用户名: 密码: 验证码:
压力对谷胱甘肽生物合成的影响及其分离提取工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温和压力(0.1-5.0MPa)条件下,酵母菌受到刺激后发生应激性反应。谷胱甘肽(GSH)是很多生物体受环境胁迫产生的应激性代谢产物之一。GSH作为一种重要的药物,在临床上的用途极广,GSH的抗氧化性又能使得它在食品加工中倍受青睐。本文研究的主要内容为压力条件下面包酵母CICC1447积累GSH最佳条件的确定;加压、常压下酵母生物合成GSH代谢流的变化;温和压力对细胞膜通透性的影响;GSH分离提取工艺研究。主要结果如下:
     1.面包酵母CICC1447生物合成GSH加压条件的确定
     以高纯空气为加压介质,通过单因素实验对面包酵母CICC1447生物合成GSH加压条件进行优化,确定了最佳条件:加压时间6h、压力0.5MPa、升降压速率0.05-0.10MPa、加压前培养20h为最优加压条件,GSH含量较常压提高了17.21%。
     2.面包酵母CICC1447生物合成GSH代谢通量分析
     利用代谢通量分析手段研究比较了加压、常压条件下的面包酵母CICC1447生物合成GSH代谢流变化,并通过对代谢通量分布情况的分析,有效地解释了加压提高GSH合成能力的原因。
     3.温和压力对面包酵母CICC1447、CICC1339细胞膜通透性的影响
     以CO2和N2为加压介质,考察了温和压力(0.1-1.0MPa)及加压时间对面包酵母CICC1447、CICC1339细胞膜通透性的影响。结果表明,在压力条件下面包酵母CICC1447细胞悬浮液的电导率、OD260和OD280显著增加,虽然上升后有些波动,但仍高于常压对照组;压力作用下面包酵母CICC1339细胞悬浮液电导率、OD260和OD280随着压力的增加显著升高。以N2为加压介质,通过对加压(1.0MPa)、常压下PI与DNA结合产生的荧光强度的测定,更有效的说明了温和压力可以显著增强细胞膜的通透性,促进物质的传递。
     4.GSH分离提取工艺研究
     (1)利用沸水浴抽提法、微波辅助提取法、超声波破碎法和高压均质破碎法对胞内GSH进行抽提,其中高压均质破碎法效果最好,在最佳操作条件下GSH抽提量为3.975mg/g,抽提率达到99.87%。
     (2)利用超滤技术去除GSH提取液中的蛋白质,考察了操作压力、温度、提取液pH及料液浓度对超滤的影响。确定了适宜的操作条件:压力为0.04MPa,pH为3,温度为20-25℃,料液不稀释。在此操作条件下GSH损失率相对较小,为25.4%,蛋白质截留率达到46.6%。通过稀释过滤方法有效的提高了GSH回收率,通过稀释1次,使得GSH回收率提高到89.6%。并且通过超滤和稀释过滤方法有效地减少了GSH提取液中细胞色素的含量。
     (3)利用离子交换装置对GSH进行分离操作,确定了最佳的上柱pH为3,上柱流速为4mL/min,共上柱1.00L,GSH吸附率达到86.19%,蛋白质吸附率为49.73%,以盐酸为洗脱剂,洗脱浓度为lmol/L,洗脱流速为4mL/min,GSH解吸率为85.23%,共洗脱了464.52mg,蛋白质洗脱率为66.85%,共洗脱了1.936g。GSH浓缩倍数为2.09,峰点浓缩倍数为3.41,纯化倍数为3.48。通过吸附上柱及洗脱操作色素含量明显减少。
     (4)GSH提取液经逐步分离提取所得白色粉末状GSH复合产品,其中GSH含量为15.4%。
Under mild pressure(0.1-5.0MPa), the stress response occurred after being stimulated for yeast cells. GSH is one of important stress metabolic products of plenty of microorganisms during they were intimidated by environment. It is widely used in clinic due to its pharmaceutical performance; also it is popular in food industry because of its antioxidant activity. In this paper, the main contents include establishing the optimum conditions of Saccharmyces cerevisiae CICC1447 accumulating GSH in the high pressure circumstance; the variation of metabolic flux of GSH synthesis under mild and normal pressure; effect of mild pressure on membrane permeability; process of separation and extraction of GSH. The results are as follows:
