水平无明显变化,差异无显著性(P>0.05);与3个对照组比较,过表达PTEN组、沉默Livin 1组、沉默Livin 2组和沉默Livin3组细胞Livin mRNA和蛋白表达水平均显著降低,差异有显著性(P<0.05),其中沉默Livin 2组的相对表达量最低。
     6.过表达PTEN组细胞的PTEN mRNA和蛋白表达水平显著高于其它各组(P<0.01)
     第二部分体外调控PTEN基因和Livin基因表达对胃癌BGC823细胞生物学行为的影响
     方法
     切下沉默Livin效果最佳siRNA载体中的Livin siRNA单元,重组入PTEN基因表达载体pCL-neo-PTEN,得到表达PTEN基因、同时沉默Livin基因的调控载体pCL-neo-PTEN-siLivin,用LipofectamineTM2000包裹,然后将其转染BGC823细胞,G418筛选得到过表达PTEN同时沉默Livin基因的稳定转染细胞。与第一部分获得的单一过表达PTEN的胃癌BGC823细胞株、单一沉默Livin表达的胃癌BGC823细胞株一起作为实验对象,采用RT-PCR和Western-blot测定各组细胞Livin和PTEN mRNA和蛋白表达水平、MTT方法检测细胞增殖、流式细胞法检测细胞周期和细胞凋亡、EILSA检测Caspase-3和Caspase-9蛋白酶活性、Transwell方法检测细胞侵袭转移能力。
     结果
     1. EcoRI酶切鉴定重组子,得到2个条带(3.4Kb和3.8Kb),证实Livin siRNA单元成功插入;DNA序列测定确认得到阳性重组子。
     2.经G418筛选得到稳定转染pCL-neo-PTEN-siLivin的胃癌BGC823细胞株。
     3.与空白对照组和空载体对照组比较,调控组(稳定转染pCL-neo-PTEN-siLivin的BGC823细胞)、沉默Livin组(稳定转染pRNAT-U6.1-siLivin的BGC823细胞)和过表达PTEN组(稳定转染pCL-neo-PTEN的BGC823细胞)的Livin mRNA和蛋白表达水平均明显降低(P<0.05),其中调控组Livin mRNA和蛋白表达水平最低。
     4.与空白对照组和空载体对照组比较,过表达PTEN组和调控组细胞PTEN mRNA和蛋白表达水平显著升高,差异有显著性(P<0.01)。而过表达PTEN组和调控组细胞PTEN mRNA和蛋白表达水平无显著性差异(P>0.05),说明在PTEN表达载体pCL-neo-PTEN中插入Livin siRNA单元不影响PTEN表达的水平。
     5.在3d、4d和5d MTT检测细胞,与空白对照组和空载体对照组比较,调控组细胞OD值显著降低,差异有显著性(P<0.05)。
     6.与空白对照组和空载体对照组比较,调控组、沉默Livin组和过表达PTEN组细胞的Caspase-3和Caspase-9活性显著升高,差异有显著性(P<0.05),其中以调控组的提高更为显著。
     7.与空白对照组和空载体对照组比较,调控组、沉默Livin组和过表达PTEN组的细胞凋亡率显著升高(P<0.05)。与沉默Livin组和过表达PTEN组比较,调控组细胞凋亡率明显升高,差异有显著性(P<0.05)。
     8.与空白对照组和空载体对照组比较,调控组、沉默Livin组和过表达PTEN组穿透Matrigel的平均细胞数显著降低(P<0.05)。与沉默Livin组和过表达PTEN组比较,调控组穿透Matrigel的平均细胞数明显减少,差异有显著性(P<0.05)。
     第三部分调控PTEN/Livin的基因表达对裸鼠移植瘤生长的影响
     方法
     取调控PTEN/Livin基因表达的胃癌BGC823细胞、过表达PTEN的胃癌BGC823细胞、沉默Livin表达的胃癌BGC823细胞、空载体对照的胃癌BGC823细胞和胃癌BGC823细胞,调整细胞浓度至1×108/ml,在裸鼠右侧腋部皮下接种0.1ml。在注射接种后的第7d开始测定绘制肿瘤生长曲线,第28天测量肿瘤大小后处死裸鼠,取肿瘤组织称重。荧光定量RT-PCR和Western-blot检测PTEN和Livin mRNA和蛋白表达水平。
     结果
     1.裸鼠皮下细胞接种7d后均出现可见肿瘤块形成;调控组、过表达PTEN组和沉默Livin组移植瘤生长速度明显慢于空白对照组和空载体对照组(P<0.05)。
     2.调控组移植瘤平均瘤重215.42±35.15mg、过表达PTEN组移植瘤平均瘤重461.73±58.17mg、沉默Livin组移植瘤平均瘤重368.23±53.72mg,均显著低于空白对照组和空载体对照组移植瘤平均瘤重(1051.29±175.95mg和968.88±194.39mg),差异有显著性(P<0.05),其中以调控组移植瘤平均瘤重最小。
     3.与空白对照组、空载体组和沉默Livin组比较,调控组、过表达PTEN组的PTEN mRNA和蛋白表达水平显著升高,差异有显著性(P<0.01)。与空白对照组、空载体组比较,调控组、沉默Livin组、过表达PTEN组的Livin mRNA和蛋白表达水平显著降低,差异有显著性(P<0.05),其中以调控组最低。
     结论
     1.筛选得到过表达PTEN的胃癌BGC823细胞株、沉默Livin表达的胃癌BGC823细胞株和过表达PTEN同时又沉默Livin表达的胃癌BGC823细胞株。
     2.建立一种表达一个基因同时又沉默另一个基因的载体构建方法。
     3.过表达PTEN同时沉默Livin的调控可以有效抑制胃癌BGC823细胞的生长增殖、侵袭转移和促进细胞凋亡,比单一过表达PTEN或降低Livin表达的效果更为显著。
     4.在胃癌细胞中过表达PTEN同时沉默Livin的复合调控方法有可能成为胃癌治疗的有效策略。
Background and Objective
     Gastric cancer, as the fourth most commonly occurring cancer after lung, breast and colorectal cancers in order of incidence, is the main cause of cancer deaths for Chinese. However, the mechanisms for gastric cancer remain unknown by now. Many patients with gastric cancer express nonspecific symptoms in the early stage and some patients reach advanced stage before visiting the hospital. Therefore, although great progresses have been made in surgery, chemotherapy and radiation therapy, the five year survival rate of advanced gastric cancer is still very poor.
     Many studies indicated that a lot of factors were involved in the development and progression of gastric cancer, including the loss of anti-oncogene, oncogene mutation, decrease in DNA damage and repair function, abnormality of signaling pathways and apoptosis, indicating that the development and progression of gastric cancer is a process with multifactor, multistage and multistep.
     Phosphatase and tensin homology deleted on chromosome ten (PTEN), as an anti-oncogene possessing lipid and protein phosphatase activities, could inhibit cell proliferation and migration, and promote cell apoptosis by inhibiting phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway. It is reported that PTEN deletion, mutation and methylation result in tumorigenesis due to the lack of anti-cancer function. Some studies proved that tissue from gastric cancer developed decreased PTEN and the expression of PTEN was negatively correlated with the size of tumor, Borrmann type, lymph node metastasis and cancer staging, indicating that the loss of PTEN was a possible mechanism for gastric cancer.
