用户名: 密码: 验证码:
一株对虾肠道益生菌的筛选及其作用机理和应用效果的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以益生性和安全性为筛选标准,从白斑病毒耐过中国明对虾肠道中分离到一株对虾专用益生菌,并对其作用机理和应用效果进行了研究。在此基础上探讨了该菌株的多种配伍及其应用效果。
     研究了从白斑病毒(WSSV)耐过中国明对虾(Fenneropenaeus chinensis)肠道中分离的一株海洋细菌B12的益生特性和安全性,并结合形态观察、生理生化特征和16S rDNA序列分析对菌株B12进行了分类鉴定。研究结果表明:菌株B12是一株安全的益生菌株。鉴定结果证实B12为嗜盐单胞菌属Halomonas sp.。
     研究了不同给予方式(浸浴或口服),不同给予时间(间隔或连续),不同添加剂量和不同添加形式(活菌或灭活菌)的益生菌B12对中国明对虾幼体,中国明对虾稚虾或养成期日本囊对虾(Marsupenaeus japonicus)成活率、免疫力、抗病力、肠道菌群组成、中肠组织结构或养殖水体水质的影响。并分别从免疫学、肠道微生物学和组织学的角度,探讨益生菌B12对对虾的作用机理。研究结果表明,益生菌B12可以有效地调节对虾肠道微生物菌群组成,激活对虾免疫反应,改善对虾养殖水体水质。提高中国明对虾幼体的成活率和对副溶血弧菌的抗病力,提高了中国明对虾对白斑病毒的抗病力。饲料中添加7.18×1010 cfu g-1浓度的益生菌B12更有利于改善中国明对虾的健康状况。107 cfu ml-1浓度的益生菌B12浸浴处理,能够提高中国明对虾幼体的成活率,调节幼体的免疫反应,改善培育水体的水质,从而在中国明对虾育苗中发挥益生作用。益生菌B12和植物乳杆菌(Lactobacillus plantarum)激活日本囊对虾免疫反应需要的时间和对日本囊对虾免疫反应影响的程度均有种属特异性。这两株益生菌的活菌和热灭活形式均能显著激活日本囊对虾的免疫反应,益生菌B12的活菌形式能够延长激活日本囊对虾免疫反应的时间,灭活乳酸菌添加组日本囊对虾的免疫水平会逐渐高于活的乳酸菌添加组。饲料中添加不同类型的益生菌改变了日本囊对虾肠道中的微生态菌群组成,不同种类益生菌添加组日本囊对虾肠道优势菌群的数量和种类存在显著差异。同种细菌的活菌和热灭活菌对日本囊对虾肠道优势菌群的数量和种类的影响也不同。饲料中添加不同种类的益生菌的活菌和灭活形式均有利于维护日本囊对虾肠道粘膜结构的完整性。饲料中持续添加益生菌B12能够维护日本囊对虾中肠组织学结构的完整性。水体中添加复合益生菌或合生元有利于提高中国明对虾幼体的成活率、改善中国明对虾幼体培育水体水质和加强中国明对虾幼体的免疫反应,复合益生菌或合生元在中国明对虾育苗中发挥了较好的益生作用。饲料中添加复合益生菌与果寡糖和商品复合酶制剂的复合形式显著提高了中国明对虾幼体的成活率(且显著高于其他处理组)(P<0.05),显著激活了中国明对虾幼体的免疫反应(P<0.05),而且显著降低了幼体培育水体中氨氮的浓度(P<0.05),表现了较好的复合益生效果,是本研究中最优的功能性复合制剂的组合。
     总之,本研究从免疫学、肠道微生物学和组织学的角度,探讨益生菌B12的作用机理,并对益生菌B12的投喂方式(口服或浸浴),投喂时间(间隔或连续),投喂形式(活菌或灭活菌)和有效配伍进行了研究,为益生菌B12在对虾养殖中的研制和生产推广奠定了基础。
The study was conducted to screen a specific probiotic for shrimp from the midgut of the WSSV (White Spot Syndrome Virus) tolerance shrimp (Fenneropeneaus Chinensis) according to its probiotic and safe characteristics, explore its application effects and functional mechanisms, and explore its effective compound probiotic preparation and evaluate their application effects based on the above-mentioned research results.
     An experiment in vitro or in vivo was conducted to screen a potential probiotic B12 (PP B12), which was isolated from the midgut of the WSSV (White Spot Syndrome Virus) tolerance shrimp (F. chinensis). The antagonism of PP B12 to pathogens (Vibrio harveyi and V. parahaemolyticus) and its safety for shrimp (F. chinensis) larvae were evaluated. PP B12 was identified according to its morphological, physiological and biochemical characteristics as well as homology analysis of 16S rRNA gene sequence. The results showed that strain B12 was a safe and specific probiotic for shrimp and was identified as Halomonas sp.
     The experiments was conducted to investigate the effects of different administration manners (oral or immersion), different continuing administration time, different doses and different supplementation forms (viable or heat-inactivated) of probiotic B12 on the survival rate, immune response, resistance to pathogenic infection, intestinal microflora component and histological structure or water quality of culturing marine water of shrimp (F. chinensis) larvae or juvenile or shrimp (Marsupenaeus japonicus) at grower stage, and explore the functional mechanism of probiotic B12 due to the studies on the immunology, intestinal microbiology and histology of the shrimp. The results showed that probiotic B12 could modulate the intestine microflora, and stimulate shrimp immune system, consequently enhance its effectiveness in preventing WSSV infections in shrimp. The oral administration of probiotic B12 at 7.18×1010 cfu g-1 was more beneficial to shrimp F. chinensis health. probiotic B12 with an immersion concentration at 107 cfu ml-1 is beneficial to shrimp (F. chinensis) postlarvae through enhancing its survival rate, modulating its immune response and improving the culturing water quality. Immune response of shrimp both in Lactobacillus plantarum and probiotic B12-supplemented treatment with viable or heat-inactivated form were significantly enhanced (P<0.05) compared to those of the control. The positive immunostimulant time in viable probiotic B12-supplemented treatment was longer than that in heat-inactivated probiotic B12-supplemented treatment. The immune level in heat-inactivated L. plantarum-supplemented treatment was higher than that in viable L. plantarum-supplemented treatment gradually. The immunostimulant mechanism of different probiotic strains depended on their species. The intestinal microflora components of shrimp were obviously changed with supplementation of different kinds of stains with different forms compared to those of the control. The number and variety of intestinal dominant microflora were obviously different in shrimp fed diets supplemented with different kinds of stains with different forms. The number and variety of intestinal dominant microflora were obviously different in shrimp fed diets supplemented with the same strains but with different forms (viable or heat-inactivated). The number and variety of intestinal dominant microflora were obviously different in shrimp fed diets containing viable V. parahaemolyticus with that in heat-inactivated V. parahaemolyticus treatment, and those probiotic (probiotic B12 and L. plantarum) treatment with different forms. The shrimp in probiotic (probiotic B12 and L. plantarum) treatment with different forms had better integrity of midgut mucosae than those of the control. The integrity of midgut of shrimp fed diets supplemented with viable V. parahaemolyticus was damaged, and permeability of midgut in this treatment was obviously increased than those of the other treatments. The integrity of shrimp midgut in viable probiotic B12 treatment with continuing administration was better than that in viable probiotic B12 treatment with changing into basal diet during the feeding experiment. Multispecies probiotic or synbiotic immersed into the culturing water were beneficial to enhance the survival rate and immune response of shrimp larvae, and improve the water quality of shrimp culturing water. The survival rate was significantly higher (P<0.05) (maximal level), and the immune responses significantly enhanced (P<0.05) in shrimp fed diet containing combination of 0.01% multi-enzyme preparation with 0.02% FOS and multispecies probiotic. Moreover, the ammonium concentration in shrimp larvae culturing water in this group (T14) was significantly lower than that of the control in this group (P<0.05). However, no significant differences were found in ammonium concentration between the other groups and the control (P>0.05). Therefore, combination of 0.01% multi-enzyme preparation with 0.02% FOS and multispecies probiotic (T14) was the optimal combination in the present study.
     In summary, the present study explore the functional mechanism of probiotic B12 based on its immunological, intestinal microbiological and histological characteriastic, and evaluate the application effects of probiotic B12 administered with different feeding manners (oral or immersion), different administration time, different forms (viable or heat-inactivated) and effective compound probiotic preparation. Therefore, the results in the present study were the theoretical and applied basement of development and manufacture of probiotic B12 for shrimp culture.
引文
1. Adams A., 1991. Response of penaeid shrimp to exposure to Vibrio species. Fish Shelfish Immunol. 1, 59–70.
    2. Alavandi S. V., Vijayan K. K., Santiago T. C., Poornima M., Jithendran K.P., Ali S.A., Rajan J.J.S., 2004. Evaluation of Pseudomonas sp. PM 11 and Vibrio fluvialis PM 17 on immune indices of tiger shrimp, Penaeus monodon. Fish Shellfish Immunol. 17, 115-120.
    3. Allam B., Ford S.E., 2006. Effects of the pathogenic Vibrio tapetis on defence factors of susceptible and non-susceptible bivalve species: I. Haemocyte changes following in vitro challenge, Fish Shellfish Immunol. 20, 374-383.
    4. Anonymous, 1991. Disease control in the hatchery by microbiological techniques. Asian Shrimp News 8, 4, 4th quarter.
    5. Argandońa M., Martínez C. F., Llamas I., Quesada E., del Moral A., 2003. Megaplasmids in Gram-negative, moderately halophilic bacteria. FEMS Microbiol. Lett. 227, 81-86.