     1. Established optimum conditions of Saccharmyces cerevisiae CICC1447 accumulating GSH under mild pressure.
     With high purity air as pressure media, the optimum conditions of Saccharmyces cerevisiae CICC1447 accumulating GSH by single-factor-experiment have been established. The optimized conditions were as follows:holding time 6 h, pressure value 0.5 MPa, pressing and depressing rates 0.05-0.10 MPa/min, culture time before pressuring 20 h. The content of GSH was increased by 17.21% than normal pressure.
     2. Metabolic flux analysis of synthesis of GSH of Saccharomyces cerevisiae CICC1447
     Studied and compared the changes of metabolic flux of synthesis of GSH under mild and normal pressure through metabolic flux analysis. Explained convincingly why mild pressure can improve the content of GSH effectively through the analysis of metabolic flux distribution.
     3. Influence of mild pressure on membrane permeability of Saccharomyces cerevisiae CICC1447、CICC1339
     With CO2 and N2 as pressure media, the influence of mild pressure(0.1-5.0MPa) and holding time on membrane permeability of Saccharomyces cerevisiae CICC1447、CICC1339 have been determined. The results show that:For Saccharomyces cerevisiae CICC1447, the conductivity of the cell suspension, OD280 and OD260 of the supernatant fluctuated with the pressure increase; whereas, in general, increased with pressure rising and high than the control. For Saccharomyces cerevisiae CICC1339, the membrane permeability increased significantly. With N2 as the pressure media,1.0 MPa of mild pressure remarkably improved the permeability of Saccharomyces cerevisiae cells through comparing the fluorescence intensities produced by combination of PI and DNA under mild pressure and normal pressure.
     4. Process of separation and extraction of GSH
     (1) The boil water bath extraction, microwave assistant extraction, ultrasonic disruption and high pressure homogenization were used for extracting GSH from intracellular. The best method was high pressure homogenization whose GSH extraction amount was 3.975mg/g and the extraction rate was 99.87% under the best condition.
     (2) The optimal operation parameters for removing protein from GSH extracted solution by ultrafiltration have been determined. The best conditions were:transmembrane pressure 0.04MPa, pH=3, temperature 20-25℃, the feed solution non diluted. Eventually, the loss rate of GSH was 25.4%, and the retention rate of protein was up to 46.6%. By diluting one fold, the recovery of GSH was increased to 89.6%, and the content of pigment decreased significantly.
     (3) The best condition of cation change process were:adsorption pH=3, adsorption flow rate 4mL/min, adsorption amount 1.00 L, adsorption rate of GSH 86.19%, adsorption rate of protein 49.73%, using HCl as eluent, elution concentration lmol/L, elution flow rate 4mL/min, elution rate of GSH 85.23%, elution amount 464.52 mg, elution rate of protein 66.85%, elution amount 1.936 g, concentration multiple of GSH 2.09, peak concentration multiple of GSH 3.41, purification multiple 3.48. The content of pigment decreased significantly by cation exchange process which OD decreased significantly.
     (4) Based on these processes, an end-white-product containing 15.4%(w/w) GSH have been obtained.
引文
[1]陈寿鹏.高压在食品方面的应用[J].食品科学,1994,23(3):3-7.
    [2]林力丸.高压利用食品の现状巴将来(1)[J].缶诘时报,1998,12(2):4-11.
    [3]梁峙.超高压致死微生物在饮料中的研究进展.广西轻工业,2003,3(3):6-7.
    [4]谢小军,袁红莉.地球生命不会弧独:极端微生物的昭示百科知识[J],2000,10,24.
    [5]裴凌鹏,骆海朋.极端微生物浅谈[J].首都师范大学学报:自然科学版,2003,24(1):49-54.