     Livin, a novel member of inhibitor of apoptosis protein (IAP) family, inhibits apoptosis and promotes the growth of cancer cells by binding to cysteine aspartate-specific protease. Over-expression of livin in many tumor cells including gastric cancer has been reported, and many studies indicated that silencing of livin gene inhibited the proliferation of cancer cells as a result of promoting apoptosis, demonstrating that the over-expression of livin is related to the development, progression and prognosis of tumor.
     In this study, three kinds of gastric tumor cell lines with different expression of PTEN and livin were established by using molecular biological techniques, including over-expression of PTEN, silencing of livin, and over-expression of PTEN with silencing of livin simultaneously. In vivo and in vitro experiments were employed to detect the effects of PTEN and livin on growth, proliferation, apoptosis and migration of gastric cancer cells, which provided new targets and methods for therapy of gastric cancer. Generally, this study included three parts as follows:Part 1 included the construction and identification of PTEN gene expression vector and livin gene siRNA vector; part 2 effects of PTEN and livin on biological behaviors of gastric cancer BGC823 cells were studied In vitro; Part 3 revealed the in vivo effects of PTEN and livin genes on growth of cancer in nude mice.
     Part 1 Construction and identification of PTEN gene expression vector and Livin gene SiRNA vector
     Methods
     The amplification primer with restriction enzyme cutting sites of EcoRI and SalI for all coding regions in PTEN gene was designed and used for amplification of pCMV6-PTEN by PCR. After digestion by EcoRI and SalI, PCR products were inserted into pCL-neo vector. Subsequently, the recombinants were identified by EcoRI and SalI digestion and the inserted fragments were sequenced. Three designed siRNA target sequences for livin gene transformed into hairpin-shaped single-chain DNA and subsequent double-chain DNA after annealing, and then was inserted into pRNAT-U6.1 vector. The recombinants were amplified, selected and transformed by PCR and the inserted fragments were sequenced. pCL-neo-PTEN and livin siRNA vectors were transfected into BGC823 cell line by LipofectamineTM2000, and stable transfected cell lines were selected by G418. Fluorescence quantitative RT-PCR and Western-Blot were used to detect mRNA and protein expression level of livin and PTEN in transfected BGC823 cells.
     Results
     1. PTEN cDNA ORF target gene with 1212bp was acquired by PCR. EcoRI/SalI digestion and DNA sequence analysis indicated that the recombinants of pCL-neo-PTEN was successfully constructed.
     2. Fifty candidate fragments were obtained after first selection through scanning of human livin cDNA (NM_139317) by RNAi explorer and siDESIGN center, and subsequent BLAST homological analysis confirmed three siRNA target sequences with 19 bp,178-196nt (GACCTAAAGACAGTGCCAA),539-557 nt (GAGGTG CTTCTTCTGCTAT) and 648-666 nt (GGAAGAGACTTTGTCC ACA).
     3. Amplification and selection by PCR and DNA sequence analysis indicated that the recombinants, which were acquired after recombination of hairpin-shaped double-chain DNA (si178, si539 and si648) with pRNAT-U6.1, were in accordance with expected.
     4. After selection for three weeks by G418, stable transfected cell lines were acquired in over-expression of PTEN group (transfection of pCL-neo-PTEN), silencing of livin group 1 (transfection of pRNAT-U6.1-si178), silencing of livin group 2 (transfection of pRNAT-U6.1-si539), silencing of livin group 3 (transfection of pRNAT-U6.1-si648), empty vector group 1 (transfection of pCL-neo) and empty vector group 2 (transfection of pRNAT-U6.1).
     5. There was no significant difference in mRNA and protein expression level of livin between blank group and empty vector groups (P>0.05). However, mRNA and protein expression level of livin in over-expression of PTEN group, silencing of livin group 1,2 and 3 decreased significantly compared with the above three control groups (P<0.05), and silencing of livin group 2 showed the lowest expression.
     6. The mRNA and protein expression level of PTEN in over-expression of PTEN group increased significantly in comparison with other groups (P<0.01).
     Part 2 Effects of PTEN and Livin on biological behaviors of gastric cancer BGC823 cells in vitro
     Methods
     Livin siRNA was cut from livin siRNA vector with the best silencing effect and then was recombined with pCL-neo-PTEN. Thus, pCL-neo-PTEN-siLivin which over-expressed PTEN and silenced livin simultaneously was obtained, and then was transfected into BGC823 cells by LipofectamineTM2000 subsequently. After stable transfected cell line was selected by G418, RT-PCR and Western-blot techniques were used to detect mRNA and protein expression level of livin and PTEN in over-expression of PTEN group, silencing of livin group and over-expression of PTEN with silencing of livin simultaneously group (regulation group). MTT, flow cytometry method, ELISA and Transwell methods were employed to study cell proliferation, cell cycle and apoptosis, activities of caspase-3 and caspase-9 proteinases and cell invasion respectively.
     Results
     1. After EcoRI digestion of recombinants, two fragments (3.4kb and 3.8kb) were acquired, indicating successful insertion of livin siRNA. Positive recombinants were confirmed by DNA sequence analysis.
     2. Gastric cancer BGC823 cell line with stable transfection of pCL-neo-PTEN- siLivin was acquired by G418 selection.
     3. The mRNA and protein expression level of livin in regulation group (BGC823 cell line with stable transfection of pCL-neo-PTEN-siLivin), silencing of livin group (BGC823 cell line with stable transfection of pRNAT-U6.1-siLivin) and over-expression of PTEN group (BGC823 cell line with stable transfection of pCL-neo-PTEN) decreased significantly compared with blank group and empty vector group (P<0.05), and regulation group developed the lowest mRNA and expression of livin.
     4. Compared with blank group and empty vector group, mRNA and protein expression level of PTEN in over-expression of PTEN group and regulation group increased significantly (P<0.01). There was no significant difference between over-expression of PTEN group and regulation group (P>0.05), indicating that the insertion of livin siRNA into pCL-neo-PTEN did not affect the expression of PTEN.
     5. MTT technique revealed that OD value in regulation group decreased significantly at 3,4 and 5 days compared with control groups including blank group and empty vector group (P<0.05).
     6. The activities of caspase-3 and caspase-9 in regulation group, silencing of livin group and over-expression of PTEN group increased significantly in comparison with control groups including blank group and empty vector group (P<0.05), and regulation group showed the highest effects.
     7. Apoptosis in regulation group, silencing of livin group and over-expression of PTEN group elevated significantly compared with control groups including blank group and empty vector group (P<0.05), and regulation group expressed higher apoptosis compared with silencing of livin group and over-expression of PTEN group (P<0.05).
     8. The average cell numbers which passed through matrigel in regulation group, silencing of livin group and over-expression of PTEN group decreased significantly compared with control groups including blank group and empty vector group (P<0.05), and regulation group showed reduced cell invasion compared with silencing of livin group and over-expression of PTEN group (P<0.05).