    6. Ashenafi M., Busse M., 1991. Growth potential of Salmonella infantis and Escherichia coli in fermenting tempeh made from horsebean, pea and chickpea and their inhibition by Lactobacillus plantarum. J. Sci. Food Agric. 55, 607-615.
    7. Austin B., Al-Zahrami A.M.J., 1988. The effect of antimicrobial compounds on the gastrointestinal microflora of rainbow trout, Salmo gairdneri Richardson. J. Fish Biol. 33, 1-14.
    8. Austin B., Billaud E., Stobie M. S., 1992. Inhibition of bacterial fish pathogens by Tetraselmis suecica. J Fish Dis. 15, 55-61.
    9. Austin B., Stuckey L.F., Robertson P.A., Effendi I., Griffith D.R.W., 1995. A probiotic strain of Vibrio alginolyticus effective in reducing diseases caused by Aeromonas salmonicida, Vibrio anguillarum and Vibrio ordalii. J. Fish Dis. 18, 93- 96.
    10. Austin B., Al-Zahrami A.M.J., 1988. The effect of antimicrobial compounds on the gastrointestinal microflora of rainbow trout, Salmo gairdneri Richardson. J. Fish Biol. 33,
    1–14.
    11. Azcarate-Peril M.A., Altermann E., Hoover-Fitzula R.L., Cano R.J., Klaenhammer T.R., 2004. Identification and inactivation of genetic loci involved with Lactobacillus acidophilus acid tolerance. Appl. Environ. Microbiol. 70, 5315-5322.
    12. Azcarate-Peril M.A, McAuliffe O., Altermann E., Lick S., Russell W., Klaenhammer T.R., 2005. Microarray analysis of a two-component regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Appl. Environ .Microbiol. 71, 5794-5804.
    13. Bagni M., Romano N., Fnoia M.G., Abelli L., Scaigliati G., Tiscar P.G., Sarti M., Marino G., 2005. Short- and long-term effects of a dietary yeast β-glucan (Macrogard) and alginic acid (Ergosan) preparation on immune response in sea bass (Dicentrarchus labrax). Fish Shellfish Immunol. 18, 311-325.
    14. Balcázer J.L., de Blas I., Ruiz-Zarzuela I., Cunningham D., Vendrell D., Múzquiz J.L., 2006. The role of probiotics in aquaculture. Vet. Microbiol. 114, 173-186.
    15. Banasaz, M., Norin, E., Holma, R., Midtvedt, T., 2002. Increased enterocyte production in gnotobiotic rats mono-associated with Lactobacillus rhamnosus GG. Appl. Environ. Microbiol. 68, 3031-3034.
    16. Baruah K., Pal A.K., Sahu N.P., Jain K.K., Mukherjee S.C., Debnath D., 2005. Dietary protein level, microbial phytase, citric acid and their interactions on bone mineralization of Labeo rohita (Hamilton) juveniles. Aquacult. Res. 36(8):803–812.
    17. Bauer A. W., Kirby W. M. M., Sherris J. C., Turck, M., 1966. Antibiotic susceptibility testing by a standard single disk method. Am. J. Clin. Path. 45, 493-496.
    18. Bello F.D., Walter J., Hertel C., Hammes W.P., 2001. In vitro study of prebiotic properties of levan-type exopolysaccharides from Lactobacillus and non-digestible carbohydrates using denaturing gradient gel electrophoresis. System. Appl. Microbiol. 24, 232-237.
    19. Bengmark S., 2005. Bioecologic control of the gastrointestinal tract: the role of flora and supplemented probiotics and synbiotics. Gastroenterol. Clin. North Am. 34, 413–436 (viii).
    20. Bernard L., Courties C., Duperray C., Schafer H., Muyzer G., Lebaron P., 2001. A new approach to determine the genetic diversity of viable and active bacteria in aquatic ecosystems. Cytometry 43, 314– 321.
    21. Bernardeau M., Vernoux J. P., Gueguen M., 2001. Probiotic properties of two lactobacilli-strains in vitro. Milchwissenwschaft 56, 663-667.
    22.Bezkorovainy A., 2001. Probiotics: determinants of survival and growth in the gut. Am. J. Clin. Nutr. 73, 399S-405S.
    23. Biagini G., Sala D., Zini I., 1995. Diethyldithiocarbamate, a superoxide dismutase inhibitor, counteracts the maturation of ischemic-like lesions caused by endothelin-1 intrastriatal injection. Neurosci. Lett. 190, 212-216.
    24. Bielecka M., Biedrzycka E., Majkowska A., 2002. Selection of probiotics and prebiotics for synbiotics and confirmation of their in vivo effectiveness. Food Res. Int. 35, 125-131.
    25. Bischoff V., Vignal C., Boneca I.G., Michel T., Hoffmann J.A., Royet J., 2004. Function of the Drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nat. Immunol. 5, 1175–1180.
    26. Blum, S., Delneste, Y., Alvarez, S., Haller, D., Perez, P.F., Bode, Ch., Hammes W.P., Pfeifer A.M.A., Schiffrin E.J., 1999. Interactions between commensal bacteria and mucosal immunocompetent cells. Int. Dairy J. 9, 63-68.
    27. Boonyaratpalin S.M., Boonyaratpalin K., Supamattaya K., Boonyaratpalin M., 1993. Effects of peptidoglycan on growth, survival, immune response and tolerance to stressor in black tiger prawn (Penaeus monodon). In: Aquatic Animal Health and Environment: Proceedings of the Second Symposium on Disease in Asian Aquaculture. p. 5.
    28. Bowden T.J., Menoyo-Luque D., Bricknell I.R., Wergeland H., 2002. Efficacy of differentadministration routes for vaccination against Vibrio anguillarum in Atlantic halibut (Hippoglossus hippoglossus L.). Fish Shellfish Immunol. 12, 283-285.
    29. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72, 248–254.
    30. Brichnell I., Dalmo R.A., 2005. The use of immunostimulants in fish larval aquaculture. Fish Shellfish Immunol. 19, 457-472.
    31. Bron P. A., Marco M., Hoffer S.M., Van Mullekom E., de Vos W.M., Kleerebezem M., 2004. Genetic characterization of the bile salt response in Lactobacillus plantarum and analysis of responsive promoters in vitro and in situ in the gastrointestinal tract. J. Bacteriol. 186, 7829-7835.
    32. Bron P. A., Grangette C., Mercenier A., De Vos W.M. Kleerebezem M., 2004. Identification of Lactobacillus plantarum genes that are induced in the gastro-intestinal tract of mice. J Bacteriol 186, 5721-5729.
    33. Bry L., Falk P. G., Midtvedt T., Gordon J.I., 1996. A model of host-microbial interactions in an open mammalian ecosystem. Science 273, 1380-1383.
    34. Buck B. L., Altermann E., Svingerud T., Klaenhammer T.R., 2005. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 71, 8344-8351.
    35. Byun J.W., Park S.C., Benno Y., Oh T.K., 1997. Probiotic effect of Lactobacillus sp. DS-12 in flounder (Paralichthys oliíaceus). J. Gen. Appl. Microbiol. 43, 305–308.
    36. Cai, S.L., Huang, J., 1995. Study on the epideminology of Penaeus Chinensis with explosive epidemic pathogen. J. Fisheries China 2, 112-119.
    37. Campa-Córdova A.I., Hernández-Saavedra N.Y., Ascencio F., 2002. Superoxide dismutase as modulator of immune function in American white shrimp (Litopenaeus vannamei). Comp. Biochem. Physiol. Part C 133, 557-565.
    38. Campieri M., Gionchetti P., 1999. Probiotics in inflammatory bowel disease: new insight to pathogenesis or a possible therapeutic alternative? Gastroenterology 116, 1246-1249.
    39. Cao L., Wang W.M., Yang C.T., Yang Y., Diana J., Yakupitiyage A., Luo Z., Li D.P., 2007. Application of microbial phytase in fish feed. Enzyme Microbial Technol. 40, 497-507.
    40. Carmen V., 1995. Isolation of cryptic plasmids from moderately Halophilic eubacteria of the genus Halomonas, Characterization of a small plasmid from H. elongata and its use for shuttle vector construction. Mol. Gen. Genet. 246, 411-418.
    41. Casta?ón J.I.R., Flores M.P., Pettersson D., 1997. Mode of degradation of non-starch polysaccharides by feed enzyme preparations. Anim. Feed Sci. Technol. 68, 361-365.
    42. Cebeci A, Gürakan C., 2003. Properties of potential probiotic Lactobacillus plantarum strains. Food Microbiol. 20, 511-518.
    43. Cerenius L., S?derh?ll K., 2004. The prophenoloxidase-activating system in invertebrates.Immunol. Rev. 198, 116-126.
    44. Chang, C.F., Su, M.S., Chen, H.Y., Liao, I.C., 2003. Dietary β-1, 3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus. Fish Shellfish Immunol. 15, 297-310.
    45. Chen J.C. and Tu C.C., 1990. Acute toxicity of nitrite to larval Penaeus japonicus. J. Fish. Soc. Taiwan 17, 277-287.
    46. Chen J.C., Chen S.F., 1992. Effect on nitrite on growth and molting of Penaeus monodon juveniles, Comp. Biochem. Physiol. 101C, 453-458.
    47. Chen J.C., Liu P.C., Lin Y.T., Lee C.K., 1989. Highly-intensive culture study of tiger prawn Penaeus monodon in Taiwan. In: Aquaculture a Biotechnology in Progress, edited by N. De Pauw, E. Jaspers, H. Achefors and N. Wilkins. European Aquaculture Society. Bredene. Belgium. pp. 377-382.