    [6]Prieur D, Marteinsson VT. Prokaryotes living under elevated hydrostatic pressure. In: Antranikian Biotechnology of extremophiles[J]. Advances in Biochemical Engineering /Biotechnology,1998,61:23 - 35.
    [7]柳耀建,林影,吴晓英.极端微生物的研究概况[J].工业微生物,2000,30(3):53-55.
    [8]李绣.新的生命形式-极端微生物[J].阴山学刊,2000,15(3):32-35.
    [9]王大珍.极端环境微生物及其应用[J].生态学进展,1989,6(2):77-81.
    [10]M.Judith Kornblatt, Reinhard Lange, and Claude Balny. Use of hydrostatic pressure to produce' native'monomers of yeast enolase [J]. Eur. J. Biochem.2004,271,3897-3904.
    [11]Pieter F, Ter Steeg, Johan C, Hellemons. Synergistic Actions of Nisin, Sublethal Ultrahigh Pressure, and reduced Temperature on Bacteria and Yeast[J]. Applied and environmental microbiology,1999,65(9):4148-4154.
    [12]李大卫,何芳舒.极限环境中的生命[J].生物学通报,1995,30(1):19-21.
    [13]迟桂荣.极端环境微生物的研究概况[J].德州学院学报,2001,17(2):74-76[J].
    [14]Mozhaev V, Heremans K, Frank J, et al. Exploiting the effects of high hydrostatic pressure in biotechnological applications[J]. Trends Biotechnol,1994,12:493-501.
    [15]Mozhaev V, Heremans K, Frank J, et al. High pressure effects on protein structure and function[J]. Proteins Struct Func Gene,1996,24:81-91.
    [16]Gross M, Jaenicke R. Proteins under pressure:the influence of high hydrostatic pressure on structure, function and assembly of proteins and proteins complexes[J]. Eur J Biochem,1994,221:617-630.
    [17]Ulmer H.M., Herberhold.H, Fahsel.S, et al. Effects of Pressure-Induced Membrane Phase Transitions on Inactivation of HorA, an ATP-Dependent Multidrug Resistance Transporter, in Lactobacillus plantarum[J]. Applied and Environmental Microbiology,2002,68(3):1088-1095.
    [18]Michiko Kato, Rikimaru Hayashi, Takeo Tsuda, et al. High pressure-induced changes of biological membrane-Study on the membrane-bound Na+/K+-ATPase as a model system[J]. Eur. J. Biochem,2002,269:110-118.
    [19]Perrier-Corne J-M., Hayert.M, et al. Yeast mortality related to a high-pressure shift:occurrence of cell membrane permeabilization[J]. Journal of Applied Microbiology 1999,87,1-7.
    [20]赵春燕,李凡.超高压对微生物的影响及其应用[J].中国公共卫生,2000,16(3):283-284.
    [21]Sharma A, Scott J H, Cody GD, et al. Microbial Activity at Gigapascal Pressures. Science,2002,295:1514-1516.
    [22]Bartlett DH, Kato C, Horikoshi K. High pressure influences on gene and protein expression[J]. Res Microbiol,1995,146:697-706.
    [23]Summit M, Scott B, Nielson K, et al. Pressure enhances thermal stability of DNA polymerase from three thermophilic organisms [J]. Extremophiles,1998,2:339-345.
    [24]Welch TJ, Farewell A, Neidhardt FC et al. Stress response of Escherichia coli to elevated hydrostatic pressure[J]. J Bacteriol 1993,175(22):7170-7177.
    [25]Gross M, Lehle K, Jaenicke R & Nierhaus KH. Pressure-induced dissociation of ribosomes and elongation cycle intermediates. Stabilizing conditions and identification of the most sensitive functional state[J]. European Journal of Biochemistry,1993,218:463-468.
    [26]Fumiyoshi Abe, Chiaki Kato, Koki Horikoshi. Pressure-regulated metabolism in microorganisms[J]. Trends in microbiology,1999,7(11):447-453.