     Part 3 Effects of PTEN/Livin expression on implanted tumor in nude mice
     Methods
     Different gastric cancer BGC823 cells, including regulation group, over-expression of PTEN group, silencing of livin group, empty vectors group and blank group, were injected subcutaneously into the right oxter of nude mice (0.1mL, 1×108/mL). Tumor-growth curve was found 7 days after injection. Tumors were measured, isolated and weighed on the 28th days. Fluorescence quantitative RT-PCR and Western-blot were used to detect mRNA and protein expression of PTEN and livin.
     Results
     1. Implanted tumors were observed apparently 7 days after injection. The growth of tumors in regulation group, over-expression of PTEN group and silencing of livin group were significantly lower than those of blank group and empty vector group (P<0.05).
     2. The average tumor weight in regulation group, over-expression of PTEN group and silencing of livin group were 215.42±35.15,461.73±58.17 and 368.23±53.72mg respectively, which were significantly lower than those of blank group and empty vector group (1051.29±175.95 and 968.88±194.39mg respectively, P<0.05). Regulation group developed the lowest tumor weight.
     3. PTEN mRNA and protein expression level in regulation group and over-expression of PTEN group increased significantly compared with blank group, empty vector group and silencing of livin group (P<0.01). mRNA and protein expression level of livin in regulation group, silencing of livin group and over-expression of PTEN group decreased significantly in comparison with blank group and empty vector group (P<0.05), and regulation group showed the lowest expression.
     Conclusions
     1. Different gastric cancer BGC823 cell lines, including over-expression of PTEN, silencing of livin, over-expression of PTEN and silencing of livin simultaneously, were established successfully.
     2. The technique about how to constructing a vector which expressed one gene and silenced another gene simultaneously was founded.
     3. Over-expression of PTEN and silencing of livin simultaneously obviously inhibited growth, proliferation, invasion and migration of gastric cancer cells, which was more effective than that of single over-expression of PTEN or silencing of livin.
     4. The complex of over-expression of PTEN and silencing of livin in gastric cancer cells was a potential method for gastric cancer therapy.
引文
[1]Song PP, Wu QA, Huang Y. Multidisciplinary Team and Team Oncology Medicine research and development in China. Biosci Trends,2010,4(4):151-160.
    [2]Dhar M, Rao S, Vijaysimha R. Population Based Studies of Cancer Survival:Scope for the Developing Countries. Asian Pac J Cancer Prev,2010,11(3):831-838.
    [3]Yoo KY. Cancer prevention in the Asia Pacific region. Asian Pac J Cancer Prev,2010,11 (4):839-844.
    [4]Long N, Moore MA, Chen W, et al. Cancer epidemiology and control in north-East Asia-past, present and future. Asian Pac J Cancer Prev,2010,2:107-148.
    [5]Cheung TK, Wong BC. Treatment of Helicobacter pylori and prevention of gastric cancer. J Dig Dis,2008,9(1):8-13.
    [6]Yeoh KG. How do we improve outcomes for gastric cancer? J Gastroenterol Hepatol, 2007,22(7):970-972.
    [7]Zhu XD, Li J. Gastric carcinoma in China:Current status and future perspectives. Oncol Lett.2010,1(3):407-412.
    [8]Saka M, Morita S, Fukagawa T, et al. Present and future status of gastric cancer surgery. Jpn J Clin Oncol,2011,41(3):307-313.
    [9]Nobili S, Bruno L, Landini I, et al. Genomic and genetic alterations influence the progression of gastric cancer. World J Gastroenterol,2011,17(3):290-299.
    [10]Yonemura Y, Endou Y, Sasaki T, et al. Surgical treatment for peritoneal carcinomatosis from gastric cancer. Eur J Surg Oncol,2010,36(12):1131-1138.
    [11]Catalano V, Graziano F, Santini D, et al. Second-line chemotherapy for patients with advanced gastric cancer:who may benefit? Br J Cancer,2008,99(9):1402-1407.
    [12]Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science,1997,275 (5308):1943-1947.
    [13]Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem,1998,273(22): 13375-13378.
    [14]Stambolic V, Suzuki A, de la Pompa JL, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell,1998,95(1):29-39.
    [15]She QB, Solit DB, Ye Q, et al. The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell, 2005,8(4):287-297.
    [16]DeFeo-Jones D, Barnett SF, Fu S, et al. Tumor cell sensitization to apoptotic stimuli by selective inhibition of specific Akt/PKB family members. Mol Cancer Ther,2005,4(2): 271-279.
    [17]Wang Q, Zhou Y, Wang X, et al. Regulation of PTEN expression in intestinal epithelial cells by c-Jun NH2-terminal kinase activation and nuclear factor-kappaB inhibition. Cancer Res,2007,67(16):7773-7781.
    [18]Romashkova JA, Makarov SS. NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature,1999,401(6748):86-90.
    [19]Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology,2007,133(2): 647-658.
    [20]Katoh M. WNT/PCP signaling pathway and human cancer (review). Oncol Rep,2005, 14(6):1583-1588.
    [21]Zheng HC, Sun JM, Li XH, et al. Role of PTEN and MMP-7 expression in growth, invasion, metastasis and angiogenesis of gastric carcinoma. Pathol Int,2003,53 (10):659-666.
    [22]Zheng HC, Li YL, Sun JM, et al. Growth, invasion, metastasis, differentiation, angiogenesis and apoptosis of gastric cancer regulated by expression of PTEN encoding products. World J Gastroenterol,2003,9(8):1662-1666.
    [23]Samuels Y, Ericson K. Oncogenic PI3K and its role in cancer. Curr Opin Oncol,2006, 18(1):77-82.
    [24]Lee HS, Lee HK, Kim HS, et al. Tumour suppressor gene expression correlates with gastric cancer prognosis. J Pathol,2003,200(1):39-46.
    [25]Oki E, Kakeji Y, Baba H, et al. Impact of loss of heterozygosity of encoding phosphate and tensin homolog on the prognosis of gastric cancer. J Gastroenterol Hepatol,2006,21(5): 814-818.
    [26]Kang YH, Lee HS, Kim WH. Promoter methylation and silencing of PTEN in gastric carcinoma. Lab Invest,2002,82(3):285-91.
    [27]Kasof GM, Gomes BC. Livin, a novel inhibitor of apoptosis protein family member. J Biol Chem,2001,276(5):3238-3246.
    [28]Crnkovic-Mertens I, Hoppe-Seyler F, Butz K. Induction of apoptosis in tumor cells by siRNA-mediated silencing of the livin/ML-IAP/KIAP gene. Oncogene,2003,22(51):8330-8336.
    [29]Tanabe H, Yagihashi A, Tsuji N, et al. Expression of survivin mRNA and livin mRNA in non-small-cell lung cancer. Lung Cancer,2004,46(3):299-304.
    [30]Gazzaniga P, Gradilone A, Giuliani L, et al. Expression and prognostic significance of LIVIN, SURVIVIN and other apoptosis-related genes in the progression of superficial bladder cancer. Ann Oncol,2003,14(1):85-90.