    48. Cheng W.T., Liu C.H., Tsai C.H., Chen J.C., 2005. Molecular cloning and characterisation of a pattern recognition molecule, lipopolysaccharide- and beta-1, 3-glucan binding protein (LGBP) from the white shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 18, 297–310.
    49. Chiu C.H., Guu Y.K., Liu C.H., Pan T.M., Cheng W., 2007. Immune responses and gene expression in white shrimp, Litopenaeus vannamei, induced by Lactobacillus plantarum. Fish Shellfish Immunol. xx, 1-14.
    50. Choe K.M., Werner T., Stoven S., Hultmark D., Anderson K.V., 2002. Requirement for a peptidoglycan recognition protein (PGRP) in relish activation and antibacterial immune responses in Drosophila. Science 296, 359–362.
    51. Choquet G., Soudant P., Lambert C., Nicolas J.L., Paillard C., 2003. Reduction of adhesion properties of Ruditapes philippinarum hemocytes exposed to Vibrio tapetis, Dis. Aquat. Organ. 57, 109-116.
    52. Christensen H. R., Frokiaer H., Pestka J. J., 2002. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol. 168, 171-178.
    53. Chythanya R., Karunasager I., Karunasager I., 2002. Inhibition of shrimp pathogenic vibirios by a marine Pseudomonas Ⅰ-2 strain. Aquaculture 208, 1-10.
    54. Collins M.T., Gratzek J.B., Shotts E.B., Dawe D.L., Campbell I.M., Senn D.R., 1975. Nitrification in an aquatic recirculating system. J. Fish. Res. Board Can. 32. 2025-2031.
    55. Cominetti M.R., Marques M.R.F., Lorenzini D.M., Lofgren S.E., Daffre S., Barracco M.A., 2002. Characterization and partial purification of a lectin from the hemolymph of the white shrimp Litopenaeus schmitti. Dev. Comp. Immunol. 26, 715–721.
    56. Coronado M.J., Vargas C., Hofemeister J., Ventosa A., Nieto J.J., 2000. Production and biochemical characterization of a K-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol. Lett. 183, 67-71.
    57. Costa S.C.P., Ribeiro C., Girard P.A., Zumbihl R., Brehélin M., 2005. Modes of phagocytosisof Gram-positive and Gram-negative bacteria by Spodoptera littoralis granular haemocytes. J. Insect Physiol. 51, 39-46.
    58. Crapo, J.D., McCord, J.M., Fridovich, I., 1978. Preparation and assay of superoxide dismutases. Methods Enzymol. 53, 382–393.
    59. Crittenden R.G., Playne M.J., 1996. Production, properties and application of food-grade oligosaccharides. Trends Food Sci. Technol. 7, 353-361.
    60. Cross M.L., Ganner A., Teilab D., Fray L.M., 2004. Patterns of cytokine induction by gram-positive and gram-negative probiotic bacteria. FEMS Immunol Medical Microbiol. 42, 173-180.
    61. Da Silva, J.B., De Albuquerque, C.M.R., De Araújo, E.C., Peixoto, A., Hurd, H., 2000. Immune defense mechanisms of Culex quinquefasciatus (Diptera: Culicidae) against Candida albicans infection. J. Invert. Pathol. 76, 257-262.
    62. Daniels H.V., 1993. Disease control in shrimp ponds and hatcheries in Ecuador. Associacao Brasileira de Aquicultura. IV simpósio brasileiro sobre cultivo de camarao, 22–27 November, Brasil. pp. 175-184.
    63. de Vos W. M., Bron P. A., Kleerebezem M., 2004. Post-genomics of lactic acid bacteria and other bacteria to discover gut functionality. Curr. Opin. Biotechnol. 15, 86-93.
    64. de Waard R., Claassen E., Bokken G.C., Buiting B., Garssen J. and Vos J.G., 2003. Enhanced immunological memory responses to Listeria monocytogenes in rodents, as measured by delayed-type hypersensitivity (DTH), adoptive transfer of DTH, and protective immunity, following Lactobacillus casei Shirota ingestion. Clin. Diagn. Lab Immunol. 10, 59–65.
    65. Debnath D., Pal A.K., Sahu N.P., 2005. Effect of dietary microbial phytase supplementation on growth and nutrient digestibility of Pangasius pangasius (Hamilton) fingerlings. Aquacult. Res. 36, 180–187.
    66. Díaz-Rosales P., Salinas I., Rodríguez A., Cuesta A., Chabrillón M., Carmen Balebona M., ángel Mori?igo M., ángeles Esteban M., Meseguer J., 2006. Gilthead seabream (Sparus aurata L.) innate immune response after dietary administration of heat-inactiveated potential probiotics. Fish Shellfish Immunol. 20, 482-492.
    67. Dolinsky L., de Moura-Neto C.B., Rodrigo S., Falc?o-Concei??o D.N., 2002. DGGE analysis as a tool to identify point mutations, de novo mutations and carriers of the dystrophin gene. Neuromuscul. Disord. 12, 845–848.
    68. Donnet-Hughes A., Rochat F., Serrant P., Aeschlimann J.M., Schiffrin E.J., 1999. Modulation of nonspecific mechanisms of defense by lactic acid bacteria: effective dose. J. Dairy Sci. 82, 863-869.
    69. Falk P. G., Hooper L. V., Midtvedt T., Gordon J.I., 1998. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol. Mol. Biol. Rev 62, 1157-1170.
    70. Fasoli S., Marzotto M., Rizzotti L., Rossi F., Dellaglio F., Torriani S., 2003. Bacterialcomposition of commercial probiotic products as evaluated by PCR-DGGE analysis. Int. J. Food Microbiol. 82, 59-70.
    71. Favier C.F., de Vos W.M., Akkermans A.D.L., 2003. Development of bacterial and bifidobacterial communities in feces of newborn babies. Anaerobe 9, 219-229.
    72. Felske A., Akkermans A.D.L., de Vos W.M., 1998. Quantification of 16S rRNAs in complex bacterial communities by multiple competitive reverse transcription-PCR in temperature gradient gel electrophoresis fingerprintings. Appl. Environ. Microbiol. 64, 4581– 4587.
    73. Flegel T. W., Alday-Sanz V., 1998. The crisis in Asian shrimp aquaculture: current status and future needs. J. Appl. Ichthyol. 14, 269-273.
    74. Freitas M., Axelsson L. G., Cayuela C., Midtvedt T., Trugnan G., 2002. Microbial–host interactions specifically control the glycosylation pattern in intestinal mouse mucosa. Histochem. Cell Biol. 118, 149-161.
    75. Freitas M., Cayuela C., 2000. Microbial modulation of host intestinal glycosylation patterns. Microb. Ecol. Health Dis. (Suppl 2), 165-1718. Freitas M., Cayuela C., Antoine J. M., et al., 2001. A heat labile soluble factor from Bacteroides thetaiotaomicron VPI-5482 specifically increases the galactosylation pattern of HT29-MTX cells. Cell Microbiol. 3, 289-300.
    76. Freitas M., Tavan E., Cayuela C., Diop L., Sapin C. Trugnan G., 2003. Indigenous bacteria and probiotics also play the game. Biol. Cell 95, 503-506.
    77. Fridovich I., 1995. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64, 97–112.
    78. Fuller R. 1989. A review: probiotics in man and animals. J Appl Bacteriol 66, 365-378.
    79. Fuller R., 1992. Probiotic the Scientific Basis, 1st ed. Chapman & Hall, London, pp. 398.
    80. Fuller R., Gibson G.R., 1997. Modification of the intestinal microflora using probiotics and prebiotics. Gastroenterology 32, Suppl 222, 28-31.
    81. Furniss A. L., Lee J. V. Donovan T. J., 1978. The Vibrios. In: Howells C H L, Path F R C, Meers P D et al ed. Public Health Laboratory Service, Monograph Series No.11, London: Her Majesty’s Stationery Office. p. 4-5.
    82. Galinski E.A., 1993. Compatible solutes of halophilic eubacteria: molecular principles, water soluble interaction, stress protection. Experientia. 49, 487-496.
    83. Garriques D., Arevalo G., 1995. An evaluation of the production and use of a live bacterial isolate to manipulate the microbial flora in the commercial production of Penaeus vannamei postlarvae in Ecuador. In: Browdy, C.L., Hopkins, J.S. (Eds.), Swimming Through Troubled Water. Proceedings of the special session on shrimp farming, Aquaculture ’95. World Aquaculture Society, Baton Rouge. pp. 53–59.
    84. Gatesoupe F.J., 1999. The use of probotic in aquaculture. Aquaculture 180, 147-165.
    85. Geier M.S., Butler R.N., Howarth G.S., 2007. Inflammatory bowel disease: Current insights into pathogenesis and new therapeutic options; probiotics, prebiotics and synbiotics. Int. J. Food Microbiol. 115, 1-11.
    86. Gelsomino A., Cacco G., 2006. Compositional shifts of bacterial groups in a solarized and amended soil as determined by denaturing gradient gel electrophoresis. Soil Biol. Biochem. 38, 91-102.
    87. Gelsomino A., Keijzer-Wolters A.C., Cacco G., van Elsas J.D., 1999. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J. Microbiol. Meth. 38, 1-15.
    88. Gibson G.R., Roberfroid M.B., 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125, 1401-1412.
    89. Gibson G.R., Wang X., 1994. Bifidogenic properties of different types of fructo- oligosaccharides. Food Microbiol. 11, 491 -498.
    90. Gibson G.R., Willems A., Reading S., Collins M.D., 1996. Fermentation of non-digestible oligosaccharides by human colonic bacteria. Proc. Nutr. Soc. 55, 899-912.