    [27]Delong, E.F, Yayanos,A.A. Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure[J]. Science,228,1101-1103.
    [28]Kato,C, Sato, T, Horikoshi, K. Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples[J]. Biodivers. Conserv.,1995a,4,1-9.
    [29]Coelho MAZ, Belo I, Pinheiro R, et al. Effect of hyperbaric stress on yeast morphology:study by automated image analysis[J]. Appl Microbiol Biotechnol 2004, 66:318-324.
    [30]Zobell CE, Cobet AB. Filament formation by Escherichia coli at increased hydrostatic pressures[J]. J Bacteriol 1964,87(3):710-719.
    [31]Manas P, Mackey B M. Morphological and physiological changes induced by high hydrostatic pressure in exponential-and stationary-phase cells of Escherichia coli: relationship with cell death[J]. Appl Environ Microbiol 2004; 70:1545-1554.
    [32]Jean-Marie, Perrier-Cornet, Pierre-Andre, et al. A new design intended to relate high pressure treatment to yeast cell mass transfer[J]. Journal of Biotechnology,1995,41: 49-58.
    [33]Haas, G. J, Prescott J. R., Dudley E, et al. Inactivation of microorganisms by carbon dioxide under pressure[J]. J. Food Safety,1989,9:253-265.
    [34]Wei, C. I., Balaban M. O., Fernando S. Y, Bacterial effect of high pressure CO2 treatment on foods spiked with Listeria or Salmonella [J]. Food Prot,1991,54: 189-193.
    [35]Debs-Louka E, N. Louka, G. Abraham, et al. Effect of Compressed Carbon Dioxide on Microbial Cell Viability [J]. Applied and Environmental Microbiology, February, 1999,65(2):626-631.
    [36]Fraser, D. Bursting bacteria by release of gas pressure [J]. Nature,1951,167:33 -34.
    [37]Lin, H.-M., E.-C. Chan, C. Chen, and L.-F. Chen. Disintegration of yeast cells by pressurized carbon dioxide [J]. Biotechnol. Prog,1991,7:201-204.
    [38]Lin, H.-M., Z. Yang, and L.-F. Chen. An improved method for disruption of microbial cells with pressurized carbon dioxide [J]. Biotechnol. Prog,1992,8:165 - 166.
    [39]Fumiyoshi Abe, Chiaki Kato, Koki Horikoshi. Pressure-regulated metabolism in microorganisms[J]. Trends in microbiology,1999,7(11):447-453.
    [40]Welch, T.J., Farewell, A., Neidhardt F.C., et al. Stress response in Escherichia coli induced by elevated hydrostatic pressure[J]. J. bacterial,1993,175:7170-7177.
    [41]卫功元,李寅,堵国成等.产朊假丝酵母分批发酵生产谷胱甘肽的代谢通量分析[J].化工学报,2006,6,57(6):1410-1417.
    [42]Spilimbergo S, Elvassore N, Bertucco A. Microbial inactivation by high pressure [J]. Journal of Supercritical Fluids,2002,22:55-63.
    [43]A.Jankowska, A.Repe, A.Proszek. Influence of the high pressure on some biochemical propertyes of kefir microflora[J]. High Pressure Research,2003,23(1):87-92.
    [44]Basak S, Ramaswamy HS, G.Piette J P. High pressure destruction kinetics of Leuconstoc Mesenteroids and Saccharomyces cerevisiae in single strength and concentrated orange juice[J]. Innovation Food Science&Emerging Technologie, 2002, 3:223-231.
    [45]Bartlett D H. Pressure effects on in vivo microbial processes[J]. Biochimica et Biophysica Acta,2002,1595:367-381.
    [46]Schlesinger M..1982,Heat shock from bacteria to Man[M]. Cold Spring Harbor,NY.
    [47]邢达,谭石慈,唐永红等.植物体应激反应中生物光子发射的实验观测[J].科学通报,1999,44(21):2299-2302.
    [48]马超颖,戚薇,杜连样.酿酒酵母氧化应激反应的研究进展[J].天津轻工业学院学报,2002,17(4):14-18.