    [31]Crnkovic-Mertens I, Wagener N, Semzow J, et al. Targeted inhibition of Livin resensitizes renal cancer cells towards apoptosis. Cell Mol Life Sci,2007,64(9):1137-1144.
    [32]Crnkovic-Mertens I, Semzow J, Hoppe-Seyler F, et al. Isoform-specific silencing of the Livin gene by RNA interference defines Livin beta as key mediator of apoptosis inhibition in HeLa cells. J Mol Med,2006,84(3):232-240.
    [33]Nishihara H, Kizaka-Kondoh S, Insel PA, et al. Inhibition of apoptosis in normal and transformed intestinal epithelial cells by cAMP through induction of inhibitor of apoptosis protein (IAP)-2. Proc Natl Acad Sci USA,2003,100(15):8921-8926.
    [34]Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391 (6669):806-811.
    [35]Sharp PA. RNA interference-2001. Genes Dev,2001,15(5):485-490.
    [36]Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature,2001,409(6818):363-366.
    [37]Pelissier T, Wassenegger M.A. DNA target of 30 bp is sufficient for RNA-directed DNA methylation. RNA,2000,6(1):55-65.
    [38]Tuschl T, Borkhardt A. Small interfering RNAs:a revolutionary tool for the analysis of gene function and gene therapy. Mol Interv,2002,2(3):158-167.
    [39]McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet,2002,3(10):737-747.
    [40]Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature,2001,411(6836):494-498.
    [41]Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev,2001,15(2):188-200.
    [42]Lagos-Quintana M, Rauhut R, Lendeckel W et al. Identification of novel genes coding for small expressed RNAs. Science,2001,294(5543):853-858.
    [43]Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol,2004,22(3):326-330.
    [44]Ui-Tei K, Naito Y, Takahashi F, et al. Guid elines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res,2004,32 (3):936-948.
    [45]Jagla B, Aulner N, Kelly PD, et al. Sequence characteristics of functional siRNAs. RNA, 2005,11(6):864-872.
    [46]Yu B, Yang Z, Li J, et al. Methylation as a crucial step in plant microRNA biogenesis. Science,2005,307(5711):932-925.
    [47]Roth BM, Pruss GJ, Vance VB. Plant viral suppressors of RNA silencing. Virus Res, 2004,102(1):97-108.
    [48]Agrawal N, Dasaradhi PV, Mohmmed A, et al. RNA interference:biology, mechanism, and applications. Microbiol Mol Biol Rev,2003,67(4):657-685.
    [1]Morille M, Passirani C, Vonarbourg A, et al. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials,2008,29(24-25):3477-3496.
    [2]Liu B, Han M, Wen JK, Wang L. Livin/ML-IAP as a new target for cancer treatment. Cancer Lett,2007,250(2):168-176.
    [3]Saif MW, Zalonis A, Syrigos K. The clinical significance of autoantibodies in gastrointestinal malignancies:an overview. Expert Opin Biol Ther,2007,7(4):493-507.
    [4]Chang H, Schimmer AD. Livin/melanoma inhibitor of apoptosis protein as a potential therapeutic target for the treatment of malignancy. Mol Cancer Ther,2007,6(1)24-30.
    [5]Arora V, Cheung HH, Plenchette S, et al. Degradation of survivin by the X-linked inhibitor of apoptosis (XIAP)-XAF1 complex. J Biol Chem,2007,282(36):26202-26209.
    [6]Crnkovic-MertensI, Hoppe-Seyler F, Butz K. Induction of apoptosis in tumor cells by siRNA-mediated silencing of the livin/ML-IAP/KIAP gene. Oncogene,2003,22 (51):8330-8336.
    [7]Liu T, Brouha B, Grossman D. Rapid induction of mitochondrial events and caspase-independent apoptosis in Survivin-targeted melanoma cells. Oncogene,2004,23(1):39-48.
    [8]Vucic D, Stennicke HR, Pisabarro MT, et al. ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol,2000,10(21):1359-1366.
    [9]Kasof GM, Gomes BC. Livin a novel inhibitor of apoptosis protein family membe. J Biol Chem,2001,276(5):3238-3246.
    [10]LaCasse EC, Mahoney DJ, Cheung HH, et al. IAP-targeted therapies for cancer. Oncogene, 2008,27(48):6252-6275.
    [11]Nishihara H, Kizaka-Kondoh S, Insel, et al. PA Inhibition of apoptosis in normal and transformed intestinal epithelial cells by cAMP through induction of inhibitor of apoptosis protein (IAP)-2. Proc Natl Acad Sci USA,2003,100(15):8921-8926.
    [12]Ashhab Y, Alian A, Polliack A, et al. Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern. FEBS Lett,2001,495(122):56-60.
    [13]Vucic D, Stennicke HR, Pisabarro MT, et al. ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol,2000,10(21):1359-66.
    [14]Nedelcu T, Kubista B, Koller A, et al. Livin and Bcl-2 expression in high-grade osteosarcoma. J Cancer Res Clin Oncol,2008,134(2):237-244.
    [15]Hussein MR, Haemel AK, Wood GS. Apoptosis and melanoma:molecular mechanisms. J Pathol,2003,199(3):275-288.
    [16]Slagsvold JE, Pettersen CH, Stφrvold GL, et al. DHA alters expression of target proteins of cancer therapy in chemotherapy resistant SW620 colon cancer cells. Nutr Cancer,2010,62 (5):611-621.
    [17]Nishihara H, Kizaka-Kondoh S, Insel PA. et al.Inhibition of apoptosis in normal and transformed intestinal epithelial cells by cAMP through induction of inhibitor of apoptosis protein (IAP)-2. Proc Natl Acad Sci USA,2003,100(15):8921-8926.
    [18]Puc J, Parsons R. PTEN loss inhibits CHK1 to cause double stranded-DNA breaks in cells. Cell Cycle,2005,4(7):927-929.
    [19]Puc J, Keniry M, Li HS, et al. Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell,2005,7(2):193-204.
    [20]Schlaepfer DD, Mitra SK. Multiple connections link FAK to cell motility and invasion. Curr Opin Genet Dev,2004,14(1):92-101.
    [21]Ehrenschwender M, Siegmund D, Wicovsky A, et al. Mutant PIK3CA licenses TRAIL and CD95L to induce non-apoptotic caspase-8-mediated ROCK activation.Cell Death Differ, 2010,17(9):1435-1447.
    [22]Krex D, Mohr B, Hauses M, et al. Identification of uncommon chromosomal aberrations in the neuroglioma cell line H4 by spectral karyotyping. J Neurooncol,2001,52(2):119-128.
    [23]Hirao T, Urata Y, Kageyama K, et al. Dehydroepiandrosterone augments sensitivity to gamma-ray irradiation in human H4 neuroglioma cells through down-regulation of Akt signaling. Free Radic Res,2008,42(11-12):957-965.
    [24]Kwon CH, Zhu X, Zhang J, et al. Pten regulates neuronal soma size:a mouse model of Lhermitte-Duclos disease. Nat Genet,2001,29:404-411.