    91. Gildberg A., Mikkelsen H., 1998. Effects of supplementing the feed to Atlantic cod (Gadus morhua) fry with lactic acid bacteria and immuno-stimulating peptides during a challenge trial with Vibrio anguillarum. Aquculture 167, 103-113.
    92. Gill H.S., Shu Q., Lin H., Rutherfurd K.J., Cross M.L., 2001. Protection against translocating Salmonella typhimurium infection in mice by feeding the immuno-enhancing probiotic Lactobacillus rhamnosus strain HN001. Med. Microbiol. Immunol. 190, 97-104.
    93. Goarant C., Régnier F., Brizard R., 1998. Acquisition of susceptibility to Vibrio penaeicida in Penaeus stylirostris postlarvae and juveniles. Aquaculture 169, 291-296.
    94. Gómez-Gil B., Roque A., Turnbull J.F., 2000. The use and selection of probiotic bacteria for use in the culture of aquatic organisms. Aquaculture 191, 259-270.
    95. Gomez-Gil B., Roque A., Turnbull J.F., 2000. The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture 191, 259–270.
    96. Gomez-Gil B., Tron-mayén L., Roque A., Turnbull J.F., Inglis V., Guerra-Flores A.L., 1998. Species of Vibrio isolated from hepatopancreas, haemolymph and digestive tract of a population of healthy juvenile Penaeus vannamei. Aquaculture 163, 1-9.
    97. Gomez-Gil, B., Roque, A., Turnbull, J.F., 2000. The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture 191, 259–270.
    98. Gram L., L?vold T., Nielsen J., Melchiorsen J., Spanggaard B., 2001. In vitro antagonism of the probiont Pseudomonas fluorescens strain AH2 against Aeromonas salmonicida does not confer protection of salmon against furunculosis. Aquaculture 199, 1-11.
    99. Gram L., Ring? E., 2005. Prospects of fish probiotics. In: Holzapfel, W., Naughton, P. (Eds.), Microbial Ecology of the Growing Animal. Elsevier. pp. 379–417.
    100.Griffith D.R.W., 1995. Microbiology and the role of probiotics in Ecuadorian shrimp hatcheries. In: Lavens, P., Jaspers, E., Roelants, I. (Eds.), Larvi’ 95—Fish and Shellfish Larviculture Symposium. Special Publications, vol. 24. European Aquaculture Society, Gent, Belgium. pp. 478.
    101.Guigoz Y., Rochat F., Perruisseau-Carrier G., Rochat I., Schiffrin E.J., 2002. Effects of oligosaccharide on the faecal flora and non-specific immune system in elderly people. Nutri. Res. 22, 13-25.
    102.Gullian M., Thompson F., Todriguez J., 2004. Selection of probiotic bacteria and study of their immunostimulatory effect in Penaeus vannamei. Aquaculture 223, 1-14.
    103.Haller D., Bode C., Hammes W.P., Pfeifer A.M., Schiffrin E.J., Blum S., 2000. Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 47, 79–87.
    104.Hanif A., Bakopoulos V., Dimitriadis G.J., 2004. Maternal transfer of humoral specific and non-specific immune parameters to see bream(Sparus aurata)larvae. Fish Shellfish Immunol. 17, 411-535.
    105.Hart A. L., Lammers K., Brigidi P., Vitali B., Rizzello F., Gionchetti P., Campieri M., Kamm M.A., Knight S.C., Stagg A.J., 2004. Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut 53, 1602-1609.
    106.Hernández-López J., Gollas-Galván T., Vargas-Albores F., 1996. Activation of the prophenoloxidase system of the brown shrimp (Penaeus californiensis Holmes). Comp. Biochem. Physiol. 113, 61-66.
    107.Hessle C., Andersson B., Wold A.E., 2000. Gram-positive bacteria are potent inducers of monocytic interleukin-12 (IL-12) while gram negative bacteria preferentially stimulate IL-10 production. Infect. Immun. 68, 3581–3586.
    108.Hessle C.C., Andersson B., Wold A.E., 2005. Gram-positive and Gram-negative bacteria elicit different patterns of pro-inflammatory cytokines in human monocytes. Cytokine, 30, 311-318.
    109.Heumann D., Barras C., Severin A., Glauser M.P., Tomasz A., 1994. Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes. Infect. Immun. 62, 2715–2721.
    110. Hirano S., Nagao N., 1989. Effects of chitosan, pectic acid, lysozyme, chitinase on the growth of several phytopathogens. Agric. Biol. Chem. 53, 3065-3066.
    111. Hirono I., Masuda T., Aoki T., 1996. Cloning and detection of the hemolysin gene of Vibrio anguillarum. Microb. Pathog. 21, 173-182.
    112. Hjelm M., Bergh ?., Riaza A., Nielsen J., Melchiorsen J., Jensen S., Duncan H., Ahrens P., Birkbeck H., Gram L., 2004. Selection and identification of autochthonous potential probiotic bacteria from turbot larvae (Scophthalmus maximus) rearing units. Syst. Appl. Microbiol. 27, 360-371.
    113. Holzapfel W. H., Haberer P., Snel J., Schillinger U., in’t Veld J.H.J., 1998. Overview of gut flora and probiotics. Int. J. Food Microbiol. 41, 85-101.
    114. Hopkins M.J., Cummings J.H., Macfarlane G.T., 1998. Inter-species differences in maximum specific growth rates and cell yields of bifidobacteria cultured on oligosaccharides and other simple carbohydrate sources. J. Appl. Microbiol. 85, 381–386.
    115. Hosoi T., Hirose R., Saegusa S., Ametani A., Kiuchi K., Kaminogawa S., 2003. Cytokine responses of human intestinal epithelial-like Caco-2 cells to the nonpathogenic bacterium Bacillus subtilis (natto). Int. J. Food Microbiol. 82, 255-264.
    116. Houdijk J.G.M., Verstegen M.W.A., Bosch M.W., van Laere K.J.M., 2002. Dietary fructooligosaccharides and transgalactooligosaccharides can affect fermentation characteristics in gut contents and portal plasma of growing pigs. Livestock Prod. Sci. 73, 175-184.
    117. Hovda M.B., Sivertsvik M., Lunestad B.T., Lorentzen G., Rosnes J.T., 2007. Characterisation of the dominant bacterial population in modified atmosphere packaged farmed halibut (Hippoglossus hippoglossus) based on 16S rDNA-DGGE. Food Microbiol. 24, 362-371.
    118. Huang X.X., Zhou H.Q., Zhang H., 2006. The effect of Sargassum fusiforme polysaccharide extracts on vibriosis resistance and immune activity of the shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol. 10, 750-757.
    119. Huyghebaert G., 1997. The effect of a wheat-fat-interaction on the efficacy of a multi-enzyme preparation in broiler chichens. Anim. Feed Sci. Technol. 68, 55-66.
    120.Ibekwe A.M., Grieve C.M., 2004. Changes in developing plant microbial community structure as affected by contaminated water. FEMS Microbiol. Ecol. 48, 239-248.
    121.Irianto A., Austin B., 2002a. Probiotics in aquaculture. J. Fish Dis. 25, 633-642.
    122.Irianto A., Austin B., 2002b. Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 25, 333-342.
    123.Irianto A., Austin B., 2003. Use of dead probiotic cells to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 26, 59–62.
    124.Jiraphocakul S., Sullivan T.W., Shahani K.M., 1990. Influence of a dried Bacillus subtilis culture and antibiotics on performance and intestinal microflora in turkeys. Poult. Sci. 69, 1966-1973.
    125.Jiravanichpaisal P., S?derh?ll K., S?derh?ll I., 2004. Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish. Fish Shellfish Immunol. 17, 265-275.
    126.J?born A., Olsson C., Westerdahl A., Conway P.L., Kjellberg S., 1997. Colonization in the fish intestinal tract and production of inhibitory substances in intestinal mucus and faecal extract by Carnobacterium sp. strain K. J. Fish Dis. 20, 383–392.
    127.Johansson M.W., S?derh?ll K., 1989. Cellular immunity in crustacean and the proPO system. Parasitol. Today 5, 171-176.
    128.Kailasapathy K., Chin J., 2000. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol. Cell Biol. 78, 80-88.
    129.Kamekura M., 1986. Pruduction and function of enzymes of enbacterial halophiles. FEMS Microbiol. Rev. 39, 145-150.
    130.Kawai M., Matsutera E., Kanda H., Yamaguchi N., Tani K., Nasu M., 2002. 16S RibosomalDNA-based analysis of bacterial diversity in purified water used in pharmaceutical manufacturing processes by PCR and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 68, 699– 700.
    131.Kelly D., Campbell J. I., King T. P., Grant G., Jansson E.A., Coutts A.G.P., Pettersson S., Conway S., 2004. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-g and RelA. Nat. Immunol. 5, 104-112.
    132.Kennedy S.B., Tucker J.W., Thoresen M., Sennett D.G., 1998. Current methodology for the use of probiotic bacteria in the culture of marine fish larvae. Aquaculture 98. World Aquaculture Society, Baton Rouge, pp. 286.
    133.Kim D.H., Austin B., 2006. Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish Shellfish Immunol. 21, 513-524.
    134.Kleerebezem M., Boekhorst J., van Kranenburg R., Molenaar D., Kuipers O.P., Leer R., Tarchini R., Peters S.A., Sandbrink H.M., Fiers M.W.E.J., Stiekema W., Klein Lankhorst R.M., Bron P.A., Hoffer S.M., Nierop-Groot M.N., Kerkhoven R., de Vries M., Ursing B., de Vos W.M., Siezen R.J., 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA 100, 1990–1995.