    [49]Varela, J. C. S. Osmostress-induced changes in yeast gene expression[J]. Mol, Microbiol,1992, (6):2183-2190.
    [50]Storm AR, Kaasen I. Trehalose metabolism in E. coli:stress protection and regulation of gene expression[J]. Molecular Microbiology,1993,8(2):205-210.
    [51]范志华,贾士儒,乔长晟.压力对酵母菌及其海藻糖生成的影响[J].生物加工过程,2004,2(2):36-40.
    [52]乔长晟,刘伯宁,徐旭等.压力作用下面包酵母胞内谷胱甘肽和麦角固醇的变化[J].中国生物工程杂志,2006,26(1):56-59.
    [53]Penninckx M J, Elskens M T. Metabolism and functions of glutathione in micro-organisms[J]. Adv Microbial Physiol,1993,34:239-301.
    [54]袁尔东,郑建仙.功能性食品基料-谷胱甘肽的研究进展[J].食品与发酵工业1999,25(5):52-57.
    [55]刘振玉.谷胱甘肽的研究与应用[J].生命的化学,1995,15(1):19-21.
    [56]沈亚领,李爽,迟莉丽等.谷胱甘肽的应用与生产.工业微生物,2000,30(2):41-45.
    [57]郑云郎.谷胱甘肽的生物学工程[J].生物学通报,1995,30(5):22-24.
    [58]Izawa S, Inoue Y, Kimura A. Oxidative stress response in yeast:effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae[J]. FEBS Lett, 1995,368:73-76.
    [59]Jahoor F, Jackson A, Gazzard B, et al. Erythrocyte glutathione deficiency in symptom-free HIV infection is associated withdecreased synthesis rate. Am J Physiol, 1999,276(1):205-211.
    [60]卓肇文.还原型谷胱甘肽的功能与应用[J].氨基酸杂志,1989,1:41-42.
    [61]刘国琴,陈洁,赵雷等.小麦胚芽中谷胱甘肽提取方法探讨及工艺条件优化[J].河南工业大学学报(自然科学版),2007,28(2):1-5.
    [62]Douglas K T. Chemical synthesis of glutathione and analogs [J]. Coenzymes Cofactors,1993,3:243-279.
    [63]王大慧,卫功元.谷胱甘肽的应用前景及生产研究现状[J].化学与生物工程,2004,12(3):10-12.
    [64]陈坚,卫功元,李寅等.微生物发酵法生产谷胱甘肽[J].无锡轻工大学学报,2004,23(5):104-110.
    [65]吴坚平,林健平,刘慧敏.培养条件对产朊假丝酵母合成谷胱甘肽的影响[J].化学反应工程与工艺,2001,17(1):89-93.
    [66]周迪南,李寅,陈坚等.从酵母中提取GSH的初步研究[J].生物技术,1997,7(4):30-33.
    [67]王正刚,蔡正森,丁贵平.酵母天然酶系生物合成谷胱甘肽[J].生物技术,2001,11(1):13-16.
    [68]邱雁临,黎琛子,潘飞等.金属螯合亲和层析分离纯化谷胱甘肽(GSH)初探[J].中
    国酿造,2005,4:22-24.
    [69]梅乐和,林东强,朱自强.双水相分配结合温度诱导相分离从酵母中提取谷胱甘肽[J].化工学报,1998,49(4):470-475.
    [70]Takeshi Gotoh, Ken-ichi Kikuchi. Contamination of an anion-exchange membrane by glutathione Bio separation,2000 9:37-41.
    [71]Noguchi Sadao. Purification of glutathione[P]. JP:510157391,1977-08-23.
    [72]Yokoo Yoshiharu, Noguchi Sadao. Purification of glutathione[P]. JP:510471841, 1977-11-04.
    [73]Maki Haruhiko, Fukuda Hideki. Purification of glutathione[P]. JP:62246594, 1987-10-27.
    [74]Watanabe Koichi, Kataoka Katsuyuki, Senoo Yoshimi, Kawabata Takashi. Purification of glutathione[P]. JP:042326271,1994-03-01.