    [25]Marino S, Krimpenfort P, Leung C, et al. PTEN is essential for cell migration but not for fate determination and tumourigenesis in the cerebellum. Development,2002,129 (14): 3513-3522.
    [26]Li L, Liu F, Salmonsen RA, et al. PTEN in neural precursor cells:regulation of migration, apoptosis, and proliferation. Mol Cell Neurosci,2002,20(1):21-29.
    [27]Zhang J, Grindley JC, Yin T, et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature,2006,441 (7092):518-522.
    [28]Yilmaz OH, Morrison SJ. The PI-3kinase pathway in hematopoietic stem cells and leukemia-initiating cells:a mechanistic difference between normal and cancer stem cells. Blood Cells Mol Dis,2008,41(1):73-76.
    [29]Groszer M, Erickson R, Scripture-Adams DD, et al. PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry. Proc Natl Acad Sci USA,2006, 103:111-116.
    [30]Chen Z, Trotman LC, Shaffer D, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature,2005,436 (7051):725-730.
    [31]Zhou M, Gu L, Findley HW, et al. PTEN reverses MDM2-mediated chemotherapy resistance by interacting with p53 in acute lymphoblastic leukemia cells. Cancer Res, 2003,63:6357-6362.
    [32]Chang CJ, Mulholland DJ, Valamehr B, et al. PTEN nuclear localization is regulated by oxidative stress and mediates p53-dependent tumor suppression. Mol Cell Biol,2008, 28(10):3281-3289.
    [33]Freeman DJ, Li AG, Wei G, et al. PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and-independent mechanisms. Cancer Cell,2003,3: 117-130.
    [34]Mayo LD, Dormer DB. The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem Sci,2002,27(9):462-467.
    [35]Choi HJ, Chung TW, Kang SK, et al. Ganglioside GM3 modulates tumor suppressor PTEN-mediated cell cycle progression--transcriptional induction of p21(WAF1) and p27(kip1)by inhibition of PI-3K/AKT pathway. Glycobiology,2006,16(7):573-583.
    [36]Kim JS, Lee C, Bonifant CL, Ressom H, et al. Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA. Mol Cell Biol,2007, 27:662-677.
    [1]Tanabe H, Yagihashi A, Tsuji N, et al. Expression of survivin mRNA and livin mRNA in non-small-cell lung cancer. Lung Cancer,2004,46(3):299-304.
    [2]Augello C, Caruso L, Maggioni M, et al. Inhibitors of apoptosis proteins (IAPs) expression and their prognostic significance in hepatocellular carcinoma. BMC Cancer,2009,9:125.
    [3]Wang TS, Ding QQ, Guo RH, et al. Expression of livin in gastric cancer and induction of apoptosis in SGC-7901 cells by shRNA-mediated silencing of livin gene. Biomed Pharmacother,2010,64(5):333-338.
    [4]Gazzaniga P, Gradilone A, Giuliani L, et al. Expression and prognostic significance of livin, survivin and other apoptosis related genes in the progression of superficial bladder cancer. Ann Oncol,2003,14(1):85-90.
    [5]Crnkovic Mertens I, Wagener N, Semzow J, et al. Targeted inhibition of Livin resensitizes renal cancer cells towards apoptosis.Cell Mol Life Sci,2007,64 (9):1137-1144.
    [6]Crnkovic-Mertens I, Semzow J, Hoppe-Seyler F, et al. Isoform-specific silencing of the Livin gene by RNA interference de2 fines Livin beta as key mediator of apoptosis inhibition in HeLa cells. Mol Med,2006,84(3):232-240.
    [7]Yang D, Song X, Zhang J, et al. Therapeutic potential of siRNA-mediated combined knockdown of the IAP genes (Livin, XIAP, and Survivin) on human bladder cancer T24 cells. Acta Biochim Biophys Sin,2010,42(2):137-144.
    [8]Nishihara H, Kizaka-Kondoh S, et al. Inhibition of apoptosis in normal and transformed intestinal epithelial cells by cAMP through induction of inhibitor of apoptosis protein (IAP)-2. Proc Natl Acad Sci USA,2003,100(15):8921-8926.
    [9]Saka M, Morita S, Fukagawa T, et al. Present and future status of gastric cancer surgery. Jpn J Clin Oncol,2011,41 (3):307-313.
    [10]Yeoh KG. How do we improve outcomes for gastric cancer? J Gastroenterol Hepatol,2007, 22 (7):970-972.
    [11]Zhu XD, Li J. Gastric carcinoma in China:Current status and future. Oncology Lett,2010, 1(3):407-412.
    [12]Yin Y, Shen WH. PTEN:a new guardian of the genome. Oncogene,2008,27(41):5443-5453.
    [13]Podsypanina K, Ellenson LH, Nemes A, et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA,1999,96:1563-1568.
    [14]Bruni P, Boccia A, Baldassarre G, et al. PTEN expression is reduced in a subset of sporadic thyroid carcinomas:evidence that PTEN-growth suppressing activity in thyroid cancer cells mediated by p27kip1. Oncogene,2000,19(28):3146-3155.
    [15]Samuels Y, Ericson K. Oncogenic PI3K and its role in cancer. Curr Opin Onco,2006, 18(1):77-82.
    [16]Gurin CC, Federici MG, Kang L, et al. Causes and consequences of microsatellite instability in endometrial carcinoma. Cancer Res,1999,59(2):462-466.
    [17]Katoh M. WNT/PCP signaling pathway and human cancer. Oncol Rep,2005,14(6):1583-1588.
    [18]Zheng HC, Sun JM, Li XH, et al. Role of PTEN and MMP-7 expression in growth, invasion, metastasis and angiogenesis of gastric carcinoma. Pathol Int,2003,53(10):659-666.
    [19]Bai Z, Zhang Z, Ye Y, et al. Sodium butyrate induces differentiation of gastric cancer cells to intestinal cells via the PTEN/phosphoinositide 3-kinase pathway. Cell Biol Int,2010,34 (12):1141-1145.
    [20]Samuels Y, Ericson K. Oncogenic PI3K and its role in cancer. Curr Opin Oncol,2006, 18(1):77-82.
    [21]Zheng HC, Takahashi H, Murai Y, et al. Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res,2006,26(5A):3579-3583.
    [22]Park, Geun Soo, Joo, Young, et al. Expression of PTEN and its correlation with angiogenesis in gastric carcinoma.Korean J Gastroenterol,2005,46(3):196-203.
    [23]Zhou YJ, Xiong YX, Wu XT, et al. Inactivation of PTEN is associated with increased angiogenesis and VEGF overexpression in gastric cancer. World J Gastroenterol,2004,10 (21):3225-32299.
    [24]Zheng HC, Li YL, Sun JM, et al.Growth, invasion, metastasis, differentiation, angiogenesis and apoptosis of gastric cancer regulated by expression of PTEN encoding products.World J Gastroenterol,2003,9(8):1662-1666.
    [25]Kang YH, Lee HS, Kim WH. Promoter methylation and silencing of PTEN in gastric carcinoma. Lab Invest,2002,82(3):285-291.
    [26]Li VS, Wong CW, Chan TL, et al. Mutations of PIK3CA in gastric adenocarcinoma. BMC Cancer,2005,5:29.