    135.Koike S., Yoshitani S., Kobayashi Y., Tanaka K., 2003. Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS Microbiol. Lett. 229, 23-30.
    136.Kojima H., Fukui M., 2003. Phylogenetic analysis of Beffiatoa spp. from organic rich sediment of Tokyo Bay. Japan. Water Res. 37, 3216-3223.
    137.Kojima K., Tsugawa W., Sode1 K., 2001. Cloning and expression of glucose 3-dehydrogenase from Halomonas sp.a-15 in Escherichia coli [J]. Biochem. Biophys. Res. Commun. 282, 21-27.
    138.Konstantinov S.R., Zhu W.Y., Williams B.A., Tamminga S., de Vos W.M., Akkermans A.D.L., 2003. Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. FEMS Microbiol. Ecol. 43, 225-235.
    139.Krasaekoopt W., Bhandari B., Deeth H., 2003. Evaluation of encapsulation techniques of probiotics for yoghurt. Int. Dairy Journal 13:3-13.
    140.Labreuche Y., Lambert C., Soudant P., Boulo V., Huvet A., Nicolas J.L., 2006. Cellular and molecular hemocyte responses of the Pacific oyster, Crassostrea gigas, following bacterial infection with Vibrio aestuarianus strain 01/32. Microb. Infect. 8, 2715-2724.
    141.Lammers K.M., Brigidi P., Vitali B., Gionchetti P., Rizzello F., Caramelli E., Matteuzzi D., Campieri M., 2003. Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells. FEMS Immunol. Med. Microbiol. 38, 165–172.
    142.Le Moullac G., Soyez C., Saulnier D., Ansquer D., Avarre J.C., Levy P., 1998. Effect ofhypoxic stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris. Fish Shellfish Immunol. 8, 621-629.
    143.Lee D.J., Drongowski R.A., Coran A.G., Harmon C.M., 2000 Evaluation of probiotic treatment in a neonatal animal model. Pediatr. Surg. Int. 16, 237-242.
    144.Lee Y.K., Salminen S., 1995. The coming of age of probiotics. Trends Food Sci. Tech. 6, 241-245.
    145.Lei Z.W., Huang J., Yang B., Yu K.K., 2001. Immune factors in haemolymph supernatant of Penaeus Chinensis infected by WSSV. J. Fish. Sci. China 8, 46-51. (In Chinese with English abstract).
    146.Lema M., Williams L., Rao D.R., 2001. Reduction of fecal shedding of enterohemorrhagic Escherichia coli O157:H7 in lambs by feeding microbial feed supplement. Small Rumin. Res. 39, 31-39.
    147.Li C.W., Guan Y.Q., Yu R.C., Zhang B., Yu Z.M., 2003. The effects of Heterosigma akashiwo on artificial infection of white spot syndrome virus in Fenneropenaeus Chinensis. Acta Oceanol. Sin. 25, 132-137. (In Chinese with English abstract).
    148.Li J.Q., Tan B.P., Mai K.S, Ai Q.H., Zhang W.B., Xu W., Liufu Z.G., Ma H.M., 2006. Comparative study between probiotic bacterium Arthrobacteri XE-7 and chloramphenicol on protection of Penaeus chinensis post-larvae from pathogenic vibrios. Aquaculture 253, 140-147.
    149.Lightner D.V., Redman R.M., Bell T.A., 1983. Observations on the geographic-distribution, pathogenesis and morphology of the baculovirus from Penaeus monodon Fabricius. Aquaculture 32, 209-233.
    150.Lim C.C., Ferguson L.R., Tannock G.W., 2005. Dietary fibres as “prebiotics”: implications for colorectal cancer. Mol. Nutr. Food Res. 49, 609–619.
    151.Liu C.H., Chen J.C., 2004. Effect of ammonia on the immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish Shellfish Immunol. 16, 321-334.
    152.Llamas I., del Moral A., Béjar V., Girón M.D., Salto R., Quesada E., 1997. Plasmids from Halomonas eurihalina, a microorganism which produces an exopolysaccharide of biotechnological interest. FEMS Microbiol. Let. 156, 251-257.
    153.Luna-González A., Maeda-Martínez A.N., Vargas-Albores F., Ascencio-Valle F., Robles-Mungaray M., 2003. Phenoloxidase activity in larval and juvenile homogenates and adult plasma and haemocytes of bivalve molluscs. Fish Shellfish Immunol. 15, 275-282.
    154.Luo T., Yang H.J., Li F., Zhang X.B., Xu X., 2006. Purification, characterization and cDNA cloning of a novel lipopolysaccharide-binding lectin from the shrimp Penaeus monodon. Dev. Comp. Immunol. 30, 607–617.
    155.Ma D., Forsythe P., Bienenstock J., 2004. Live Lactobacillus reuteri is essential for the inhibitory effect on tumor necrosis factor a-induced interleukin-8 expression. Infect. Immun.72, 5308-5314.
    156.Madara J.L., 1997. The chameleon within: improving antigen delivery. Science 277, 910-911.
    157.Maeda M., 1994. Biocontrol of the larvae rearing biotope in aquaculture. Bulletin of National Research Institute of Aquaculture (Suppl. 1), 71-74.
    158.Maeda M., Liao I.C., 1992. Effect of bacterial population on the growth of a prawn larva, Penaeus monodon. Bull Natl. Res. Inst. Aquac. 21, 25-29.
    159.Manhart N., Spittler A., Bergmeister H., Mittlb?ck M., Roth F., 2003. Influence of fructooligasaccharides on Peyer’s patch lymphocyte numbers in healty and endotoxemic mice. Nutrition 19, 657-660.
    160.Martin F. P., Collen M. C., 1998. Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64, 3724-3730.
    161.Maxwell F.J., Duncan S.H., Hold G., Stewart C.S., 2004. Isolation, growth on prebiotics and probiotic potential of novel bifidobacteria from pigs. Anaerobe 10, 33-39.
    162.Marco M. L., Pavan S., Kleerebezem M., 2006. Towards understanding molecular modes of probiotic action. Curr. Opin. Biotechnol. 17, 204-210.
    163.McCracken V.J., Gaskins H.R., 1999. Probiotics and the immune systems. In: Tannock GW, editor. Probiotics: a critical review. Wymondham: Horizon Scientific Press, pp. 85-112.
    164.McIntosh D., Samocha T.M., Jones E.R., Lawrence A.L., McKee D.A., Horowitz S., Horowitz A., 2000. The effect of a commercial bacterial supplement on the high-density culturing of Litopenaeus vannamei with a low-protein diet in an outdoor tank system and no water exchange. Aquac. Eng. 21, 215– 227.
    165.Michel T., Reichhart J.M., Hoffmann J.A., Royet J., 2001. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756–759.
    166.Miettinen M., Vuopio-Varkila J., Varkila K., 1996. Production of human tumour necrosis actor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infect. Immun. 64, 5403–5405.
    167.Montalto M., Maggiano N., Ricci R., Curigliano V., Santoro L., Di-Nicuolo F., Vecchio F.M., Gasbarrini A., Gasbarrini G., 2004. Lactobacillus acidophilus protects tight junctions from aspirin damage in HT-29 cells. Digestion 69, 225-228.
    168.Moriarty D.J.W., 1998. Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture 164, 351-358.
    169.Murata H., Yaguchi H., Sano H., Namioka S., 1977. Effect of administration of Bacillus natto upon weanling piglets. Nippon Juishikai Zasshi 30, 645–649 (in Japanese).
    170.Murray A.E., Hollibaugh J.T., Orrego C., 1996. Phylogenetic composition of bacterioplankton from two California estuaries compared by denaturing gradient electrophoresis of 16S rDNA fragments. Appl. Environ. Microbiol. 62, 2676–2680.
    171.Muyzer G., Waal E.C., Uitterlinden A., 1993. Profiling of complex microbial populationsusing denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695-700.
    172.Naidu A.S., Bidlack W.R., Clemens A.R., 1999. Probiotic spectra of lactic acid bacteria (LAB). Crit. Rev. Food Sci. Nutr. 39, 13-129.
    173.National Committee for Clinical Laboratory Standards, 2002. Analysis and presentation of cumulative antimicrobial susceptibility testing data; proposed guideline, M39-P. 1. Wayne, PA: National Committee for Clinical Laboratory Standards.
    174.Nicolas J.L., Corre S., Gauthier G., Robert R., Ansquer D., 1996. Bacterial problems associated with scallop Pecten maximus larval culture. Dis. Aquat. Org. 27, 67-76.
    175.Nikoskelainen S., Ouwehand A., Salminen S., Bylund G., 2001. Protection of rainbow trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus. Aquaculture 198, 229-236.
    176.Nikoskelainen S., Ouwehand A.C., Bylund G., Salminen S., Lilius E.M., 2003. Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol. 15, 443-452.
    177.O’ Brien J., Crittenden R., Ouwehand A. C., Salminen S., 1999. Safety evaluation of probiotics. Trends Food Sci. Technol. 10, 418-424.
    178.O’Sullivan M.G., 1996. Metabolism of bifidogenic factors by gut flora-an overview. Bulletin of the IDF 313: Oligosaccharides and Probiotic Bacteria. pp. 23-30.
    179.Ohkuma M., Kudo T., 1998. Pylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus. FEMS Microbiol. Lett. 164, 389-395.
    180.Olsen R.E., Sundell K., Hansen T., Hemre G.-I., Myklebust R., Mayhew T.M., Ring? E., 2003. Acute stress alters the intestinal lining of Atlantic salmon, Salmo salar L. An electron microscopical study. Fish Physiol. Biochem. 26, 211 – 221.
    181.Olsen R.E., Sundell K., Mayhew, T.M., Myklebust, R., Ring?, E., 2005. Acute stress alters intestinal function of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture 250, 480-495.