    [75]王辉,冯万祥.几种国产树脂对谷胱甘肽的分离性能测定[J].离子交换与吸附,1997,13(3):318-321.
    [76]王辉,冯万祥.含汞树脂分离提取谷胱甘肽[J].华东理工大学学报,1996,22(6):717-720.
    [77]陶祖贻,赵爱民,离子交换平衡及其动力学,原子能出版社,1989,27-84
    [78]林永贤.发菜多糖的提取、纯化及其部分理化性质研究[D].天津:天津科技大学,2006.
    [79]苏晓晋,王淼,王帅等.应用超滤技术去除富含谷胱甘肽的酵母提取液中蛋白质的研究[J].食品工业科技,2007,27(2):136-138.
    [80]刘娟,王雅琴,刘刚等.发酵液中还原型GSH三种测定方法的改进及其比较[J].北京化工大学学报,2004,31(3):37-38.
    [81]李健武.生物化学实验原理和方法[M].北京:北京大学出版社,1994.
    [82]范崇东,王淼.酵母细胞中GSH的微波辅助提取[J].食品与发酵工业,2004,30(4):27-31.
    [83]杜连祥.工业微生物学实验技术[M].天津:天津科技大学出版社,1992.
    [84]Martinez-Yee S, Contreras M L, Gomez-Manzo S, et al. Partial bioenergetic characterization of Gluconacetobacter xylinum cells released from cellulose pellicles by a novel methodology[J]. Escamilla Journal of Applied Microbiology,2005,99, 1130-1140.
    [85]Brul S, Rommens A.J.M, erripsC.T.V. Mechanistic studies on the inactivation of Saccharomyces cerevisiae by high pressure[J]. Innovative Food Science and Emerging Technologies,2000,99-108.
    [86]孙海翔,尹卓容,马美范.高压均质破碎啤酒酵母细胞壁的研究[J].食品工业科技,2002,23(2):66-67.
    [87]Marcel Mulder. Basic Priciples of Membrane Technology. 清华大学出版社,1999.
    [88]Munir Cheryan. Ultrafiltration Handbook.Technomic publishing CO. INC,1986.
    [89]谢雷波.利用酿酒酵母生物合成谷胱甘肽及其分离纯化的初步研究[D].江西:南昌大学,2006.
    [90]Storm AR, Kaasen I. Trehalose metabolism in E. coli:stress protection and regulation of gene expression[J]. Molecular Microbiology,1993,8(2):205-210.
    [91]王兰.高产海藻糖菌种选育及生产工艺的研究[D].天津:天津科技大学博士学位论文,2002.
    [92]John M, Thevelein. Reglulation of trehalose mobilization in Fungi[J]. Microbiological Reviews,1984,48(3):42-59.
    [93]Elisa M.Miguelez, Monica Fernandez.Nitrogen starvation-induced glycogen synthesis deponds on the developmental stage of Streptomyces antibioticus myceliaum[J]. FEMS Microbiology Letters,1997,153:57-62.
    [94]Mont serrat T, Eloy G. Determination of biomass yield for growt h of Candidautilis on glucose:black box andmetabolic descriptions[J]. World of Microbiol Biotechnol,1999,15:431-433.
    [95]Li Yin. Microbial over-production of pyruvic acid and metabolic network analysis [D]. Wuxi:Wuxi University of Light Industry,2000.
    [96]Brul S, Rommens AJM, Verrips CT. Mechanistic studies on the inactivation of Saccharomyces cerevisiae by high pressure. Innov Food Sci Emerging Technol 2000;1:99-108.
    [97]孙彦,生物分离工程[M].化学工业出版社,北京,2002,3.
    [98]苏晓晋.功能性食品添加剂——谷胱甘肽分离纯化工艺研究[D].无锡:江南大学.
    [99]翁连进,邹建辉,甘林火等.732离子交换树脂从胱氨酸母液提取L-精氨酸的研究[J].化工进展,2004,23(5):514-518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700