    [27]Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science,1997,275(5308):1943-1947.
    [28]Mazzoletti M, Broggini M. PI3K/AKT/mTOR inhibitors in ovarian cancer. Curr Med Chem,2010,17(36):4433-4447.
    [29]She QB, Solit DB, Ye Q, et al. The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer cell,2005,8(4):287-297.
    [30]DeFeo-Jones D, Barnett SF, Fu S, et al. Tumor cell sensitization to apoptotic stimuli by selective inhibition of specific Akt/PKB family members.Mol Cancer ther,2005,4(2): 271-279.
    [31]Wang QD, Zhou YN, Wang XF, et al. Regulation of PTEN expression in intestinal epithelial cells by c-jun NH2-terminal kinase activation and nuclear factor-kappa B inhibition. Cancer Res,2007,67(16):7773-7781.
    [32]Romashkova JA, Makarov SS. NF-kappaB is a target of AKT in anti- apototic PDGF signaling. Nature,1999,401:86-90.
    [33]Meng FY, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology,2007, 133(2):647-658.
    [1]Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet,2006,7:606-619.
    [2]Haucke V. Phosphoinositide regulation of clathrin-mediated endocytosis. Biochem Soc Trans,2005,33(6):1285-1289.
    [3]Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA,2005,102:14238-14243.
    [4]Nair U, Cao Y, Xie Z, et al. Roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway. J Biol Chem,2010,285(15):11476-11488.
    [5]Mora A, Komander D, van Aalten DM, Alessi DR. PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol,2004,15:161-170.
    [6]Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science,2005,307:1098-1101.
    [7]Bozulic L, Hemmings BA. PIKKing on PKB:regulation of PKB activity by phosphorylation. Curr Opin Cell Biol,2009,21(2):256-261.
    [8]Liao XH, Majithia A, Huang X, et al. Growth control via TOR kinase signaling, an intracellular sensor of amino acid and energy availability, with crosstalk potential to proline metabolism. Amino Acids,2008,35(4):761-770.
    [9]Zbuk KM, Eng C. Cancer phenomics:RET and PTEN as illustrative models. Nat Rev Cancer,2007,7(1):35-45.
    [10]Chen HM, Fang JY. Genetics of the hamartomatous polyposis syndromes:a molecular review. Int J Colorectal Dis,2009,24(8):865-874.
    [11]Manning BD, Cantley LC. AKT/PKB signaling:navigating downstream. Cell,2007,129 (7):1261-1274.
    [12]Martinez A, Castro A, Dorronsoro I, et al. Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Med Res Rev,2002,22(4):373-384.
    [13]Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer,2002,2:489-501.
    [14]DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab,2008,7(1): 11-20.
    [15]Willard SS, Devreotes PN. Signaling pathways mediating chemotaxis in the social amoeba, Dictyostelium discoideum. Eur J Cell Biol,2006,85(9-10):897-904.
    [16]Ling LE, Druker BJ, Cantley LC, et al. Transformation-defective mutants of polyomavirus middle T antigen associate with phosphatidylinositol 3-kinase (PI 3-kinase) but are unable to maintain wild-type levels of PI 3-kinase products in intact cells. J Virol,1992,66(3): 1702-1708.
    [17]Martins TJ, Sugimoto Y, Erikson RL. Dissociation of inositol trisphosphate from diacylglycerol production in Rous sarcoma virus-transformed fibroblasts. J Cell Biol, 1989,108(2):683-691.
    [18]Otsu M, Hiles I, Gout I, Fry MJ, Ruiz-Larrea F, et al. Characterization of two 85 kD proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell,1991,65(1):91-104.
    [19]Escobedo JA, Navankasattusas S, Kavanaugh WM, et al. cDNA cloning of a novel 85 kD protein that has SH2 domains and regulates binding of PI3-kinase to the PDGFβreceptor. Cell,1991,65(1):75-82.
    [20]Kavanaugh WM, Klippel A, Escobedo JA, et al. Modification of the 85-kilodalton subunit of phosphatidylinositol-3 kinase in platelet-derived growth factor-stimulated cells. Mol Cell Biol,1992,12(8):3415-3424
    [21]Cooper JA, Kashishian A. In vivo binding properties of SH2 domains from GTPase-activating protein and phosphatidylinositol 3-kinase. Mol Cell Biol,1993,13(3):1737-1745.
    [22]Chang HW, Aoki M, Fruman D, et al. Transformation of chicken cells by the gene encoding the catalytic subunit of PI3-kinase. Science,1997,276 (5320):1848-1850.
    [23]Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science,2004,304 (5670):554.
    [24]Vogt PK, Kang S, Elsliger MA, et al. Cancer-specific mutations in phosphatidylinositol 3-kinase. Trends Biochem Sci,2007,32:342-349.
    [25]Kang S, Bader AG, Vogt PK. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci USA,2005,102 (3):802-807.
    [26]Samuels Y, Ericson K. Oncogenic PI3K and its role in cancer. Curr Opin Oncol,2006, 18(1):77-82.
    [27]Samuels Y, Diaz LA Jr, Schmidt-Kittler O, et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell,2005,7:561-573.
    [28]Zhao JJ, Liu Z, Wang L, Shin E,et al. The oncogenic properties of mutant p110a and p110(3 phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc Natl Acad Sci USA,2005;102:18443-18448.
    [29]Pirola L, Zvelebil MJ, Bulgarelli-Leva G, et al. Activation loop sequences confer substrate specificity to phosphoinositide 3-kinase alpha (PI3Kalpha). Functions of lipid kinase-deficient PI3Kalpha in signaling. J Biol Chem,2001,276(24):21544-21554.
    [30]Miled N, Yan Y, Hon WC, et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science,2007,317:239-242.
    [31]Huang CH, Mandelker D, Schmidt-Kittler O, Samuels Y, Velculescu VE, et al. The structure of a human p110a/p85a complex elucidates the effects of oncogenic PI3Ka mutations. Science,2007,318:1744-1748.
    [32]Gupta S, Ramjaun AR, Haiko P, et al. Binding of ras to phosphoinositide 3-kinase p110α is required for ras-driven tumorigenesis in mice. Cell,2007,129(5):9575-68.
    [33]Jiang BH, Liu LZ. PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res,2009,102:19-65.
    [34]Staal SP. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2:amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA,1987,84:5034-5037.
    [35]Knobbe CB, Reifenberger G. Genetic alterations and aberrant expression of genes related to thephosphatidyl-inositol-3-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Brain Pathol,2003,13:507-518.
    [36]Actor B, Cobbers JM, Buschges R, et al. Comprehensive analysis of genomic alterations in gliosarcoma and its two tissue components. Genes Chromosom Cancer,2002,34 (4):416-427.
    [37]Pedrero JM, Carracedo DG, Pinto CM, et al. Frequent genetic and biochemical alterations of the PI 3-K/AKT/PTEN pathway in head and neck squamous cell carcinoma. Int J Cancer, 2005,114(2):242-248.