    182.Olsson J.C., Westerdahl A., Conway P.L., Kjelleberg S., 1992. Intestinal colonization potential of turbot (Scophthalmus maximus) and dab (Limanda limanda) associated bacteria with inhibitory effect against Vibrio anguillarum. Appl. Environ. Microbiol. 58, 551–556.
    183.Ottesen O.H., Olafsen J.A., 2000. Effects on survival and mucus cell proliferation of Atlantic halibut, Hippoglossus hippoglossus L., larvae following microflora manipulation. Aquaculture 187, 225–238.
    184.Overstreet R.M., Stuck K.C., Krol R.A., Hawkins W.E., 1988. Experimental infections with Baculovirus penaei in the white shrimp Penaeus vannamei Crustacea Decapoda) as a bioassay. J. World Aquacult. Soc. 19, 175-187.
    185.?vreas L., Forney L., Dae F.L., 1997. Distribution of bacterioplanton in meromictic lake Saelevannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified genefragments coding for 16S rRNA. Appl. Environ. Microbiol. 63, 3367-3373.
    186.Ozeer R., Mater D. D.G., Goupil-Feuillerat N., Corthier G., 2004. Initiation of protein synthesis by a labelled derivative of the Lactobacillus casei DN-114 001 strain during transit from the stomach to the cecum in mice harboring human microbiota. Appl. Environ. Microbiol. 70, 6992-6997.
    187.Paillard C., Maes P., Oubella R.,1994. Brown Ring Disease in clams. Annu. Rev. Fish Dis. 4, 219-240.
    188.Palframan R., Gibson G.R., Rastall R.A., 2003. Effect of pH and dose on the growth of gut bacteria on prebiotic carbohydrates in vitro. Anaerobe 8, 287–292.
    189.Panigrahi A., Kiron V., Kobayashi T., Puangkaew J., Satoh S., Sugita H., 2004. Immune responses in rainbow trout Oncorhynchus mykiss induced by a potential probiotics bacteria Lactobacillus rhamnosus JCM 1136. Vet. Immunol. Immunopathol. 102, 379-388.
    190.Panigrahi A., Kiron V., Puangkaew J., Kobayashi T., Satoh S., Sugita H., 2005. The viability of probiotic bacteria as a factor influencing the immune response in rainbow trout Oncorhynchus mykiss. Aquaculture 243, 241-254.
    191.Panigrahi A., Kiron V., Satoh S., Hirono I., Kobayashi T., Sugita H., Puangkaew J., Aoki T., 2007. Immune modulation and expression of cytokine genes in rainbow trout Oncorhynchus mykiss upon probiotic feeding. Dev. Comp. Immunol. 31, 372-382.
    192.Park R.B., 1974. Probiotics-The other half of the antibiotics story. Anim. Nutr. Health. 29,
    4-8.
    193.Paubert-Braquet M., Gan X.H., Gaudichon C., Hedef N., Serikoff A., Bouley C., Bonavida B., Braquet P., 1995. Enhancement of host resistance against Salmonella typhimurium in mice fed a diet supplemented with yogurt or milks fermented with various Lactobacillus casei strains. Int. J. Immunother. 11, 153– 161.
    194.Petrof E. O., Kojima K., Ropeleski M. J., Mark J, Musch M.W., Tao Y., De Simone, G., Chang E.B., 2004. Probiotics inhibit nuclear factor-κB and induce heat shock proteins in colonic epithelial cells through proteasome inhibition. Gastroenterology 127, 1474-1487.
    195.Pirarat N., Kobayashi T., Katagiri T., Maita M, Endo M., 2006. Protective effects and mechanisms of a probiotic bacterium Lactobacillus rhamnosus against experimental Edwardsiella tarda infection in tilapia (Oreochromis niloticus). Vet. Immunol. Immunopathol. 113, 339-347.
    196.Polz M. F., Cavanaugh C. M., 1998. Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64, 3724-3730.
    197.Pretzer G., Snel J., Molenaar D., Wiersma A., Bron P.A., Lambert J., de Vos W.M., van der Meer R., Smits M.A., Kleerebezem M., 2005. Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J. Bacteriol. 187, 6128-6136.
    198.Pridmore R.D., Berger B., Desiere F., Vilanova D., Barretto C., Pittet A.C., Zwahlen M.C.,Rouvet M., Altermann E., Barrangou R., Mollet B., Mercenier A., Klaenhammer T., Arigoni F., Schell M.A., 2004. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc. Natl. Acad. Sci. USA. 101, 2512–2517.
    199.Rastall R.A., Gibson G.R., Gill H.S., Guarner F., Klaenhammer T.R., Pot B., Reid G., Rowland I.R., Sanders M.E., 2005. Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: An overview of enabling science and potential application. FEMS Microbiol. Ecol. 52, 145-152.
    200.Reed M.J., Muench M., 1938. A simple method for estimating fifty percent endpoints. Am. J. Hyg. 27, 493–497.
    201.Rengpipat S., Phianphak W., Menasveta P., Piyatiratitivorakul S., 1998. Effects of a probiotic bacterium on black tiger shrimp Peneaus monodon, survival and growth. Aquaculture 167, 301-313.
    202.Rengpipat S., Rukpratanporn S., Piyatiratitivorakul S., Menasaveta P., 2000. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture 191, 271-288.
    203.Reysenbach A.L., Giver L.M., Wickham G.S., Pace N.R., 1992. Differential amplification of rRNA genes by polymerase chain reaction. Appl. Environ. Microbiol. 58, 3417-3418.
    204.Rigottier-Gois L., Le Bourhis A.G., Gramet G., et a1., 2003. Fluroescent hybridization combined with flow cytometry and hybridization of toal RNA to analyse the composition of microbial communities in human faeces using 1 6S rRNA probes. FEMS Microbiol. Ecol. 43, 273-245.
    205.Ring?, E., Gatesoupe, F.J., 1998. Lactic acid bacteria in fish: a review. Aquaculture 160, 177-203.
    206.Riquelem C., Araya R., Vergara N., Rojas A., Guaita M., Candia M., 1997. Potential probiotic strains in the culture of the Chilean scallop Argopecten purpuratus (Lamarck, 1819). Aquaculture 54, 17-26.
    207.Roberfroid M. B., 2000. Prebiotics and probiotics: are they functional food? Am. J. Clin. Nutr. 71, 1682S–1687S.
    208.Roberfroid M.B., 1996. Functional effects of food components and the gastrointestinal system: chicory fructooligosaccharides. Nutr. Rev. 53, S38-S42.
    209.Robertson P.A.W., O’Down C., Burrells C., Williams P., Austin B., 2000. Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture 185, 235– 243.
    210.Roch P., 1999. Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture 172, 125-145.
    211.Rodehutscord M., Pfeffer E., 1995. Effects of supplemental microbial phytase on phosphorus digestibilityand utilization in rainbow trout (Oncorhynchus mykiss). Water Sci. Technol. 31, 143–147.
    212.Rodríguez J., Moullac G.L., 2000. State of the art of immunological tools and health control of penaeid shrimp. Aquaculture 191, 109-119.
    213.Romo-Figueroa M.G., Vargas-Requena C., Sotelo-Mundoa R.R., Vargas-Albores F., Higuera-Ciapara I., Soderhall, K., Yepiz-Plascencia G., 2004. Molecular cloning of a beta-glucan pattern-recognition lipoprotein from the white shrimp Litopenaeus vannamei: correlations between the deduced amino acid sequence and the native protein structure. Dev. Comp. Immunol. 28, 713–726.
    214.Rosenfeldt V., Benfeldt E., Valerius N.H., P?rregaard A., Michaelsen K.F., 2004. Effect of probiotics on gastrointestinal symptoms and small intestinal permeability in children with atopic dermatitis. J. Pediatr. 145, 612-616.
    215.Rousseau V., Lepargneur J.P., Roques C., Remaud-Simeon M., Paul F., 2005. Prebiotic effects of oligosaccharides on selected vagina lactobacilli and pathogenic microorganisms. Anaerobe 11, 145-153.
    216.Roux M.M., Pain A., Klimpel K.R., Dhar A.K., 2002. The lipopolysaccharide and beta-1, 3-glucan binding protein gene is upregulated in white spot virusinfected shrimp (Penaeus stylirostris). J. Virol. 76, 7140–7149.
    217.Rowland I.R., Tanaka R., 1993. The effects of transgalactosylated oligosaccharides on gut flora metabolism in rats associated with a human faecal microflora. J. Appl. Bacteriol. 74, 667 - 674.
    218.Rycroft C.E., Jones M.R., Gibson G.R. and Rastall R.A., 2001. A comparative study of the fermentation properties of prebiotic oligosaccharides. J. Appl. Microbiol. 91, 878–887.
    219.Saarela M., Mogensen G., Fonden R., Maettoe J., Mattila-Sandholm T., 2000. Probiotic bacteria: safety, functional and technological properties. J Biotech 84, 197-215.
    220.Sakai M., 1999. Current research status of fish immunosimulants. Aquaculture 172, 63-92.
    221.Salinas I., Cuesta A., Esteban M.á., Meseguer J., 2005. Dietary administration of Lactobacillus delbrüechii and Bacillus subtilis, Single or combined, on gilthead seabream cellular innate immune responses. Fish Shellfish Immunol. 19, 67-77.
    222.Salinas I., Díaz-Rosales P., Cuesta A., Meseguer J., Chabrillón M., Mori?igo M.á., Esteban M.á., 2006. Effect of heat-inactivated fish and non-fish derived probiotics on the innate immune parameters of a teleost fish (Sparus aurata L.). Vet. Immunol. Immunopathol. 111, 279-286.