    [38]Nakayama K, Nakayama N, Kunnan RJ, Cope L, Pohl G, et al. Sequence mutations and amplification of PIK3CA and AKT2 genes in purified ovarian serous neoplasms. Cancer Biol Ther,2006,5(2):779-785.
    [39]Ruggeri BA, Huang L, Wood M, et al. Amplification and overexpression of the AKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas. Mol Carcinog,1998, 21(2):81-86.
    [40]Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer,1995,64(4):280-285.
    [41]Carpten JD, Faber AL, Horn C, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature,2007,448:439-444.
    [42]Rhei E, Kang L, Bogomolniy F, et al. Mutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in primary breast carcinomas. Cancer Res,1997,57(17):3657-3659.
    [43]Li DM, Sun H. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor β.Cancer Res,1997,57: 2124-2129.
    [44]Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science,1997,275(5308):1943-1947.
    [45]Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem,1998,273: 13375-13378.
    [46]Bonneau D, Longy M. Mutations of the human PTEN gene. Hum Mutat,2000,16(2):109-122.
    [47]Ramaswamy S, Nakamura N, Vazquez F, et al Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci USA,1999,96(5):2110-2115.
    [48]Furnari FB, Fenton T, Bachoo RM, et al. Malignant astrocytic glioma:genetics, biology, and paths to treatment. Genes Dev,2007,21:2683-2710.
    [49]Dizon DS. Treatment options for advanced endometrial carcinoma. Gynecol Oncol,2010, 117(2):373-381.
    [50]Suzuki A, Nakano T, Mak TW, Sasaki T. Portrait of PTEN:messages from mutant mice. Cancer Sci,2008,99:209-213.
    [51]Oda K, Stokoe D, Taketani Y, et al. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res,2005,65:10669-10673.
    [52]Hayes MP, Wang H, Espinal-Witter R, et al. PIK3CA and PTEN mutations in uterine endometrioid carcinoma and complex atypical hyperplasia. Clin Cancer Res,2006,12: 5932-5935.
    [53]Dahia PM, Gimm O, Chi H, et al. Absence of germline mutations in MINPP1, a phosphatase encoding gene centromeric of PTEN, in patients with Cowden and Bannayan-Riley-Ruvalcaba syndrome without germline PTEN mutations. J Med Genet,2000,37(9): 715-717.
    [54]Waite KA, Eng C. Protean PTEN:form and function. Am J Hum Genet,2002,70(4): 829-844.
    [55]Ming M, He YY. PTEN:new insights into its regulation and function in skin cancer. J Invest Dermatol,2009,129(9):2109-2112.
    [56]Saal LH, Gruvberger-Saal SK, et al. Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nat Genet,2008,40(1): 102-107.
    [57]Blando J, Portis M, Benavides F, et al. PTEN deficiency is fully penetrant for prostate adenocarcinoma in C57BL/6 mice via mTOR-dependent growth. Am J Pathol,2009,174 (5):1869-1879.
    [58]Lee JO, Yang H, Georgescu MM, et al. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell, 1999,99:323-334.
    [59]Vazquez F, Devreotes P. Regulation of PTEN function as a PIP3 gatekeeper through membrane interaction. Cell Cycle,2006,5:1523-1527.
    [60]Sun H, Enomoto T, Fujita M, et al. Mutational analysis of the PTEN gene in endometrial carcinoma and hyperplasia. Am J Clin Pathol,2001,115(1):32-38.
    [61]Gronbaek K, Zeuthen J, Guldberg P, et al. Alterations of the MMAC1/PTEN gene in lymphoid malignancies. Blood,1998,91(11):4388-4390.
    [62]Georgescu MM, Kirsch KH, Akagi T,et al. The tumor-suppressor activity of PTEN is regulated by its carboxyl-terminal region. Proc Natl Acad Sci USA,1999,96:10182-10187.
    [63]Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol,2004,22(14):2954-2963.
    [64]Koul D, Jasser SA, Lu Y, et al. Motif analysis of the tumor suppressor gene MMAC/PTEN identifies tyrosines critical for tumor suppression and lipid phosphatase activity. Oncogene, 2002,21:2357-2364.
    [65]Georgescu MM, Kirsch KH, Kaloudis P, et al. Stabilization and productive positioning roles of the C2 domain of PTEN tumor suppressor. Cancer Res,2000,60(24):7033-7038.
    [66]Das S, Dixon JE, Cho W. Membrane-binding and activation mechanism of PTEN. Proc Natl Acad Sci USA,2003,100:7491-7496.
    [67]Wang X, Shi Y, Wang J, et al. Crucial role of the C-terminus of PTEN in antagonizing NEDD4-1-mediated PTEN ubiquitination and degradation. Biochem J,2008,414(2): 221-229.
    [68]Okahara F, Itoh K, Nakagawara A, et al. Critical role of PICT-1, a tumor suppressor candidate, in phosphatidylinositol 3,4,5-trisphosphate signals and tumorigenic transformation. Mol Biol Cell,2006; 17:4888-4895.
    [69]Okahara F, Ikawa H, Kanaho Y,et al. Regulation of PTEN phosphorylation and stability by a tumor suppressor candidate protein. J Biol Chem,2004,279 (44):45300-45303.
    [70]Sitaram RT, Cairney CJ, Grabowski P, et al. The PTEN regulator DJ-1 is associated with hTERT expression in clear cell renal cell carcinoma. Int J Cancer,2009,125(4):783-790.
    [71]Okumura K, Zhao M, Depinho RA, et al. Cellular transformation by the MSP58 oncogene is inhibited by its physical interaction with the PTEN tumor suppressor. Proc Natl Acad Sci USA,2005,102(8):2703-2706.
    [72]Smith JS, Tachibana I, Lee HK, et al. Mapping of the chromosome 19 q-arm glioma tumor suppressor gene using fluorescence in situ hybridization and novel microsatellite markers. Genes Chromosomes Cancer,2000,29(1):16-25.
    [73]Barbashina V, Salazar P, Holland EC, et al. Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin Cancer Res, 2005,11(3):1119-1128.
    [74]Mora J, Cheung NK, Chen L, et al. Loss of heterozygosity at 19q13.3 is associated with locally aggressive neuroblastoma. Clin Cancer Res,2001,7(5):1358-1361.
    [75]Hartmann C, Johnk L, Kitange G, et al. Transcript map of the 3.7-Mb D19S112-D19S246 candidate tumor suppressor region on the long arm of chromosome 19. Cancer Res,2002, 62(14):4100-4108.
    [76]Bonifant CL, Kim JS, Waldman T, et al. NHERFs, NEP, MAGUKs, andmore: interactionsthatregulate PTEN. J Cell Biochem,2007,102(4):878-885.
    [77]Okumura K, Mendoza M, Bachoo RM, et al. PCAF modulates PTEN activity. J Biol Chem, 2006,281(36):26562-26568.
    [78]Seo JH, Ahn Y, Lee SR, et al. The major target of the endogenously generated reactive oxygen species in response to insulin stimulation is phosphatase and tensin homolog and not phosphoinositide-3 kinase (PI-3 kinase) in the PI-3 kinase/Akt pathway. Mol Biol Cell, 2005,16(1):348-357.