    223.Salminen S., Ouwehand A.C., Benno Y., Lee Y.K., 1999. Probiotics how should they be defined. Trends Food Sci. Technol. 10, 107–110.
    224.Salminen S., von Wright A., Morelli L., Marteau P., Brassart D., de Vos W.M., Fondén R., Saxelin M., Collins K., Mogensen G., Birkeland S.E., Mattila-Sandholm T., 1998. Demonstration of safety of probiotics - a review. Int. J. Food Microbiol. 44, 93-106.
    225.Sano T., Nishimura T., Fukuda H., Hayashida T. Momoyama K., 1985. Baculoviral infectivity trials in Kuruma shrimp larvae, Penaeus japonicus, of different ages. In: Ellis AE, editor. Fishand shellfish pathology. N.Y: Academic Press. pp. 397-403.
    226.Satokari R.M., Vaughan E.E., Akkermans A.D.L., Saarela M., de Vos W.M., 2001. Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 67, 504-513.
    227.Saxelin M., Tynkkynen S., Mattila-Sandholm T., de Vos W.M., 2005. Probiotic and other functional microbes: from markets to mechanisms. Curr. Opin.Biotechnol. 16, 204-211.
    228.Schabereiter-Gurtner C., Pi?ar G., Lubitz W., R?lleke S., 2001. An advanced molecular strategy to identify bacterial communities on art objects. J Microbiol. Meth. 45, 77-87.
    229.Schell M.A., Karmirantzou M., Snel B., Vilanova D., Berger B., Pessi G., Zwahlen M.C., Desiere F., Bork P., Delley M., Pridmore F. and Arigoni F., 2002. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci. USA 99, 14422– 14427.
    230.Scholtfeldt H.J., 1992. Current practices of chemotherapy in fish culture. In: Michel C, Alderman DJ, editors. Chemotherapy in aquaculture: from theory to reality. Paris, France: Office International des Epizooties. p. 25–38.
    231.Sekiguchi S., Miura Y., Kaneko H., Nishimura S.-I., Nishi N., Iwase M., Tokura, S., 1994. Molecular weight dependency of antimicrobial activity by chitosan oligomers In: Food Hydrocolloids: Structures, Properties, and Functions (Nishinari, K. and Doi, E., Eds.), Plenum Press, New York. pp. 71-76.
    232.Servin A. L., Coconnier M. H., 2003. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract. Res. Clin. Gastroenterol. 17, 741-754.
    233.Shan Z., Philippe S., Kuiran D., Wang Q.H., Wang W.P., Corinne H, Ferdinand H., Roger A.C., 2006. Nutritional support of pediatric patients with cancer consuming an enteral formula with fructooligosaccharides. Nutri. Res. 26, 154-162.
    234.Shariff M., Yusoff F.M., Devaraja T.N., Srinivasa Rao S.P., 2001. The effectiveness of a commercial microbial product in poorly prepared tiger shrimp, Penaeus monodon (Fabricius), ponds. Aquac. Res. 32, 181-187.
    235.Skjermo J., Salvesen I., Oie G., Olsen Y., Vadstein O., 1997. Microbially matured water: a technique for selection of a non-opportunistic bacterial flora in water that may improve performance of marine larvae. Aquacult.e int.: J. Eur. Aquacult. Society 5, 13-28.
    236.Skjermo J., Vadstein O., 1999. Techniques for microbial control in the intensive rearing of marine larvae. Aquaculture 177, 333-343.
    237.Skjolaas K.A., Burkey T.E., Dirtz S.S., Minton J.E., 2007. Effect of Salmonella enterica serovar typhimurium, or serovar Choleraesuis, Lactobacillus reuteri and Bacillus licheniformis on chemokine and cytokine expression in the swine jejunal epithelial cell line, IPEC-J2. Vet. Immunol. Immunopathol. 115, 299-308.
    238.Smith P., Hiney M.P., Samuel O. B., 1994. Bacterial resistance to antimicrobial agents used in fish farming: A critical evaluation of method and meaning. Annu. Rev. Fish. Dis. 4, 273-313.
    239.Smith V. J., 1991. Invertebrate Immunology: phylogenetic, ecotoxicological and biomedical implications. Comp. Haematol. Int. 1, 61–76.
    240.Smith V.J., Brown J.H, Hauton C., 2003. Immunostimulation in crustaceans: does it really protect against infection? Fish Shellfish Immunol. 15, 71-90.
    241.Smith V.J., S?derh?ll K., 1991. A comparison of phenoloxidase activity in the blood of marine invertebrates. Dev. Comp. Immunol. 15, 251–261.
    242.Smith V.J., S?derh?ll K., Hamilton M., 1984. β-1,3-glucan induced cellular defence reactions in the shore crab, Carcinus maenas. Comp. Biochem. Physiol. 77A, 635-639.
    243.S?derh?ll K., 1981. Fungal cell wall β-1, 3-glucans induce clotting and phenoloxidase attachment to foreign surfaces of crayfish haemocyte lysate. Dev. Comp. Immunol. 5, 565–573.
    244.S?derh?ll K., 1999. Invertebrate immunity. Dev. Comp. Immunol. 23, 263-266.
    245.S?derh?ll K., Cerenius L., 1998. Role of the prophenoloxidaseactivating system in invertebrate immunity. Curr.Opin. Immunol. 10, 23–28.
    246.S?derh?ll K., Unestam T., 1979. Activation of serum prophenoloxidase in arthropod immunity. The specificity of cell wall glucan activation and activation by purified fungal glycoproteins of crayfish phenoloxidase. Can. J. Microbiol. 25, 406–414.
    247.Song Y.L., Yu C.I., Lien T.W, Huang C.C., Lin M.N., 2003. Haemolymph parameters of Pacific white shrimp (Litopenaeus vannamei) infected with Taura syndrome virus. Fish Shellfish Immunol. 14, 317-333.
    248.Sousa O.V., Macrae A., Menezes F.G.R., Gomes N.C.M., Vieira R.H.S.F., Mendon?a-Hagler L.C.S., 2006. The impact of shrimp farming effluent on bacterial communities in mangrove waters, Ceará, Brazil. Mar. Pollut. Bull. 52, 1725-1734.
    249.Sritunyalucksana K., Lee S.Y., Soderhall K., 2002. A beta-1, 3-glucan binding protein from the black tiger shrimp, Penaeus monodon. Dev. Comp. Immunol. 26, 237–245.
    250.Str?m E., 1988. Melkesyrebakterier i fisketarm. Isolasjon, karakterisering og egenskaper. MS thesis, The Norwegian College of Fishery Science. pp. 88 (in Norwegian).
    251.Sung H.H., Kou G.H., Song Y.L., 1994. Vibriosis resistance induced by glucan treatment in tiger shrimp (Penaeus monodon). Fish Pathol. 29, 11-17.
    252.Sung H.H., Lin S.C., Chen W.L., Ting Y.Y., Chao W.L., 2003. Influence of TimsenTM on Vibrio populations of culture pond water and hepatopancreas and on the haemocytic activity of tiger shrimp (Penaeus monodon). Aquaculture 219, 123-133.
    253.Takahashi Y., Itami T., Maeda M., Suzuki N., Kasornchandra J., Supamattaya K., Khongpradit R., Boonyaratpalin S., Kondo M., Kawai K., Kusuda R., Hirono I., Aoki T., 1996. Polymerase chain reaction PCR amplification of bacilliform virus RV–PJ DNA in Penaeus japonicus Bate and systemic ectodermal and mesodermal baculovirus SEMBV DNA in Penaeus monodon Fabricius. J. Fish Dis. 19, 399–403.
    254.Takehana A., Katsuyama T., Yano T., Oshima Y., Takada H., Aigaki T., Kurata S., 2002.Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc. Natl. Acad. Sci. U.S.A. 99, 13705–13710.
    255.Takehana A., Yano T., Mita S., Kotani A., Oshima Y., Kurata S., 2004. Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. EMBO J. 23, 4690–4700.
    256.Thompson F.L., Abreu P.C., Cavalli R., 1999. The use of microorganisms as food source for Penaeus paulensis larvae. Aquaculture 174, 139-153.
    257.Timmerman H.M., Koning C.J.M, Mulder L., Rombouts F.M., Beynen A.C., 2004. Monostrain, multistrain and multispecies probiotics – A comparison of functionality and efficacy. Inter. J. Food Microbiol., 96, 219-233.
    258.Tseng I.T., Chen J.C., 2004. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under nitrite stress. Fish and Shellfish Immunology, 17, 325-333.
    259.UNESCO (United Nations Educational, Scientific, and Cultural Organization), 1983. Chemical methods for use in marine environmental monitoring. Intergovernmental Oceanographic Commission. Manual and Guides. UNESCO Press, Paris. pp. 12.
    260.Valderrama M. J., Monteoliva S. M., Quesada E., Ramos-Cormenzana A., 1998. Influence of salt concentration on the cellular fatty acid composition of the moderately halophilic bacterium Halomonas salina. Res. Microbiol. 149, 675-679.
    261.Vallaeys T , Topp E , Muyzer G, Macheret V., Laguerre G., Rigaud A., Soulas G., 1997. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiol. Ecol. 24, 279~285.
    262.Vanbelle M., Teller E., Focant M., 1990. Probiotics in animal nutrition: a review. Arch. Anim. Nutr. 40, 543-567.
    263.Verschuere L., Rombaut G., Sorgeloos P., Verstraete W., 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev. 64, 655– 671.