    [79]Nassif NT, Lobo GP, Wu X, et al. PTEN mutations are common in sporadic microsatellite stable colorectal cancer. Oncogene,2004,23(2):617-28.
    [80]Perren A, Komminoth P, Saremaslani P, et al. Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am J Pathol,2000,157:1097-1103.
    [81]Minaguchi T, Waite KA, Eng C. Nuclear localization of PTEN is regulated by Ca(2+) through a tyrosil phosphorylation-independent conformational modification in major vault protein. Cancer Res,2006,66(24):11677-11682.
    [82]Yu Z, Fotouhi-Ardakani N, Wu L, et al. PTEN associates with the vault particles in HeLa cells. J Biol Chem,2002,277:40247-40252.
    [83]Gil A, Andres-Pons A, Fernandez E, et al. Nuclear localization of PTEN by a Ran-dependent mechanism enhances apoptosis:involvement of an N-terminal nuclear localization domain and multiple nuclear exclusion motifs. Mol Biol Cell,2006,17:4002-4013.
    [84]Planchon SM, Waite KA, Eng C. The nuclear affairs of PTEN. J Cell Sci,2008,121(Pt 3): 249-53.
    [85]Trotman LC, Wang X, Alimonti A, et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell,2007,128:141-156.
    [86]Baker SJ. PTEN enters the nuclear age. Cell,2007,128(1):25-28.
    [87]Liu F, Wagner S, Campbell RB, Nickerson JA, Schiffer CA, Ross AH. PTEN enters the nucleus by diffusion. J. Cell Biochem,2005,96:221-234.
    [88]Puc J, Keniry M, Li HS, et al. Lack of PTEN equesters CHK1 and initiates genetic instability. Cancer Cell,2005,7:193-204.
    [89]Shen WH, Balajee AS, Wang J, et al. Essential role for nuclear PTEN inmaintaining chromosomal integrity. Cell,2007,128(1):157-170.
    [90]Wu Z, McRoberts KS, Theodorescu D. The role of PTEN in prostate cancer cell tropism to the bone micro-environment. Carcinogenesis,2007,28(7):1393-1400.
    [91]Raftopoulou M, Etienne-Manneville S, Self A, et al. Regulation of cell migration by the C2 domain of the tumor suppressor PTEN. Science,2004,303 (5661):1179-1181.
    [92]Tamura M, Gu J, Takino T, et al. Tumor suppressor PTEN inhibition of cell invasion, migration, and growth:differential involvement of focal adhesion kinase and p130Cas. Cancer Res,1999,59(2):442-449.
    [93]Kwon CH, Zhu X, Zhang J, et al. Pten regulates neuronal soma size:a mouse model of Lhermitte-Duclos disease. Nat Genet,2001,29:404-411.
    [94]Marino S, Krimpenfort P, Leung C, et al. PTEN is essential for cell migration but not for fate determination and tumourigenesis in the cerebellum. Development,2002,129 (14): 3513-3522.
    [95]Li L, Liu F, Salmonsen RA, et al. PTEN in neural precursor cells:regulation of migration, apoptosis, and proliferation. Mol Cell Neurosci,2002,20(1):21-29.
    [96]Zhang J, Grindley JC, Yin T, et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature,2006,441 (7092):518-522.
    [97]Yilmaz OH, Morrison SJ. The PI-3kinase pathway in hematopoietic stem cells and leukemia-initiating cells:a mechanistic difference between normal and cancer stem cells. Blood Cells Mol Dis,2008,41(1):73-76.
    [98]Groszer M, Erickson R, Scripture-Adams DD, et al. PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry. Proc Natl Acad Sci USA,2006, 103:111-116.
    [99]Chen Z, Trotman LC, Shaffer D, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature,2005,436 (7051):725-730.
    [100]Zhou M, Gu L, Findley HW, et al. PTEN reverses MDM2-mediated chemotherapy resistance by interacting with p53 in acute lymphoblastic leukemia cells. Cancer Res,2003, 63:6357-6362.
    [101]Chang CJ, Mulholland DJ, Valamehr B, et al. PTEN nuclear localization is regulated by oxidative stress and mediates p53-dependent tumor suppression. Mol Cell Biol,2008, 28(10):3281-3289.
    [102]Freeman DJ, Li AG, Wei G, et al. PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and-independent mechanisms. Cancer Cell,2003, 3:117-130.
    [103]Mayo LD, Donner DB. The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem Sci,2002,27(9):462-467.
    [104]Choi HJ, Chung TW, Kang SK, et al. Ganglioside GM3 modulates rumor suppressor PTEN-mediated cell cycle progression-transcriptional induction of p21(WAF1) and p27(kip1) by inhibition of PI-3K/AKT pathway. Glycobiology,2006,16(7):573-583.
    [105]Kim JS, Lee C, Bonifant CL, Ressom H, et al. Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA. Mol Cell Biol,2007,27: 662-677.
    [106]Yin Y, Shen WH. PTEN:a new guardian of the genome. Oncogene,2008,27(41):5443-53
    [107]Podsypanina K, Ellenson LH, Nemes A, et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA,1999,96:1563-1568.
    [108]Bruni P, Boccia A, Baldassarre G, et al. PTEN expression is reduced in a subset of sporadic thyroid carcinomas:evidence that PTEN-growth suppressing activity in thyroid cancer cells mediated by p27kipl. Oncogene,2000,19(28):3146-55.
    [109]Hennessy BT, Smith DL, Ram PT,et al. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov,2005,4:988-1004.
    [110]Kwon CH, Zhu X, Zhang J, et al. mTor is required for hypertrophy of Pten-deficient neuronal soma in vivo. Proc Natl Acad Sci USA,2003,100(22):12923-12928.
    [111]Yap TA, Garrett MD, Walton MI,et al. Targeting the PI3K-AKT-mTOR pathway:progress, pitfalls, and promises. Curr Opin Pharmacol,2008,8(4):393-412.
    [112]Chen JK, Chen J, Thomas G, et al. S6 kinase 1 knockout inhibits uninephrectomy-or diabetes-induced renal hypertrophy. Am J Physiol Renal Physiol,2009,297(3):585-593.
    [113]O'Reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res,2006,66:1500-1508.
    [114]Zhang H, Bajraszewski N, Wu E, et al. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest,2007,117(3):730-738.
    [115]Ma L, Teruya-Feldstein J, Behrendt N, et al. Genetic analysis of Pten and Tsc2 functional interactions in the mouse reveals asymmetrical haploinsufficiency in tumor suppression. Genes Dev,2005,19:1779-1786.
    [116]Marone R, Cmiljanovic V, Giese B, et al. Targeting phosphoinositide 3-kinase:moving towards therapy. Biochim Biophys Acta,2008,1784(1):159-185.
    [117]Fan QW, Knight ZA, Goldenberg DD, et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell,2006,9:341-349.
    [118]Raynaud FI, Eccles SA, Patel S, et al. Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases:from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol Cancer Ther,2009,8(7):1725-1738.
    [119]Dillon RL, Muller WJ. Distinct biological roles for the akt family in mammary tumor progression. Cancer Res,2010,70(11):4260-4264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700