    264.Villamil L., Tafalla C., Figueras A., Novoa B., 2002. Evaluation of immunomodulatory effects of lactic acid bacteria in turbot (Scophthalmus maximus). Clin. Diagn. Lab. Immunol. 9, 1318-1323.
    265.Walter J., Tannock G.W., Tilsala-Timisjarvi A., Rodtong S., Loach D.M., Munro K., Alassatova T., 2000. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species specific primers. Appl. Environ. Microbiol. 66, 297– 303.
    266.Wang Q.Y., Cai S.L., Li J., 1997. The shrimp farming industry in China. World Aquacult. 3, 23–29.
    267.Wang Y.B., Xu Z.R., 2006. Effect of probiotic for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Anim. Feed Sci. Technol. 127, 283-292.
    268.Warminsko-Radyko I., Laniewska-Moroz L., Babuchowski A., 2002. Possibilities for stimulation of Bifidobacterium growth by propionibacteria. Lait 82, 113– 121.
    269.Warner H.R., 1994. Superoxide dismutase, aging, and degenerative disease. Free Radical Biol. Med. 3, 249-258.
    270.Wehkamp J., Harder J., Wehkamp K., Meissner B.W.V., Schlee M., Enders C., Sonnenborn U., Nuding S., Bengmark S., Fellermann K., Schroeder J.M., Stange E.F., 2004. NF-kB- and AP-1-mediated induction of human b defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: a novel effect of a probiotic bacterium. Infect. Immun. 2, 5750-5758.
    271.Whitford M. F., Forster R. J., Beard C. E., Gong J.H., Teather R.M., 1998. Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4, 153-163.
    272.Wilkenfeld J.S., 1992. Commercial hatchery status report: an industry panel viewpoint. In: Wyban, J. ( Ed.)., Proceedings of the special session on shrimp farming. World Aquaculture Society, Baton Rouge. pp. 71-86.
    273.Williams M. L., Lawrence M. L., 2005. Identification and characterization of a two-component hemolysin from Edwardsiella ictaluri. Vet. Microbiol. 108, 281-289.
    274.Wintzingerode F.V., G?bel U.B., Stackebrandt E., 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21, 213-229.
    275.Wolf B.W., Firkins J.L., Zhang X.S., 1998. Varying dietary concentrations of fructooligosaccharides affect apparent absorption and balance of minerals in growing rats. Nutri. Res. 18, 1791-1806.
    276.Wostrnann B., 1996. Immunology, including radiobiology and transplantation. In: Wostmann BS. Ed. Germfree and gnotobiotic an imal models. Boca Raton.FL: CRC Press. pp. 101-125.
    277.Wouters R., 2004. Larval shrimp nutrion. Global aquaculture advocate, June, 64-66.
    278.Wu L.X., Dong S.L., 2002. Effects of protein restriction with subsequent realimentation on growth performance of juvenile Chinese shrimp (Fenneropenaeus chinensis). Aquaculture 210,
    343-358.
    279.Wyban J.A., Sweeney J.N., 1991. Intensive Shrimp Production Technology. The Oceanic Institute, Honolulu. pp. 158.
    280.Xu B., Xu H.S., Ji W.S., Shi J., 1994. Pathogens and pathogenicity to Penaeus orientalis Kishinouye. Acta Oceanol. Sin. 13, 297-304. (In Chinese with English abstract).
    281.Xu H.T., Piao C.A., Wang L., Wang W.X., Xiang J.H., Wang Y.T., 2000. Infection of white spot baculo-like virus (WSBV) in Penaeus Chinensis: evidence from electron microscropy and DNA hybridzation. Acta Microbiol. Sin. 40, 252-256. (In Chinese with English abstract).
    282.Yamaguchi D.J., Yan F., Polk D.B., 2003. Probiotic Lactobacillus rhamnosus GG stimulates proliferation during intestinal epithelial cell wound repair. J. Pediatr. Gastroenterol. Nutr. 37, 395.
    283.Yan F., Polk D. B., 2002. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J Biol Chem 277, 50959-50965.
    284.Yang G.M., Bao B.L., Peatman E., Li H.R., Huang L.B., Ren D.M., 2007. Analysis of the composition of the bacterial community in puffer fish Takifugu obscurus. Aquaculture 262, 183-191.
    285.Zelick U.E., Janje B., Schneider O., 2005. Superoxide dismutase expression and H2O2 production by hemocytes of the trematode intermediate host Lymnaea stagnalis (Gastropoda). Dev. Comp. Immunol. 29, 305–314.
    286.Zhang L.Y., Li N., Caicedo R., Neu J., 2005. Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor-a-induced interleukin-8 production in Caco-2 cells. J. Nutr. 135, 1752-1756.
    287.Zhang X.H., Robertson P., Feng J., Ji W.S., Xu H.S., Austin B., 1998. Detection of Vibrio harveyi in larval rearing water of Penaeus Chinensis. J. Ocean Univ. Qingdao 28, 70-74. (In Chinese with English abstract).
    288.Zheng X.G., Chen Y.L., Li H., 1990. Vibrio anguillarum as a cause of disease in Penaeus orientalis kishinouye. J. Fish. China 14, 1-7. (In Chinese with English abstract).
    289.Zhu W.Y., Williams B.A., Konstantinov S.R., Tamminga S., de Vos W.M., Akkermans A.D.L., 2003. Analysis of 16S rDNA reveals bacterial shift during in vitro fermentation of fermentable carbohydrate using piglet faeces as inoculum. Anaerobe 9, 175-180.
    290.Ziaei-Nejad S., Rezaei M.H., Takami G.A., Lovett D.L., Mirvaghefi A.R., Shakouri M., 2006. The effect of Bacillus spp. bacteria used us probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture, 252, 516-524.
    291.Ziemer C.J., Gibson G.R., 1998. An overview of probiotics, prebiotics and synbiotics in the functional food concept: perspectives and future strategies. Int. Dairy J., 8, 473-479.
    292.Zoetendal E.G., Akkermans A.D.L., de Vos W.M., 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64, 3854– 3859.
    293.Zoetendal E. G., Cheng B., Koike S., Machie R.I., 2004. Molecular microbial ecology of the gastrointestinal tract: from phylogeny to function. Curr. Issues Intest. Microbiol. 5, 31-45.
    294.Zoppi G., Cinquetti M., Benini A., Bonamini E., Minelli E.B., 2001. Modulation of the intestinal ecosystem by probiotics and lactulose in children during treatment with ceftriaxone. Curr. Ther. Res. 62, 418– 435.
    295.鲍蕾, 王维娜, 王安利, 1998. 日本囊对虾的营养研究进展[J]. 河北大学学报 18(增刊), 91-93.
    296.丁贤, 李卓佳, 陈永青, 等., 2006. 芽孢杆菌对凡纳对虾生长和消化酶活性的影响[J]. 中国水产科学, 11(6):580-584.
    297.东秀珠, 蔡秒英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. 370-410.
    298.李会荣, 俞勇, 李筠, 等. 海洋有益菌的筛选与鉴定[J]. 高技术通讯, 2001, 9:18-22.
    299.李继秋. 对虾微生态制剂的研究和应用. 博士学位论文, 2004. 19-23.
    300.李晓东,董文成,2005. 复合酶制剂的研究进展[J]. 河北畜牧兽医. 21(6), 40-41.
    301.梁虹, 2000. 日本囊对虾的饲料及营养学研究进展[J]. 保定师专学报, 13, 51-56.
    302.林琼武,单保党,黄加祺., 2001. 不同饵料搭配对日本囊对虾人工育苗存活率的影响[J]. 台湾海峡, 20(增):44-48.
    303.刘文华, 倪纯治, 叶德赞, 等., 1997. 光合细菌净化对虾养殖水质的研究[J]. 台湾海峡, 16(4):455-457.
    304.侯树宇, 张清敏, 多淼, 等., 2004. 微生态复合菌制剂在对虾养殖中的应用研究[J]. 农业环境科学学, 23(5):904-907.
    305.宋理平,黄旭雄,周洪琪等,2005. Vc, β-葡聚糖和藻粉对中国明对虾幼体生长、成活率及免疫酶活性的影响[J]. 上海水产大学学报,14(3):276-281.
    306.徐琴, 李健, 刘淇, 等., 2006. 微生态制剂对中国明对虾幼体生长和非特异性免疫的影响[J]. 饲料工业, 27(12): 26-29.
    307.袁春营,崔青曼, 2004. 饲用酶制剂的作用机理及其在水产养殖上的应用[J]. 养殖鱼饲料
    2, 8-9.
    308.王克行. 虾蟹类增养殖学[M]. 中国农业出版社,1996,P70.
    309. 温崇庆, 何红, 薛明, 等., 2006. 坚强芽孢杆菌对凡纳滨对虾幼体变态的影响[J]. 热带海洋学报, 25(2):54-58.
    310.吴垠, 王斌, 祝国芹, 等., 1996. 微生态制剂对提高中国明对虾抗病力的研究[J]. 中国微生态学杂志, 8(1):28-32.
    311.俞勇, 李会荣, 李筠, 陈刚, 纪伟尚, 徐怀恕, 2001. 益生菌制剂在水产养殖中的应用[J].中国水产科学, 8 (2): 92-96.
    312.张新明, 李健, 刘淇, 等. 细菌J-10对凡纳滨对虾非特异性免疫指标的影响[J]. 海洋水产科学, 2004, 25(4):6-12.
    313.张玉龙, 陈福祥, 居中亮, 等., 2001. 应用双重 PCR 技术检测耐甲氧西林金黄色葡萄球菌[J].医学检验进修杂志, 8(4):15-17.
    314.周紫雨, 张俊红., 2006. 植酸酶在饲料中的应用[J]. 饲料研究, 7, 55-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700